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Abstract. We define a tableau calculus for solving the Maximum Satisfiability
problem of regular propositional logic (Regular MaxSAT). Given a multiset of reg-
ular clauses Φ, we prove that the calculus is sound in the sense that if the minimum
number of contradictions derived among the branches of a completed tableau for
Φ is m, then the minimum number of unsatisfied clauses in Φ is m. We also prove
that it is complete in the sense that if the minimum number of unsatisfied clauses
in Φ is m, then the minimum number of contradictions among the branches of any
completed tableau for Φ is m. Furthermore, we describe how to extend the pro-
posed calculus to solve Regular MaxSAT in the case where we consider weighted
formulas.

Keywords. regular propositional logic, maximum satisfiability, semantic tableaux,
completeness.

1. Introduction

Regular propositional logic is a multiple-valued logical formalism for knowledge rep-
resentation that lies in the intersection of the areas of constraint programming, many-
valued logics and annotated logic programming [6].

Regular propositional formulas are multiple-valued propositional formulas equipped
with a regular sign. Given a finite truth value set N equipped with a total order ≤,
a regular sign is a subset of N either of the form { j ∈ N | j ≥ i}, denoted by ≥ i, or
{ j ∈ N | j ≤ i}, denoted by ≤ i, for some i ∈ N. For simplicity, we assume that N takes
rational values between 0 and 1. Given a multiple-valued propositional formula φ , a reg-
ular propositional formula is an expression either of the form ≥ i : φ or ≤ i : φ . In Regular
logic, a truth assignment v maps every propositional variable to a value of N. An assign-
ment v is extended to regular propositional formulas by interpreting conjunction as the
minimum function, disjunction as the maximum function and negation of a propositional
formula φ as 1− v(φ). Then, an assignment v satisfies a regular propositional formula
≥ i : φ iff v(φ)≥ i, and v satisfies a regular propositional formula ≤ i : φ iff v(φ)≤ i.

In contrast to signed propositional formulas [6], where a sign can be any subset of N,
regular propositional formulas offer advantages such as the distinction between positive
and negative literals. In this paper, we assume that N is finite, but in the case that N is
infinite, regular signs allow us to deal with infinite subsets of truth values.
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In the area of satisfiability testing, one of the problems that has attracted more in-
terest in recent years is the Maximum Satisfiability problem (MaxSAT) [5,15,16]. SAT
is usually considered in the particular case of formulas in Conjunctive Normal Form
(CNF), i.e. a problem instance consists of a conjunctions of clauses, where a clause is
a disjunction of literals. Whereas SAT is the problem of deciding if there exists a truth
assignment for a given Boolean CNF formula that satisfies all clauses, MaxSAT is the
problem of finding a truth assignment that minimizes the number of unsatisfied clauses
in a Boolean CNF formula.

In practice, SAT is used as a generic problem solving formalism for decision prob-
lems and MaxSAT for optimization problems. The development of highly competitive
MaxSAT solvers (e.g. [5,14]) has allowed to apply MaxSAT to solve challenging opti-
mization problems in various fields such as bioinformatics [22], circuit design and de-
bugging [23], combinatorial testing [3], diagnosis [10], planning [24], scheduling [7] and
team formation [21].

In this paper we focus on the MaxSAT problem for regular propositional formulas in
CNF, or Regular MaxSAT. Namely, the problem is to find a truth assignment that satisfies
the largest possible number of regular clauses from a given multiset. Our aim is to define
a complete tableau-style proof system for Regular MaxSAT.

Our work is motivated by the fact that the logic machinery defined for Regular SAT
is not valid for Regular MaxSAT. Unfortunately, the inference rules for Regular SAT
are unsound in Regular MaxSAT because they preserve satisfiability but do not pre-
serve the minimum number of unsatisfied clauses between the premises and the con-
clusions. As a consequence, in the Boolean case, new complete resolution and tableau-
style proof systems for MaxSAT have had to be defined (see e.g. [4,8,9,11,12,13,17,18]).
In the multiple-valued case, there exist also resolution and tableau-style proof systems
for MaxSAT (see e.g. [1,2,19,20]). Nevertheless, specific proof systems for Regular
MaxSAT have not been investigated so far.

