
SAT-IT: The Interactive SAT Tracer

Marc CANÉ a, Jordi COLL b,1, Marc ROJO a and Mateu VILLARET a,2

a Universitat de Girona, Girona, Spain
b Institut d’Investigació en Intel·ligència Artificial, CSIC, Bellaterra, Spain

ORCiD ID: Jordi Coll https://orcid.org/0000-0002-9385-5723, Mateu Villaret
https://orcid.org/0000-0002-8066-3458

Abstract. In this work we present the Interactive SAT Tracer (SAT-IT), a vi-
sual and interactive tool to monitor and illustrate the basic algorithms for solving
the Boolean Satisfiability Problem (SAT). We consider three algorithms with pro-
gressively increasing sophistication: simple backtracking, its extension with unit-
propagation, so called Davis-Putnam-Logemann-Loveland (DPLL), and its further
extension with clause-learning and conflict driven, so called Conflict-Driven Clause
Learning (CDCL). The motivation of this tool is to provide an environment where
the user can see the full trace of a SAT solving process in a compact but detailed
way and understand the reasons why each variable assignment, backtrack or back-
jump occurs. Moreover, we want the user to be able to control the evolution of the
solving process at the desired pace, and let they choose what branchings (or deci-
sions) must be done. Being able to control the solving process and having detailed
information of this process, results in many pedagogical and research applications
such as understanding algorithms or designing encodings.

Keywords. SAT, CDCL, DPLL, tool, tracer

1. Introduction

The Boolean Satisfiability problem (SAT) is the paradigmatic NP-complete prob-
lem [1,2]. This is the problem of deciding whether a Boolean propositional formula can
be satisfied. This problem is not only relevant for being the first problem that was shown
to be NP-complete, but his popularity and research interest have been continuously in-
creasing during the last decades for its applicability as a problem-solving paradigm.

The key factors in the success of SAT are the facility to translate a plethora of hard
constraint satisfaction and optimisation problems to SAT formulas, and the development
of extremely efficient algorithms for solving such formulas. Despite the enormous the-
oretical computational complexity of SAT, nowadays we have efficient methods capa-
ble of solving huge formulas coming from problems of industrial interest such as circuit
verification [3], planning [4], scheduling or timetabling [5,6], to name a few.

Except for very specific domains, there is one clearly predominating algorithm to
solve SAT: the Conflict-Driven Clause Learning algorithm (CDCL). The essence of

1Corresponding Author: Jordi Coll, jcoll@iiia.csic.es, partially supported by Grants PID2019-111544GB-
C21 and TED2021-129319B-I00 funded by MCIN/AEI /10.13039/501100011033.

2Corresponding Author: Mateu Villaret, mateu.villaret@udg.edu, partially supported by: Grant PID2021-
122274OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe.

Artificial Intelligence Research and Development
I. Sanz et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230704

337

CDCL is a combination of search and inference. It consists of a (non-chronological)
backtracking scheme that explores a search tree to find a solution if any exists, enhanced
with the Unit Propagation (UP) rule and which uses the Resolution rule to learn new
clauses from dead ends of the search tree. Therefore, understanding the basics of SAT-
solving requires to get familiar with the previously mentioned inference rules and their
integration into a SAT solving algorithm. In this regard, in [7] a very compact and precise
rule-based framework to describe SAT solving algorithms was presented.

Inspired by the previously mentioned framework, in this work we present the In-
teractive SAT Tracer (SAT-IT), a visual and interactive tool to monitor and illustrate
the basic algorithms for SAT solving. In order to facilitate the learning of SAT solv-
ing techniques to users that start without a background knowledge, we consider three
algorithms with progressively increasing sophistication: simple backtracking, its exten-
sion with UP, so called Davis-Putnam-Logemann-Loveland (DPLL), and its further ex-
tension with conflict-driven clause learning, i.e. CDCL. In contrast to the teaching tool
LearnSAT [8] our tool provides an interactive environment with some graphical support.
The motivation of our tool is to provide an environment where the user can see the full
trace of a SAT solving process in a compact but detailed way and understand the rea-
sons why each variable assignment, backtrack or backjump occurs. Further information
is included in the tool, such as the sequence of resolution rules involved in each conflict
analysis, what clauses have been learnt, or what are the inspected literals involved in the
2-watched literals scheme for implementing UP. Moreover, the user is able to control
the solving process evolution at the desired pace and choose what variables should be
used for branchings (or decisions). The system displays a full log of the SAT solving
process that allows to see the overall progress of the execution until the current point,
and users can go back to any previous point of the solving process to reinspect or to try
“what if” scenarios. In particular, one could see which variables are unit-propagated af-
ter some particular assignments. This could serve the user to get some practical insights
of some properties of the encodings such as correctness or generalized arc consistency
enforcement by UP.

