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Abstract. Given a CNF formula with m clauses, and an integer k, where 0 ≤ k ≤ m,
a density of states procedure will count the number of truth assignments that falsify
exactly k clauses of the formula. We present the first approach to compute the den-
sity of states of Boolean formulas exactly. This is the first non-trivial result on this
known hard problem. There are previous approaches for computing approximately
the density of states of Boolean Formulas [1,2], where the authors point out they
are not aware of any complete solver that is able to compute the exact density of
states. The present work is the first step to fill this gap.

The idea is, given a formula ϕ and a parameter c, construct a formula ϕc such
that, the number of models of ϕc is the number of assignments that falsify exactly c
clauses of ϕ . Then, a #SAT solver is used as a black box to count the models of ϕc.
This approach can be also used to compute approximately the density of states by
using an approximate #SAT solver. Finally, the method can be extended trivially to
deal with Weighted Boolean formulas.
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1. Introduction

Given a Boolean formula in CNF with n variables and m clauses, we can calculate the
number of truth assignments that falsify exactly k clauses, where k is any number be-
tween 0 and m. Therefore, given the set of 2n possible truth assignments, we can partition
this set into m+1 parts. Computing the size of all subsets in the partition is the problem
known as density of states, a term borrowed from statistical physics.

The problem of the density of states is a generalization of model counting for
Boolean formulas (abbreviated #SAT). A model counting procedure outputs the number
of assignments that satisfy a given CNF formula. There are several procedures, that ei-
ther count the number of models exactly (CDP [3],Relsat [4], Cachet [5], sharpSAT [6]
and c2d [7]), or simply approximate the number [8,9,10,11,12]. See [13] for a complete
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presentation on model counting (exact or approximate) for SAT. #SAT is a harder prob-
lem than assessing satisfiability (SAT), and in fact, it is #P-Complete. As a consequence,
the software solving this problem is orders of magnitude slower than a SAT solver. There
are a number of applications of model counting in areas like planning or probabilis-
tic reasoning. For instance, performing Bayesian inference can be translated into model
counting [14,15,16].

The density of states is an even more ambitious problem. As we said, for any number
k (between 0 and the total number of clauses), we want to know how many assignments
falsify exactly k clauses. For k = 0, a procedure solving the density of states will give us
the number of satisfying assignments. On the other hand, a density of states procedure
can also be used to find the minimal k such that the number of assignments falsifying
k clauses is not zero, hence solving MaxSAT. Therefore, solving the density of states
subsumes both #SAT and MaxSAT.

As a generalization of model counting, density of states has applications in areas
like planning and probabilistic reasoning. Also, a detailed study of the search space of all
truth assignments can provide insight into the development of new algorithms (for SAT
or MaxSAT), as well as a better understanding of current approaches. For instance, [17]
study local search dynamics using density of states. They observe that independently
of the starting point, local search executions eventually stagnate around particular cost
(number of falsified clauses) intervals. These intervals correspond to costs where the
formula has many assignments falsifying that number of clauses.

There isn’t much previous work developed around density of states. In fact, we are
the first to propose a way to compute density of states exactly, and the method can be
easily adapted to an approximate method. The rest of the literature presents methods to
approximate density of states [17,1,2] using different sampling schemes. These estima-
tion methods can be faster than our exact computation method, but many times it is hard
to asses the accuracy of the estimates. Therefore our method can also be used to evaluate
the performance of the estimates produced by other algorithms.

The key idea behind our work is the following. Given a CNF formula ϕ and a param-
eter c, we obtain a formula ϕc such that the number of assignments that satisfy ϕc is the
same as the number of assignments that falsify exactly c clauses of ϕ . After that, we use a
model counter on ϕc to calculate (or estimate) the number of satisfying assignments. The
method can be extended trivially to deal with weighted Boolean formulas. Therefore to
state the method in full generality we will describe it using weighted Boolean formulas.