The main contributions of the present paper can be summarized as follows:

• The definition of the first tableau-style proof system for Regular MaxSAT and the
corresponding proofs of soundness and completeness.

• The extension of the proposed proof system for dealing with clauses that have
an associated weight, or in other words, a sound and complete proof system for
Weighted Regular MaxSAT.

The paper is structured as follows. Section 2 defines basic concepts. Section 3 de-
fines a Regular MaxSAT tableau calculus and proves its soundness and completeness.
Section 4 defines an extension of the proposed calculus to Weighted MaxSAT. Section 5
ends the paper with some concluding remarks.

2. Preliminaries

Given a countable set of propositional variables V = {xi}i∈N, we define a propositional
clause as a set of literals connected by the disjunction (∨) operator, where a literal is
either a variable xi or its negation ¬xi. Let N = {0, 1

n−1 , . . . ,
n−1
n−1} be a finite set of truth

values. The |N|-valued propositional logic considered in this paper is established by a
semantics comprehending an assignment v : V → N, which is extended to literals and
clauses as follows:
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v(¬xi) = 1− v(xi);

v(l1∨ l2∨·· ·∨ ln) = max{v(l1),v(l2), . . . ,v(ln)}.

Given N = {0, 1
n−1 , . . . ,

n−1
n−1} equipped with the natural total order≤ on rational numbers,

a regular sign is a subset of N either of the form { j ∈ N | j ≥ i}, denoted by ≥ i, or
{ j ∈ N | j ≤ i}, denoted by ≤ i, for some i ∈ N. Given a clause C, a regular clause is
an expression either of the form ≥ i :C or ≤ i :C. An assignment v satisfies ≥ i :C iff
v(C)≥ i, and satisfies ≤ i :C iff v(C)≤ i.

Given a multiset of regular clauses Φ, the Regular Maximum Satisfiability Problem,
or Regular MaxSAT, is to find an assignment that minimizes the number of unsatisfied
clauses in Φ.

A weighted regular clause is a pair (C,w), where C is a regular clause and w, its
weight, is a positive number. Given a multiset of weighted regular clauses Φ, Weighted
Regular MaxSAT is to find an assignment that minimizes the sum of weights of unsatis-
fied clauses in Φ.

3. A Regular MaxSAT Tableau Calculus

We define a Regular MaxSAT tableau calculus and prove its soundness and complete-
ness. The expansion rules we define in Definition 3.2 are graphically represented in Fig-
ure 1.

Definition 3.1. A tableau is a tree with a finite number of branches whose nodes are
labelled by either a regular clause or a box (2). A box in a tableau denotes a contra-
diction. A branch is a maximal path in a tree, and we assume that branches have a finite
number of nodes.

Definition 3.2. Let Φ = {C1, . . . ,Cm} be a multiset of regular clauses. A tableau for Φ

is constructed by a sequence of applications of the following rules:

Initialize We start by generating a tree with a single branch with m nodes such that each
node is labelled with a clause of Φ. Such a tableau is a tableau for Φ, called the
initial tableau. All its clauses are declared to be active.

Given a tableau T for Φ and a branch b of T , the result of applying any of the following
rules results in a tableau for Φ with new branches extending b. All the following
rules declare the premises to be inactive in the new branches, and declare the new
nodes to be active:

∨-rule (≤ sign): If b contains an active regular clause≤ i : l1∨ l2∨·· ·∨ ln, where,
for 1 ≤ j ≤ n, l j is a literal and n ≥ 2, the resulting tableau contains a new
(left) branch with a node below b labelled with 2, and a new (right) branch
with one node for every literal l j below b labelled with ≤ i : l j.