In the rest of the paper, we review some preliminary concepts in Section 2, we
present the SAT-IT rule-based notation in Section 3, we describe the considered algo-
rithms for SAT solving in Section 4, we describe the SAT-IT tool in detail in Section 5
and we conclude in Section 6.

2. Preliminaries

A propositional variable x can take Boolean truth values, i.e. 0 (meaning false) or 1
(meaning true). A literal l is a variable x, or a negated variable ¬x. A clause is a disjunc-
tion of literals l1 ∨ ·· ·∨ lk. A propositional formula in Conjunctive Normal Form (CNF)
is a conjunction of m clauses c1 ∧·· ·∧ cm. A CNF is usually seen as a set of clauses. An
assignment is a mapping from propositional variables to {0, 1}. An assignment satisfies
(respectively falsifies) literal x if x = 1 (respectively x = 0), and satisfies (respectively
falsifies) literal ¬x if x = 0 (respectively x = 1). An assignment is often expressed as a
set of satisfied literals, e.g. x = 1,y = 0,z = 1 can be expressed as {x,¬y,z}. A literal
l is defined in an assignment M if l ∈ M or if ¬l ∈ M, and otherwise is undefined. An
assignment is complete if all the variables are assigned a value, otherwise it is partial.

M. Cané et al. / SAT-IT: The Interactive SAT Tracer338

Given an assignment, a clause is satisfied if at least one of its literals is satisfied, it is
falsified if all its literals are falsified, and it is unit if all its literals are false but one which
is unassigned. A CNF is satisfied if all its clauses are satisfied. An assignment satisfies a
formula F if it satisfies all the clauses of F . We call an assignment satisfying a formula
F a model of F . Given two formulas F and F ′, we say that F ′ is a logical consequence of
F , denoted F |= F ′, if every model of F is a model of F ′. This notation can be extended
to clauses and assignments: a clause C and a negation of a clause ¬C are also formulas,
and an assignment M can be seen as a conjunction of literals, i.e. also as a formula. Then,
M |=C means that assignment M satisfies clause C and M |=¬C means that M falsifies C.

Definition 1 The Boolean satisfiability (SAT) problem consists in determining whether
there exists a model for a given CNF formula.

The unit propagation and the resolution rules play a central role in SAT solvers.

Definition 2 Given an assignment M and a clause C ∨ l such that M |= ¬C and l is
undefined in M, (i.e., C ∨ l is a unit clause given M), the unit propagation (UP) rule
extends M to M∪{l}.

Definition 3 Given two clauses C∨ l, C′ ∨¬l, the resolution rule derives the clause C∨
C′. It holds that (C∨ l)∧ (C′ ∨¬l) |=C∨C′.

Modern SAT solvers implement the Conflict-Driven Clause Learning (CDCL) algo-
rithm. It is an algorithm that combines search and inference. Moreover, CDCL solvers
include a series of techniques which are crucial to achieve the best performance, such as
restarts, the variable-elimination inprocessing and the learnt clause removal [9]. How-
ever, for now SAT-IT only focuses on the basic search and inference components.

In particular, SAT-IT is designed to explain the search component of SAT-solving al-
gorithms by starting with a naive backtracking scheme which is incrementally enriched,
obtaining the Davis-Putnam-Logemann-Loveland (DPLL) algorithm at a first step, and
the CDCL algorithm at a second step. The most basic backtracking scheme tries to find
a model by successively assigning arbitrary truth values to the variables (it makes deci-
sions). If a clause is falsified (it finds a conflict), it undoes a decision (it does a backtrack)
and continues the search, thus forming a search tree. If this basic backtracking scheme is
improved by applying UP whenever possible, we obtain the DPLL algorithm. The deci-
sion level of an assigned literal l is the number of decisions made before being assigned
(including l), and the decision level of an assignment (or of a point of the search tree) is
the maximum decision level of its literals. If a conflict is found at decision level 0, the
formula is unsatisfiable. Finally, CDCL improves DPLL with clause learning. When it
reaches a conflict, conflict analysis is performed to derive a new clause explaining the
conflict, and it does a non-chronological backtrack (or backjump). This new clause is
inferred with a sequence of applications of the resolution rule, and is added to the for-
mula (it is learnt). We refer the reader not familiar with SAT to [10,11,12,7,13] for more
detailed explanations about DPLL and CDCL.