This method requires encoding cardinality or pseudo-Boolean constraints as CNF
formulas, possibly introducing additional variables, with the property that once we in-
stantiate the original variables, the remaining formula has either 0 or 1 models. The well-
known Tseitin encoding of a circuit fulfills this property. However, several state-of-the-
art encodings, mostly for efficiency issues, do not satisfy it. We revisit state-of-the-art en-
codings of cardinality constraints and we present them guaranteeing that once we instan-
tiate the original variables, the remaining formula has either 0 or 1 models. For efficiency
reasons, our encodings should also have the property of arc-consistency. We are not the
first in studying encodings with these two properties. To be able to do model counting
for Integer Linear Programming, [18] study encodings with the same properties.

We conduct an experimental investigation on a selection of industrial Partial
MaxSAT instances. The #SAT solvers we use are: the exact model counter sharpSAT
[6], and the approximate model counters satss [8] and sampleCount [19].
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The paper proceeds as follows. After some preliminary definitions in Section 2, we
describe a simple method for computing the density of states based on successive calls
to a #SAT solver in Section 3. This method requires encoding cardinality and pseudo-
Boolean constraints as CNF formulas without introducing redundant models. In Sec-
tion 4, we explain how this can be done for several state-of-the-art encodings. In Sec-
tion 5, we present some experimental results on industrial instances used in the MaxSAT
evaluation. Finally, in Section 6, we show how to compute a good approximation of the
density of states function by interpolation.

2. Preliminaries

We consider an infinite countable set of Boolean variables X . A literal l is either a
variable xi ∈ X or its negation xi. A clause C is a finite set of literals, denoted as C =
l1 ∨·· ·∨ lr, or as for the empty clause. A (CNF) formula ϕ is a finite set of clauses.

A weighted clause is a pair (C,w), where C is a clause and w is a natural number
or infinity, indicating the penalty for falsifying the clause C. A clause is hard if the
corresponding weight is infinity, otherwise, the clause is soft. A weighted formula is
a multiset of weighted clauses ϕ = {(C1,w1), . . . ,(Cm,wm),(Cm+1,∞), . . . ,(Cm+m′ ,∞)}
where the first m clauses are soft and the last m′ clauses are hard.

The set of variables occurring in a (weighted) formula ϕ is noted as var(ϕ).
A (total) truth assignment for a formula ϕ is a function I : var(ϕ) → {0,1}, that

can be extended to literals, clauses, and formulas, in the standard way. This definition
of total assignment can be extended to partial assignments I : V → {0,1}. Then, I(ϕ) is
another formula with variables in var(ϕ)\V .

For a weighted formula ϕ = {(C1,w1), . . . ,(Cm,wm),(Cm+1,∞), . . . ,(Cm+m′ ,∞)} and
truth assignment I : var(ϕ) → {0,1}, we define the cost as cost(ϕ, I) = ∑m

i=1 wi (1 −
I(Ci)), if I satisfies all hard clauses, i.e. I({Cm+1, . . . ,Cm+m′ }) = 1. Otherwise, we say
that the formula is unsatisfiable, and cost(ϕ, I) = ∞.

We define the optimal cost of ϕ as cost(ϕ) = min{cost(ϕ, I) | I : var(ϕ)→ {0,1}}
and an optimal assignment of ϕ as any assignment I such that cost(ϕ) = cost(ϕ, I) �= ∞.

We define MaxSAT as the problem of finding a truth assignment that maximizes the
number of satisfied clauses of a CNF formula. We define Weighted Partial MaxSAT as
the problem of finding a truth assignment that satisfies all the hard clauses and minimizes
the cost of a weighted formula, i.e. finding an optimal assignment. Similarly, we define
MinSAT as the problem of finding a truth assignment that minimizes the number of satis-
fied clauses, and Weighted Partial MinSAT as the problem of finding a truth assignment
I that satisfies all the hard clauses and maximizes the number of falsified clauses.

A cardinality constraint is a restriction of the form ∑m
i=1 xi ≤ k, where k ∈ Z and

variables xi may get values in xi ∈ {0,1}. A pseudo-Boolean constraint is a restriction of
the form ∑m

i=1 wi xi ≤ k, where wi,k ∈Z and variables xi also may get values in xi ∈{0,1}.

3. Density of States via Model Counting

In this section, we describe our basic approach to exactly compute the density of states
of a Boolean formula. For the sake of clarity, we will first describe how to solve the
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Weighted Partial MaxSAT problem. The density of states approach will be based on these
ideas.