∨-rule (≥ sign): If b contains an active regular clause≥ i : l1∨ l2∨·· ·∨ ln, where,
for 1 ≤ j ≤ n, l j is a literal and n ≥ 2, the resulting tableau contains, for
every literal l j, a new branch with a node below b labelled ≥ i : l j.
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≤ i : l1∨ l2∨·· ·∨ ln
2 ≤ i : l1

≤ i : l2
. . .

≤ i : ln

≥ i : l1∨ l2∨·· ·∨ ln
≥ i : l1 ≥ i : l2 . . . ≥ i : ln

provided that n≥ 2

∨-rule

≤ i :¬x

≥(1−i) : x

≥ i :¬x

≤(1−i) : x

≤ i : x

≥ j : x

2 2

≤ i : x ≥ j : x

provided that i < j

¬-rule 2-rule

Figure 1. Tableau expansion rules for Regular MaxSAT

¬-rule: If b contains an active regular clause ≤ i :¬x (resp. ≥ i :¬x), where x
is a variable, the resulting tableau appends a node below b labelled with
≥(1− i) : x (resp. ≤(1− i) : x).

2-rule: If b contains two active regular clauses ≤ i : x and ≥ j : x such that i < j,
where x is a variable, the resulting tableau contains a new (left) branch with
two nodes below b labelled with 2 and ≤ i : x, and a new (right) branch with
two nodes below b labelled with 2 and ≥ j : x.

Definition 3.3. Let T be a tableau for a multiset of regular propositional clauses Φ. A
branch b of T is saturated when no further expansion rules can be applied on b, and
T is completed when all its branches are saturated. The cost of a saturated branch is
the number of boxes in the branch. The cost of a completed tableau is the minimum cost
among all its branches.

We show below that the minimum number of clauses that can be unsatisfied in a
multiset of regular propositional clauses Φ is m iff the cost of a completed tableau for Φ

is m. Thus, the systematic construction of a completed tableau for Φ provides an exact
method for solving Regular MaxSAT.

Example 3.4. Figure 2 shows how to create a tableau, with the previous calculus, to
prove that the minimum number of unsatisfied regular propositional clauses in the mul-
tiset Φ = {≤ 1

3 :¬x3,≥ 2
3 : x1∨ x2,≤ 1

3 : x2∨ x3} is one, assuming N = {0, 1
3 ,

2
3 ,1}. The

first tableau (the leftmost tableau on top) is the initial tableau, which contains one node
for each regular propositional clause in Φ. The second tableau shows the application
of the ¬-rule to ≤ 1

3 :¬x3 and the ∨-rule to ≥ 2
3 : x1∨ x2 . The third tableau shows the

application of the ∨-rule to ≤ 1
3 : x3∨ x2. The fourth tableau shows the application of the

2-rule to ≥ 2
3 : x3 and ≤ 1

3 : x3, and to ≥ 2
3 : x2 and ≤ 1

3 : x2. Finally, the fifth tableau ap-
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≤ 1
3 :¬x3