3. SAT-IT Rules

In [7] there was presented a rule-based framework to describe the DPLL algorithm and
some extensions such as CDCL, or DPLL(T) for solving Satisfiability Modulo Theories

M. Cané et al. / SAT-IT: The Interactive SAT Tracer 339

DECIDE:

M ‖ F =⇒ M ld ‖ F if

{
l or ¬l occurs in a clause of F

l is undefined in M
BACKTRACK:

M ld N ‖ F ∪{Ci} =⇒ M ¬lk ‖ F ∪{Ci} if

{
M ld N |= ¬Ci

N contains no decision literals
FAIL:

M ‖ F ∪{Ci} =⇒ FailState if

{
M |= ¬Ci

M contains no decision literals
UNITPROPAGATE :

M ‖ F ∪{Ci} =⇒ M li ‖ F ∪{Ci} if

⎧⎪⎪⎨
⎪⎪⎩

Ci has the form C′ ∨ l

M |= ¬C′

l is undefined in M
BACKJUMP:

M ld N ‖ F ∪{Ci} =⇒ M l′ j ‖ F ∪{Ci} if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M ld N |= ¬Ci, and
there is some clause Cj such that:

Cj has the form C′ ∨ l′,
F ∪{Ci} |=Cj and M |= ¬C′,
l′ is undefined in M, and
l′ or ¬l′ occurs in F or in M ld N

LEARN:

M ‖ F =⇒ M ‖ F ∪{Cj} if

{
each literal of Cj occurs in F or in M
F |=Cj

Figure 1. Rule-based representation of SAT-IT.

(SMT). This framework allows to formally reason about the algorithms using a simple
representation. SAT-IT works with (a slight modification of) a subset of the rules pre-
sented in [7], that is listed in Figure 1, and described after providing some notation.

A state is defined as a pair of the form M‖F , where M is a (partial) assignment and F
is a formula in CNF, i.e. a finite set of clauses. Every rule, of the form M‖F =⇒ M′‖F ′,
can only be applied if a set of conditions over M‖F are satisfied, and its application
changes the state from M‖F to M′‖F ′. Then, the process of solving a SAT formula F
is represented as a sequence of states S0 =⇒ S1 =⇒ S2 =⇒ ·· · =⇒ Sn obtained by a
sequence of rule applications, where S0={}‖F . If F is satisfiable, then Sn is of the form
M‖F ′, where M is a model of F . Otherwise (i.e., F is unsatisfiable), Sn is the special state
FailState. A partial assignment is not represented as a set of literals but as a sequence M
of literals tagged with superscripts. We write together assignments and literals to denote
concatenation, e.g. M l is the sequence M followed by literal l.

The rules used by SAT-IT are the following:

DECIDE: Extends the partial assignment with an undefined literal l (it decides l).
BACKTRACK: This rule can be applied when an existing clause Ci is falsified by the par-

tial assignment, and the partial assignment contains some decided literal. The last
decided literal l is negated, and all literals after l are removed from the assignment.

M. Cané et al. / SAT-IT: The Interactive SAT Tracer340

FAIL: This rule can be applied when an existing clause Ci is falsified by the partial
assignment, and the partial assignment does not contain any decided literal. The
result is the FailState (the formula is unsatisfiable).

UNITPROPAGATE: This rule applies UP on the unit clause Ci =C′ ∨ l.
BACKJUMP: This rule can be applied in the same case as the BACKTRACK rule. How-

ever, instead of negating the last decision, the rule removes the partial assignment
until (and including) a decision ld , which is not necessarily the last decision (i.e.,
it performs non-chronological backtracking). The backjump decision level d is de-
termined by a clause Cj = C′ ∨ l′ which is falsified by M l N. More precisely, d
is one plus the largest decision level of literals in C′. Note that Cj does not nec-
essarily exist in F,Ci, but it must be a logical consequence of F,Ci. Note also that
clause C′ is unit with assignment M, and therefore we extend M with l′ j due to UP
on clause Cj.