Given a weighted formula ϕ = {(C1,w1), . . . ,(Cm,wm),(Cm+1,∞), . . . ,(Cm+m′ ,∞)},
first, we check that all hard clauses are satisfiable. Then, we generate the formula ϕk =

{C1 ∨ b1, . . . ,Cm ∨ bm,Cm+1, . . . ,Cm+m′ } ∪CNF
(

∑m
i=1 wi bi ≤ k

)
, for any possible value

of k ∈ {0..∑m
i=1 wi} and find the smallest value of k such that ϕk is satisfiable. This solves

the Weighted Partial MaxSAT problem, using the fact:

cost(ϕ) = min{k | ϕk is SAT and ϕk−1 is UNSAT}.
The search for such k can be done using a dichotomy search and calling a SAT

solver. A more efficient way would be to use modern SAT-based state-of-the-art MaxSAT
solvers [20].

Now we are ready to state the more general problem. Counting the number of models
with a cost equal to a given k can be defined as computing the following function.

Definition 1 Given a weighted formula ϕ = {(C1,w1), . . . ,(Cm,wm), (Cm+1,∞), . . . ,
(Cm+m′ ,∞)} and a value c ∈ N∪{∞} we define

dens(ϕ,c) =
∣∣∣{I : var(ϕ)→{0,1} | cost(ϕ, I) = c}

∣∣∣

Computing the density of states consists in obtaining dens(ϕ,c), for any possible
value of c ∈ {0, . . . ,∑m

i=1 wi}. In what follows we will describe how we can obtain each
value dens(ϕ,c).

First, we generate the formula

ϕc =CNF
({

C1 ↔ b1, . . . ,Cm ↔ bm,Cm+1, . . . ,Cm+m′ ,
m

∑
i=1

wi bi = c
})

(1)

where given a formula ψ , CNF(ψ) is a translation of ψ into Conjunctive Normal Form.
Here we need to take into account that such translations usually use additional variables,
and they will have to fulfill certain properties.

Second, we use a SAT model counter to obtain the number of models ϕc has. The
idea behind these two steps is that:

dens(ϕ,c) = #SAT (ϕc), for any c ∈ N (2)

To justify the correctness of equation (2), we need to see that any interpretation I,
such that I(ϕ) = c, can be extended to a unique interpretation of the bi variables, and
can also be extended to a unique interpretation of the additional variables of the CNF
encoding that satisfies ϕc; also, we need to see that any interpretation that satisfies ϕc, can
be restricted to an interpretation of the original variables of ϕ , say I′, such that I′(ϕ) = c.
The second part of the statement is clearly true, but to ensure the first part, we need a CNF
encoding of the pseudo-Boolean constraints that satisfies the counting safety property.
The notion of counting safe encodings was first defined in [18] in the context of counting
models in integer domains. They propose to encode pseudo-Boolean and integer linear
programs into SAT, and then to use #SAT solvers, as an effective method for counting
models in these domains. Their counting safety definition stated that the pseudo-Boolean
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constraint and the Boolean encoding had to have the same number of models. Here we
strengthen the definition.

Definition 2 We say that a CNF encoding of a pseudo-Boolean (or cardinality) con-
straint2 CNF(∑m

i=1 wi xi ≤ k) is counting safe if, for any assignment I : {x1, . . . ,xm} →
{0,1}, the formula I(CNF(∑m

i=1 wi xi ≤ k)) has either zero models (when ∑m
i=1 wi I(xi) �≤

k) or just one model (when ∑m
i=1 wi I(xi)≤ k).

Notice that this property is not trivial since state-of-the-art CNF encodings of
pseudo-Boolean constraints usually contain additional auxiliary variables. In order to
make encodings more efficient to calculate, the counting safety property is dropped in
many of them. Therefore, in many encodings, the property that is preserved is that if
under an assignment the constraint is true, the encoding is satisfiable, and vice versa.
This is true about the encodings of [21,22,23,22,24,25]. There are a few encodings that
preserve counting safety (see [18] for details on two of them).

In order to obtain an efficient encoding we are also interested in other properties like
having few new clauses, few additional variables, and also that, simple consequences of a
partial assignment applied to a pseudo-Boolean constraint can be obtained by performing
unit propagation to the CNF encoding. This last property is called arc-consistency. In
the case of pseudo-Boolean (and cardinality) constraints, the property can be defined as
follows.