≥ 2
3 : x1∨ x2

≤ 1
3 : x2∨ x3

≤ 1
3 :¬x3

≥ 2
3 : x1∨ x2

≤ 1
3 : x2∨ x3

≥ 2
3 : x3

≥ 2
3 : x2≥ 2

3 : x1

≤ 1
3 :¬x3

≥ 2
3 : x1∨ x2

≤ 1
3 : x2∨ x3

≥ 2
3 : x3

≥ 2
3 : x2

≤ 1
3 : x2

≤ 1
3 : x3

2

≥ 2
3 : x1

≤ 1
3 : x2

≤ 1
3 : x3

2

≤ 1
3 :¬x3

≥ 2
3 : x1∨ x2

≤ 1
3 : x2∨ x3

≥ 2
3 : x3

≥ 2
3 : x2

≤ 1
3 : x2

≤ 1
3 : x3

2

≥ 2
3 : x2

2

≤ 1
3 : x2

2

≥ 2
3 : x1

≤ 1
3 : x2

≤ 1
3 : x3

2

≥ 2
3 : x3

2

≤ 1
3 : x3

2

≤ 1
3 :¬x3

≥ 2
3 : x1∨ x2

≤ 1
3 : x2∨ x3

≥ 2
3 : x3

≥ 2
3 : x2

≤ 1
3 : x2

≤ 1
3 : x3

2

≥ 2
3 : x2

2

≥ 2
3 : x3

2

≤ 1
3 : x3

2

≤ 1
3 : x2

2

≥ 2
3 : x3

2

≤ 1
3 : x3

2

≥ 2
3 : x1

≤ 1
3 : x2

≤ 1
3 : x3

2

≥ 2
3 : x3

2

≤ 1
3 : x3

2

Figure 2. A tableaux for the Regular MaxSAT instance ≤ 1
3 :¬x3,≥ 2

3 : x1 ∨ x2,≤ 1
3 : x2 ∨ x3.

plies the 2-rule to ≥ 2
3 : x3 and ≤ 1

3 : x3 on the two rightmost branches. Since the tableau
is completed and the minimum number of boxes among its branches is one, the minimum
number of regular propositional clauses that can be unsatisfied in Φ is also one.

3.1. Soundness and completeness

We prove the soundness and completeness of the proposed calculus. Before presenting
the completeness theorem, we prove termination and the soundness of the expansion
rules.

Proposition 3.5. A tableau for a multiset of regular propositional clauses Φ is completed
in a finite number of steps.

Proof. We first create an initial tableau and then apply expansion rules in the newly
created branches until they become saturated. The ∨- and ¬-rule reduce the number of
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connectives. Since we began with a finite number of connectives, these rules can only
be applied a finite number of times. The 2-rule has two regular propositional clauses as
premises and each conclusion contains exactly one clause in the conclusion that could
be a premise of another rule and, therefore, it can only be applied a finite number of
times. Hence, the construction of any completed tableau terminates in a finite number of
steps.

Proposition 3.6. The ∨-, ¬- and 2-rule preserve the number of premises unsatisfied by
an assignment v in at least one branch and do not decrease that number in the other
branches (if any).

Proof. We show that the proposition holds for each rule separately:

• ∨-rule (≤ sign): If v satisfies ≤ i : l1∨ l2∨·· ·∨ ln, it holds that v(l j) ≤ i for all
1 ≤ j ≤ n, because of the maximum function. Hence, v satisfies all the clauses
in at least one of the branches of the rule, specifically in the right branch. If
v unsatisfies ≤ i : l1∨ l2∨·· ·∨ ln, it holds that there is at least one l j such that
v(l j)> i. Hence, v unsatisfies one clause of the left branch, and at least one clause
of the right branch.

• ∨-rule (≥ sign): If v satisfies ≥ i : l1∨ l2∨·· ·∨ ln, no branch of the rule can de-
crease the number of unsatsified clauses in the premise, which is 0. Moreover,
there is at least one l j such that v(l j) ≥ i, and therefore there is at least one
branch without unsatisfied clauses. If v unsatisfies ≥ i : l1∨ l2∨·· ·∨ ln, it holds
that v(l j) < i for all 1 ≤ j ≤ n, and therefore v unsatisfies one clause of every
branch.

• ¬-rule: When the premise is ≤ i :¬x, v satisfies ≤ i :¬x iff v(¬x) = 1− v(x) ≤ i
and, therefore, v satisfies ≤ i :¬x iff it satisfies ≥(1− i) : x. The case where the
premise is ≥ i :¬x holds analogously.

• 2-rule: Since i < j, at least one premise is unsatisfied. If v(x) ≤ i, exactly one
premise and one clause in the left conclusion are unsatisfied, and two in the right
conclusion. If i < v(x)< j, two premises and two clauses in each conclusion are
unsatisfied. If v(x)≥ j, exactly one premise and one clause in the right conclusion
are unsatisfied, and two in the left conclusion.

Theorem 3.7. Soundness & completeness. The cost of a completed tableau T for a
multiset of clauses Φ is m iff the minimum number of unsatisfied clauses in Φ is m.