LEARN: This rule adds a new clause to the formula. The added clause must be logical
consequence of the formula.

The only rules that add a literal to the partial assignment, possibly after removing
other literals, are DECIDE, UNITPROPAGATE, BACKTRACK and BACKJUMP. Like in [7],
a literal l that has been added to an assignment M with the DECIDE rule will have the
symbol d as a superscript, meaning that l has been assigned with the application of the
DECIDE rule. However, in [7] no superscript is added in the remaining cases. SAT-IT
rules introduce a small difference: literals assigned by BACKJUMP and UNITPROPAGATE
contain an integer superscript i, meaning that l has been assigned by UP on the unit
clause Ci; literals assigned by BACKTRACK contain the symbol k as a superscript. This
representation is closer to the real implementation of CDCL SAT solvers [12], where
each literal in the sequence of assignments (a.k.a. trail), has a reason to be assigned, i.e.
it has been either decided or unit-propagated due to a particular case (no backtrack k
reason exists in CDCL). Moreover, this extra information allows a better understanding
of the development of the solving process, as well as a better identification of the clauses
involved in conflict analysis. Example 1 explains how to read the trail of a given state.

Example 1 Consider the trail 1d -55 2d -3k 40 corresponding to the second line of Fig-
ure 3, left (where xi is denoted just i and ¬xi as -i, as we explain later). Literals 1 and
2 have been decided (DECIDE rule), literal -3 is the negation of a previous decision
(BACKTRACK rule), and literals -5 and 4 have been unit-propagated due to clauses C5
and C0 respectively, either by UNITPROPAGATE rule or by BACKJUMP rule. Literals 1
and -5 have decision level 1, and literals 2, -3 and 4 have decision level 2.

4. SAT-IT Algorithms

SAT-IT supports three SAT-solving algorithms with increasing sophistication: BACK-
TRACKING, DPLL and CDCL. These three algorithms can be described as applications
of different sets of rules from Figure 1. In fact, using these rules one could design other
solving algorithms. We consider those three since they follow a natural evolution form
a naive backtracking one to a full (though basic) CDCL solver. In the provided pseudo-
code for these algorithms, we use the auxiliary function canApply(R,M,F), which checks
the shape of M and the conditions of rule R on the state M‖F to determine the applicabil-

M. Cané et al. / SAT-IT: The Interactive SAT Tracer 341

Algorithm 1: BACKTRACKING algorithm
Input: F = {C1, . . . ,C|F |}, a set of clauses.
Output: If F is SAT: (SAT,M), where M is a model of F . Otherwise: UNSAT .

1 M ←{}
2 while True do

3 if CanApply(BACKTRACK,M,F) then (M,F)←Backtrack(M,F) ;
4 else if CanApply(FAIL,M,F) then return UNSAT ;
5 else if M is a complete assignment then return (SAT,M) ;
6 else (M,F)←Decide(M,F) ;

Algorithm 2: DPLL algorithm
Input: F = {C1, . . . ,C|F |}, a set of clauses.
Output: If F is SAT: (SAT,M), where M is a model of F . Otherwise: UNSAT .

1 M ←{}
2 while True do

3 if CanApply(BACKTRACK,M,F) then (M,F)←Backtrack(M,F) ;
4 else if CanApply(FAIL,M,F) then return UNSAT ;
5 else if M is a complete assignment then return (SAT,M) ;
6 else if CanApply(UNITPROPAGATE,M,F) then (M,F)←UnitPropagate(M,F) ;
7 else (M,F)←Decide(M,F) ;

Algorithm 3: CDCL algorithm
Input: F = {C1, . . . ,C|F |}, a set of clauses.
Output: If F is SAT: (SAT,M), where M is a model of F . Otherwise: UNSAT .

1 M ←{}
2 while True do

3 if CanApply(BACKJUMP,M,F) then

4 Cj ←ConflictAnalysis(M,F)
5 (M,F)←Backjump(M,F ,Cj)
6 (M,F)←Learn(M,F ,Cj)
7 else if CanApply(FAIL,M,F) then return UNSAT ;
8 else if M is a complete assignment then return (SAT,M) ;
9 else if CanApply(UNITPROPAGATE,M,F) then (M,F)←UnitPropagate(M,F) ;

10 else (M,F)←Decide(M,F) ;

ity of the rule. The auxiliary functions Decide, UnitPropagate, Backtrack, Backjump and
Learn perform one application of the corresponding rule and return the resulting state.