Definition 3 We say that a CNF encoding ϕ of a pseudo-Boolean (or cardinality)
constraint CNF(∑m

i=1 wi xi ≤ k) preserves arc-consistency if, for any partial assign-
ment I : V → {1}, where V ⊆ {x1, . . . ,xn}, and variable instantiation I′ : {xi} → 1, if
I(∑m

i=1 wi xi ≤ k) is satisfiable and I′(I(∑m
i=1 wi xi ≤ k)) is unsatisfiable, then xi may be

inferred from I(ϕ) by unit propagation.

In section 4, we will talk about encodings of cardinality and pseudo-Boolean con-
straints that have both properties: safe counting and arc-consistency. One of these encod-
ings will be used in our implementation.

In what follows, we propose various improvements to gain efficiency. In our imple-
mentation, we solve the MaxSAT and MinSAT problems for the formula ϕ . This gives us
two values say k1 and k2, respectively, such that dens(ϕ,c) = 0 for c < k1 and for c > k2.
So, we restrict the computation of the density to c ∈ {k1, . . . ,k2}.

As we will see, the time needed by an exact model counter on a formula ϕc increases
with the number of models. Therefore, we use an approximate model counter when the
number of models of ϕc is big.

It is also possible that for a number c, k1 ≤ c ≤ k2, that the number of models of ϕc
is equal to 0. For instance, if ϕ is a formula with all even weights, then dens(ϕ,c) = 0 for
c odd. Therefore, it is desirable to check the satisfiability of ϕc in that range k1 ≤ c ≤ k2,
using a state-of-the-art SAT solver, before calling a model counter. This is especially
important if we use an approximated model counter, that may have problems when the
number of models is very small.

2Here we only consider less-equal constraints, with the understanding that the less, greater, greater-equal
and equal constraints can easily be expressed in terms of least-equal.
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4. Encodings of Cardinality and Pseudo-Boolean Constraints

There are several (standard) ways to encode a cardinality constraint ∑m
i=1 xi ≤ k

or a pseudo-Boolean constraint ∑m
i=1 wi xi ≤ k as a CNF formula preserving arc-

consistency [21,22,23,24,25]. In [18], it is proved that the encoding in [26], based on
binary adders, and the [24] encoding, based on BDDs, both satisfy the counting safety
property. The first one, however, does not preserve arc-consistency.

In the next subsections, we review two more encodings for cardinality constraints,
one based on sequential counters, and another based on sorting networks. We also an-
alyze how to translate BDDs into CNF formulas in order to ensure the counting safety
property.

4.1. Sequential Counters

A simple approach to encoding a sequential counter is to use a variable s j
i that gets the

value true when x1 + . . .+ xi = j, and a pair of clauses of the form s j
i ∧ xi+1 → s j

i+1 and
s j

i ∧xi+1 → s j+1
i+1 that define the value of s j

i in terms of the values of variables with smaller
indexes. Then, the encoding of the cardinality is given by the following set of clauses.

s j
i ∨ xi+1 ∨ s j

i+1 for j = 0...k, i = j...n+ j− k−2
s j

i ∨ xi+1 ∨ s j+1
i+1 for j = 0...k, i = j...n+ j− k−1

s0
0

sk+1
i for all i = k+1, . . . ,n

This encoding has the counting safety property, but not arc-consistency.
In order to have arc-consistency, we can implement a monotonic variant of this

Boolean function. Sinz [21] proposes the use of variables s j
i that are true if x1+ . . .+xi ≥

j, and the following set of clauses.

s j
i ∨ s j

i+1 for j = 0...k+1, i = j...n+ j−k−2

s j
i ∨ xi+1 ∨ s j+1

i+1 for j = 0...k, i = j...n+ j−k−1
s0

0

sk+1
n

This formula can be simplified by unit propagation, leading to a formula with k(n−
1) auxiliary variables and size O(nk). The encoding is arc-consistent, but does not have
the counting safety property, as the following counter-example shows.