Proof. (Soundness:) T was derived by creating a sequence of tableaux T0, . . . ,Tn (n≥ 0)
such that T0 is an initial tableau for Φ, Tn = T , and Ti was obtained by a single application
of one of the ∨-, ¬- and 2-rules on an branch of Ti−1, for i = 1, . . . ,n. By Proposition 3.5,
we know that such a sequence is finite. Since T has cost m, Tn contains one branch b
with exactly m boxes and the rest of the branches contain at least m boxes. Moreover,
the active clauses in every branch of Tn are regular literals of the form ≤ i : x or ≥ i : x
such that, for each propositional variable x, the intersection of all the signs is non-empty;
otherwise, we could yet apply expansion rules and Tn would not be completed. Given a
saturated branch with m boxes, the assignment that sets each variable x to one value of
the intersection of all the signs of active regular unit clauses containing x only unsatisfies
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the m boxes. Moreover, there cannot be any assignment satisfying less than m clauses in
a branch of Tn, because each branch contains at least m boxes. Therefore, the minimum
number of active regular propositional clauses that can be unsatisfied among the branches
of Tn is m.

Proposition 3.6 guarantees that the minimum number of unsatisfied active regular
clauses is preserved in the sequence of tableaux T0, . . . ,Tn. Thus, the minimum number
of unsatisfied regular clauses in T0 is also m. Since T0 is formed by a single branch that
only contains the clauses in Φ and all these clauses are active, the minimum number of
clauses that can be unsatisfied in Φ is m.

(Completeness:) Assume that there is a completed tableau T for Φ that does not have
cost m. We distinguish two cases:

(i) T has a branch b of cost k, where k < m. Then, T has a branch with k boxes
and a satisfiable multiset of active clauses because T is completed. This implies that the
minimum number of unsatisfied active clauses among the branches of T is at most k.
By Proposition 3.6, this also holds for T0, but this is in contradiction with m being the
minimum number of unsatisfied clauses in Φ because k < m. Thus, any branch of T has
at least cost m.

(ii) T has no branch of cost m. This is in contradiction with m being the minimum
number of unsatisfied clauses in Φ. Since the tableau expansion rules preserve the mini-
mum number of unsatisfied clauses and the branches of any completed tableau only con-
tain active clauses that are boxes or regular literals from which we cannot derive con-
tradictions, T must have a saturated branch with m boxes. Thus, T has a branch of cost
m.

Hence, each completed tableau T for a multiset of clauses Φ has cost m if the mini-
mum number of clauses that can be unsatisfied in Φ is m.

4. A Tableau Calculus for Weighted Regular MaxSAT

Figure 3 displays the expansion rules of a complete tableau calculus for Weighted Regu-
lar MaxSAT. If there is one premise (C,w), the weighted expansion rules are identical ex-
cept for the fact that we propagate the weight from the premise to the conclusions. In fact,
dealing with weighted regular propositional clauses can be understood as collapsing sev-
eral unweighted Regular MaxSAT inferences into a single inference, because a weighted
clause (C,w) can be replaced by w copies of the unweighted clause C. Therefore, the
soundness and completeness proofs for unweighted Regular MaxSAT are trivially exten-
sible to Weighted Regular MaxSAT. If there are two premises (C1,w1) and (C2,w2) with
different weights (w1 6= w2), (C1,w1) and (C2,w2) become inactive but (C1,w1−w) and
(C2,w2−w), where w = min(w1,w2), are added as active clauses (clauses with weight 0
are not added). In this case, the conclusions of the inference have weight w. Note that, in
the left branch of the 2-rule, the conclusion (≤ i :x,w1) is the result of merging (≤ i :x,w)
and (≤ i : x,w1−w), by accumulating the weight w1 = w+w1−w (and the analogous
case occurs in the right branch).

Example 4.1. Figure 4 displays a completed tableau for the Weighted Partial Regu-
lar MaxSAT instance {(≥1 : x1∨ x3,3),(≥1 :¬x3,2),(≤ 1

3 : x1∨ x2,5)}, assuming N =

{0, 1
3 ,

2
3 ,1}. The first tableau (top left) is the initial tableau. The second tableau results
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(≤ i : l1∨ l2∨·· ·∨ ln,w)

(2,w) (≤ i : l1,w)

(≤ i : l2,w)

. . .