The simplest algorithm is BACKTRACKING, described in Algorithm 1, and can
be defined in terms of the rules DECIDE, BACKTRACK and FAIL. The DPLL algorithm,
described in Algorithm 2, is obtained by adding to BACKTRACKING the UNITPROPA-
GATE rule. Finally, the CDCL algorithm, described in Algorithm 3, replaces the BACK-
TRACK rule with the BACKJUMP rule, and adds the LEARN rule. Both rules are para-
metric to a clause Cj that we provide as an argument. In order to obtain Cj, we define
the ConflictAnalysis function that requires as input a state M‖F where we can apply the

M. Cané et al. / SAT-IT: The Interactive SAT Tracer342

Algorithm 4: Conflict Analysis
Input: F,M: A state where F contains some clause falsified by M.
Output: C: A new clause derived with resolution from a conflict until the 1UIP.

1 C ← a clause in F such that M |= ¬C
2 while C contains more than one literal of the last decision level do

3 li ← the rightmost literal of M s.t. ¬l ∈C
4 C ← Resolution(C,Ci)

5 return C

BACKJUMP rule, and therefore where there exists a clause Ci ∈ F which is falsified by
the current assignment M. The conflict analysis procedure is described in Algorithm 4.
Starting from an unsatisfied clause C, and by means of the resolution rule, the conflict
analysis transforms C until it contains only one literal of the last decision level. Such lit-
eral is usually referred to as the First Unique Implication Point (1UIP) [10]. After conflict
analysis, the returned clause Cj is learnt and the 1UIP is unit-propagated due to clause
Cj in the BACKJUMP rule.

5. SAT-IT GUI and Functionalities

SAT-IT is publicly available3. This tool allows the user to work with CNFs in DIMACS
format using any of the three given algorithms. We find an example execution of CDCL
in Figure 2, and of DPLL and BACKTRACKING in Figure 3. These figures consider the
same example input formula:

C0 : x3 ∨ x4 ∨¬x1 ∨ x5 C2 : x3 ∨¬x4 ∨¬x1 C4 : x1 ∨¬x2 C6 : ¬x3 ∨¬x4 ∨ x5
C1 : ¬x3 ∨ x4 ∨ x5 C3 : x1 ∨ x2 C5 : ¬x1 ∨¬x5

Moreover, when a decision is done, the provided examples always choose the first unas-
signed variable in the order 1,2, . . . ,5, and always the positive literal.

SAT-IT illustrates the solving process and lets the user control the evolution of the
process using the views and functionalities that we describe now. The main window of
SAT-IT can be seen in Figure 2. We start by explaining the four main views of the main
window of SAT-IT, that we refer as to trail’s history, clause list, event viewer and control
buttons. After this, we describe further functionalities.

Trail’s history: The trail’s history is shown in the enclosed area at the top-left part in
Figure 2. This view shows the evolution of the trail (i.e. of M) as the algorithm pro-
gresses. In this window, a tagged literal xt

i is denoted it , and a literal ¬xt
i is denoted −it .

This representation corresponds to the standard DIMACS format. At the beginning of the
execution, it starts with an empty trail. The new literals added to the trail with the rules
DECIDE and UNITPROPAGATE are appended to the end of the current trail. Whenever a
rule that removes literals from the trail is applied, namely BACKTRACK or BACKJUMP,
the current trail is left in its form before the rule application, and the trail resulting of the
rule application is added in a new line. See for instance that in Figure 2 there are 3 lines,

3https://imae.udg.edu/Recerca/LAI/

M. Cané et al. / SAT-IT: The Interactive SAT Tracer 343

https://imae.udg.edu/Recerca/LAI/

since we applied 2 times the BACKJUMP rule. In order to visually illustrate the backtrack
point, the part of the trail that is kept after BACKTRACK or BACKJUMP is blurred out.
The application of a BACKTRACK or BACKJUMP, which is written at the right of the
current trail, is always preceded by the message CONFLICT i, meaning that Ci is the
conflicting clause that triggered the rule. Moreover, the BACKJUMP rule is also followed
by the message LEARNED j, meaning that clause Cj is learnt and is the clause that estab-
lish the backjump point (recall Algorithm 3). Finally, the last trail will either finish with
SAT or UNSAT. The former case means that the formula is satisfiable and the last trail
is a model, while the latter means that unsatisfiability is proven. Note that the content of
this history once the solving process has finished shows in full detail what has been the
process that the algorithm has followed to find a solution.