Example 4 For the cardinality constraint x1 + x2 + x3 ≤ 1, the sequential counter imple-
mentation described in [21] generates the following set of clauses, where literals in red
may be removed by unit propagation.

1 = s0
0 s0

1

s1
1 s1

2

s2
2 s2

3 = 0

x1

x2

x2

x3

s0
0∨x1 ∨ s1

1

s0
1∨x2 ∨ s1

2

s1
1 ∨ x2 ∨ s2

2

s1
2 ∨ x3 ∨ s2

3

s2
3

s0
0

s0
0 ∨ s0

1

s1
1 ∨ s1

2

s2
2 ∨ s2

3
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For x1 = x2 = x3 = 0 the formula has three models. In all them s0
0 = s0

1 = 1 and
s2

2 = s2
3 = 0, but 〈s1

1,s
1
2〉 ∈ {〈0,0〉, 〈0,1〉, 〈1,1〉}.

The next lemma presents an encoding that preserves arc-consistency and has the
counting safety property. Like in [21], the variable s j

i is true when x1 + . . .+ xi ≥ j.

Lemma 5 For any cardinality constraint x1 + . . .+ xn ≤ k, the following set of clauses

s j
i ∨ s j

i+1 for j=0...k+1 and i= j...n+ j−k−2

s j
i ∨ xi+1 ∨ s j

i+1 for j=0...k+1 and i= j...n+ j− k−2

s j
i ∨ xi+1 ∨ s j+1

i+1 for j = 0...k and i= j...n+ j−k−1

s j
i ∨ xi+1 ∨ s j+1

i+1 for j = 0...k and i= j...n+ j−k−1
si

i ∨ xi for i = 1...k
s0

0

sk+1
n

defines an equivalent formula with both the arc-consistency and the counting safety prop-
erties.

PROOF: All clauses are sound, in the sense that, any interpretation of the xi variables sat-
isfying the cardinality constraint can be extended to an interpretation of the s j

i variables
satisfying the formula.

The formula is an extension of the formula proposed in [21] without additional vari-
ables. Therefore, this formula is also arc-consistent because it has at least the same in-
ference power.

Now, we will prove that it has the counting safety property, i.e. that there exists
at most one model once we have instantiated the xi variables. The proof is by induc-
tion. The value of s0

0 is 1 in all models. For the induction step, we prove that the val-
ues of s0

i+1, . . . ,s
r+1
i+1 , for r = min{i,k}, are determined by the values of s0

i , . . . ,s
r
i , for

r = min{i,k+1}. Notice that the value of s0
i is 1, and the value of sk+1

i is 0, in all mod-
els. There are two cases. If xi+1 = 0, then the clauses s j

i ∨ s j
i+1 and s j

i ∨ xi+1 ∨ s j
i+1 en-

sure that s j
i and s j

i+1 have the same value, for j = 0, . . . ,min{i,k+ 1}. When i ≤ k, the
value of si+1

i+1 is determined by the clause si+1
i+1 ∨ xi+1 that sets it to 0. If xi+1 = 1, then the

clauses s j
i ∨ xi+1 ∨ s j+1

i+1 and s j
i ∨ xi+1 ∨ s j+1

i+1 ensure that s j+1
i+1 and s j

i have the same value,
for j = 0, . . . ,min{i,k}. Notice that s0

i+1 is always 1 and the value of sk+1
i+1 , when i ≥ k, is

0.

4.2. Sorting and Cardinality Networks

Sorting networks can be used to encode cardinality constraints [22,23]. A sorting net-
work is a circuit 〈y1, . . . ,yn〉= SORT(〈x1, . . . ,xn〉) that given a sequence, returns a sorted
permutation of the input such that yi ≥ y j, for all 1 ≤ i < j ≤ n. A merging network is a
circuit 〈z1, . . . ,z2n〉= MERGE(〈x1, . . . ,xn〉,〈y1, . . . ,yn〉) that given two sorted sequences,
returns a sorted permutation of the concatenation of both sequences.
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We can implement a sorting network using the recurrence

SORT(〈x1, . . . ,x2n〉) = MERGE(SORT(〈x1, . . . ,xn〉),SORT(〈xn+1, . . . ,x2n〉))
We can also implement a merge-network