(≤ i : ln,w)

(≥ i : l1∨ l2∨·· ·∨ ln,w)

(≥ i : l1,w) (≥ i : l2,w) . . . (≥ i : ln,w)

provided that n≥ 2

∨-rule

(≤ i :¬x,w)

(≥(1−i) : x,w)

(≥ i :¬x,w)

(≤(1−i) : x,w)

¬-rule

(≤ i : x,w1)

(≥ j : x,w2)

(2,w) (2,w)

(≤ i : x,w1) (≥ j : x,w2)

(≥ j : x,w2−w) (≤ i : x,w1−w)

provided that i < j

where w = min(w1,w2)

2-rule

Figure 3. Tableau expansion rules for Weighted Regular MaxSAT

of the application of the ∨-rule to (≥1 : x1∨ x3,3), the ¬-rule to (≥1 :¬x3,2), and the
∨-rule to (≥1 : x1∨ x3,3). The third tableau results of the application of the 2-rule to
(≤ 1

3 : x1,5) and (≥1 : x1,3). The last tableau results of the application of the 2-rule to
(≥1 : x3,3) and (≤0 : x3,2) on both branches of the right subtree. Since the minimum
cost among all the branches is 10, the minimum sum of weights of the unsatisfied clauses
is 10.

5. Conclusions

We presented a complete tableau calculus for Regular MaxSAT, proved its soundness and
completeness and defined its extension to Weighted Regular MaxSAT. As future work,
we plan to extend the calculus to other formalisms that may be better suited to encode
specific optimization problems. For instance, in Weighted Partial Regular MaxSAT, we
have hard and weighted soft clauses; in Regular MinSAT, the goal is to maximize the
number of unsatisfied clauses; and in first-order logic, we can make use of quantifiers
and predicates.
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(≥1 : x1∨ x3,3)

(≥1 :¬x3,2)

(≤ 1
3 : x1∨ x2,5)

(≥1 : x1∨ x3,3)

(≥1 :¬x3,2)

(≤ 1
3 : x1∨ x2,5)

(≥1 : x3,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5)

(≤ 1
3 : x2,5)

(2,5)

(≥1 : x1,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5)

(≤ 1
3 : x2,5)

(2,5)

(≥1 : x1∨ x3,3)

(≥1 :¬x3,2)

(≤ 1
3 : x1∨ x2,5)

(≥1 : x3,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5)

(≤ 1
3 : x2,5)

(2,5)

(≥1 : x1,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5 )

(≤ 1
3 : x2,5 )

(2,3)

(≤ 1
3 : x1,5)

(2,3 )

(≥1 : x1,3)

(≤ 1
3 : x1,2)

(2,5)

(≥1 : x1∨ x3,3)

(≥1 :¬x3,2)

(≤ 1
3 : x1∨ x2,5)

(≥1 : x3,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5 )

(≤ 1
3 : x2,5)

(2,2 )

(≤0 : x3,2 )

(≥1 : x3,1)

(2,2)

(≥1 : x3,3)

(2,5)

(2,2)

(≤0 : x3,2)

(≥1 : x3,1)

(2,2)

(≥1 : x3,3)

(≥1 : x1,3)

(≤0 : x3,2)

(≤ 1
3 : x1,5)

(≤ 1
3 : x2,5 )

(2,3 )

(≤ 1
3 : x1,5)

(2,3 )

(≥1 : x1,3 )

(≤ 1
3 : x1,2)

(2,5 )

Figure 4. A tableau for the Regular MaxSAT instance {(≥1 : x1 ∨ x3,3),(≤ 1
3 : x1 ∨ x2,5),(≥1 :¬x3,2)}.
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[1] C. Ansótegui, M. L. Bonet, J. Levy, and F. Manyà. The logic behind weighted CSP. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence, IJCAI-2007, Hyderabad, India, pages
32–37, 2007.
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