Clause list: The bottom-left enclosed part lists all the clauses of the formula. Every
row, of the form i : l1 l2 l3 . . . ln shows a different clause, where i is the name given
to clause Ci, and the right part is the list of literals of the clause. Again, the minus sign
means negated literal, hence following the standard DIMACS format. At the beginning,
the list contains the original clauses. Every time a clause Cj is learned, the corresponding
message LEARNED j is shown after the trail, and a new clause is added to the list. For
instance, in Figure 2 clauses 7 and 8 are learned. Note that the ids of learnt clauses are
painted in orange. The colouring of the literals during the solving process is modified.
The colouring code of the literals, for a current trail (assignment M), is the following:
red means falsified, green means satisfied, and black means unassigned.

Event viewer: This is the top-right part of the window and it shows, in chronological
order, some events that the solver has processed together with extra information. The
events that we consider are: (i) a decision, specifying the decided literal and its decision
level; (ii) a maximal chain of consecutive unit propagations; (iii) a backtrack followed by
the backtrack resulting literal; (iv) or a backjump followed by the decision level at which
it “backjumps”. This view provides therefore a summary of the whole solving process.
Moreover, if the user double-clicks a backjump entry, a popup will show the chain of
resolution rule applications followed in the conflict analysis in order to derive the clause
to be learnt (see Figure 2 and recall Algorithm 4).

Control buttons: These buttons allow the user to control the solving process at the de-
sired pace. The Decision button performs a literal decision. Depending on the selected
configuration the literal is either picked automatically, or chosen by the user. In case of
automatic picking, we can configure SAT-IT to pick the literals either based on input
order, or following the VSIDS heuristic [11]. The latter case is only enabled if we use
CDCL, and in that case the scores of the variables will be shown. The Unit Prop. button
advances the execution step by step, doing only one propagation each time, or a deci-
sion if needed. The Conflict button advances the execution until a conflict is found. The
Resolve C. button is enabled only when a conflict is found and is used to resolve the
conflict. The End button will trigger the automatic completion of the solving process.

Other Functionalities: SAT-IT uses and illustrates the two-watched literals (2WL)
scheme (see [11]) to apply UP. The literals that are added to the trail are processed in the
order they are added since the last decision, in order to find unit clauses where to apply
UP. That is, we will consider all unit clauses containing the literal at position i of the trail
(starting from the last decision), before continuing with the unit clauses containing the

M. Cané et al. / SAT-IT: The Interactive SAT Tracer344

Figure 2. Main view of SAT-IT, with a completed execution of the CDCL algorithm, and the pop-up window
showing the conflict analysis for the second backjump.

Figure 3. Left: trail history of a DPLL run. Right: three first and three last lines of the trail history of a
BACKTRACKING run (the total number of lines of the example is 16).

literal at position i+1. 2WL benefits from the fact that inspecting two unassigned literals
in a clause is enough to check the moment when the clause becomes unit. In SAT-IT,
each clause in the clause list view is dynamically reordered to put the two watched lit-
erals in the two first positions of the list of literals. The user can thus appreciate how a
chain of unit propagations updates the watched literals. SAT-IT also implements a break-
point system, that lets the user indicate variables to be tracked. Then, a message appears
every time one of these variables is assigned. In order to try the consequences of dif-
ferent decisions, SAT-IT implements undo and redo functionality. This allows to undo
the execution process decision by decision, and pick another path (by manual decision
selection). Finally, SAT-IT incorporates a preprocess of the input formulas. If the input
CNF contains unit clauses, UP is applied until fix point. The formula is simplified ac-
cordingly, meaning that satisfied clauses are removed and falsified literals are removed
from the remaining clauses. The literals propagated by this preprocess are listed in a line
at the beginning of the trail history, with the superscript symbol p.

6. Conclusions an Future Work

We have presented SAT-IT, a visual and interactive tool to monitor and illustrate the
basic search-based exact algorithms for SAT solving in a compact but detailed and very
informative way. Whereas the tool can rapidly solve fairly large formulas, it has been
designed to deal with formulas of few tens or hundreds of variables, so that the evolution
of the solving process can be visually inspected. We believe that this tool can be really
helpful to assist the teaching basics on SAT solving for different reasons. First, it is a
very intuitive graphical tool that shows a good selection of the most relevant information
involved in a SAT solving process. Second, the three included algorithms with increasing

M. Cané et al. / SAT-IT: The Interactive SAT Tracer 345

sophistication allow the users to approach gently to the full CDCL algorithm. The used
language and the trace of the algorithms are completely deterministic and the notation is
also suitable for hand writing resolution of SAT formulas. These facts favours the use of
the tool as an assistant to correct practical exercises and assist autonomous study.

The practical utility of the tool goes much beyond the learning of the CDCL algo-
rithm or even teaching. For instance, SAT-IT can be used as an assistant for creating and
validating examples for research reports. In particular, in papers on SAT modelling and
solving, we can frequently find illustrative examples where an initial CNF formula is pro-
vided, and the inferences made by UP on the formula are then analysed. Similarly, SAT-
IT can be used to analyse the properties of some SAT formulas or to find counterexam-
ples. As an illustrative example we consider the analysis of the propagation strength of a
SAT encoding. We are given a SAT formula consisting of the encoding of the cardinality
constraint x1+x2+x3+x4≥3, and this encoding is supposed to maintain Generalized Arc
Consistency (GAC) by UP [14]. Satisfying the GAC property implies, for instance, that
assigning false to one of the three variables must make UP assign true to the other three.
This scenario can be easily verified with SAT-IT by means of a manual decision followed
by UP, and the user can inspect which clauses are involved in this process.

We plan to improve SAT-IT by including more features of CDCL SAT solvers such
as restarts, learnt clause removal and bounded variable elimination, by providing graphic
representation of unsatisfiability proofs, and by supporting MaxSAT solving algorithms.

References

[1] Cook SA. The Complexity of Theorem-Proving Procedures. In: Proceedings of the Third Annual ACM
Symposium on Theory of Computing. STOC ’71; 1971. p. 151-158.

[2] Levin LA. Universal sequential search problems. Problemy peredachi informatsii. 1973;9(3):115-6.
[3] Kaufmann D, Biere A, Kauers M. Verifying Large Multipliers by Combining SAT and Computer Alge-

bra. In: 2019 Formal Methods in Computer Aided Design (FMCAD); 2019. p. 28-36.
[4] Kautz HA, Selman B, et al. Planning as Satisfiability. In: ECAI. vol. 92. Citeseer; 1992. p. 359-63.
[5] Demirovic E, Musliu N, Winter F. Modeling and solving staff scheduling with partial weighted maxSAT.

Ann Oper Res. 2019;275(1):79-99.
[6] Bofill M, Coll J, Garcia M, Giráldez-Cru J, Pesant G, Suy J, Villaret M. Constraint Solving Approaches

to the Business-to-Business Meeting Scheduling Problem. J Artif Intell Res. 2022;74:263-301.
[7] Nieuwenhuis R, Oliveras A, Tinelli C. Solving SAT and SAT Modulo Theories: From an abstract Davis–

Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM. 2006;53(6):937-77.
[8] Ben-Ari MM. LearnSAT: a SAT solver for education. In: International Conference on Theory and

Applications of Satisfiability Testing. Springer; 2013. p. 403-7.
[9] Elffers J, Giráldez-Cru J, Gocht S, Nordström J, Simon L. Seeking Practical CDCL Insights from

Theoretical SAT Benchmarks. In: Lang J, editor. Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI; 2018. p. 1300-8.

[10] Marques-Silva JP, Sakallah KA. GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers. 1999;48(5):506-21.

[11] Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S. Chaff: Engineering an efficient SAT solver.
In: Proceedings of the 38th annual Design Automation Conference; 2001. p. 530-5.

[12] Eén N, Sörensson N. An extensible SAT-solver. In: Theory and Applications of Satisfiability Testing: 6th
International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Revised
Papers 6. Springer; 2004. p. 502-18.

[13] Biere A, Heule M, van Maaren H, Walsh T, editors. Handbook of Satisfiability - Second Edition. vol.
336 of Frontiers in Artificial Intelligence and Applications. IOS Press; 2021.

[14] Bofill M, Coll J, Nightingale P, Suy J, Ulrich-Oltean F, Villaret M. SAT encodings for Pseudo-Boolean
constraints together with at-most-one constraints. Artif Intell. 2022;302:103604.

M. Cané et al. / SAT-IT: The Interactive SAT Tracer346