〈z1, . . . ,z4n〉= MERGE(〈x1, . . . ,x2n〉,〈y1, . . . ,y2n〉)
using two merge networks (one for the even position and the other one for the odd posi-
tions)

〈t1, . . . , t2n〉= MERGE(〈x1,x3, . . . ,x2n−1〉,〈y1,y3, . . . ,y2n−1〉)
〈t ′1, . . . , t ′2n〉= MERGE(〈x2,x4, . . . ,x2n〉,〈y2,y4, . . . ,y2n〉)

and adding the following gates

z1 = t1
z3 = AND(t2, t ′1) . . . z4n−1 = AND(t2n, t ′2n−1)
z2 = OR(t2, t ′1) . . . z4n−2 = OR(t2n, t ′2n−1)
z4n = t ′2n

These sort and merge circuits have size O(n log2 n) and O(n logn), respectively.
We can implement a circuit that checks x1+ . . .+xn ≤ k, implementing 〈y1, . . . ,yn〉=

SORT(〈x1, . . . ,xn〉) and checking if yk+1 = 0. Then, by encoding gates as clauses, we
get a CNF encoding of the cardinality constraint of size O(n log2 n). This encoding also
preserves arc-consistency [22].

Notice that we only check one of the outputs of the circuit. Therefore, we can remove
all gates that are only needed to compute the value of the other outputs yi for i �= k+1. By
iteratively removing these useless gates, we obtain an encoding of size O(n log2 k) [23].
This encoding is (asymptotically) better than the encoding based on sequential counters
(where the size was O(nk)). However, this is not significant when k is small.

Gates are encoded as clauses that only ensure that the output is bigger or equal to
the circuit output. More precisely, gates y = AND(x1,x2) are encoded as x1 ∧x2 → y, and
gates y = OR(x1,x2) as {x1 → y, x2 → y}. This makes the resulting formula not have the
counting safety property.

Example 6 Consider the cardinality constraint x1+x2+x3+x4 ≤ 2. The circuit encoding
the cardinality constraint is drawn below, where gates in red are unused gates (removed
in [23]), and the corresponding CNF clauses are as follows.

x1

x2

x3

x4

y1

y2

y3

y4

t1

t2

t ′1

t ′2

u1

u2

x1 → t1
x2 → t1
x1 ∧ x2 → t2
x3 → t ′1
x4 → t ′1
x3 ∧ x4 → t ′2
t1 ∧ t ′1 → u1
t2 → u2
t ′2 → u2
u1 ∧u2 → y3
y3
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For x1 = 1 and x2 = x3 = x4 = 0 (satisfying the constraint), we have six models:

t1 t2 t ′1 t ′2 u1 u2 y3
1 0 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0

The problem in the previous example is that the Boolean function implemented with
the clauses is not the function implemented in the circuit, but a monotone variation.
Notice that when x1 = x2 = 1, both the gate y = AND(x1,x2) and the clause x1 ∧ x2 → y
force y = 1. However, when x1 = 0 and x2 = 1, the gate y = AND(x1,x2) forces y = 0, but
the clause x1 ∧ x2 → y allows y to be 0 or 1. We can construct a counting safety formula
by adding clauses ensuring that the gates and the clauses have the same behavior.

Lemma 7 If we encode sorting networks, adding gates y= AND(x1,x2) the clauses {x1∧
x2 → y, y → x1, y → x2}, and for gates y = OR(x1,x2) the clauses {x1 → y, x2 → y, y →
x1 ∨ x2}, then the resulting formula has the counting safety property and the encoding
preserves arc-consistency.

PROOF: The formula is an extension of the formula proposed in [22,23], hence arc-
consistent. The additional clauses force the formula to behave exactly like the circuit,
where all intermediate points have a determined value.

4.3. Reduced Ordered BDDs

Reduced Ordered BDDs are a canonical representation of Boolean functions [27], hence
of pseudo-Boolean constraints. These BDDs may also be translated into arc-consistent
CNF formulas [22]. Although ROBBDs may be exponentially large [24,25], we have
obtained good (practical) results using them in our MaxSAT solvers [28,29,20,30].

A BDD may be encoded in CNF [22] by introducing an auxiliary variable yi for
every decision variable xi. Then, if the false and true child of xi are respectively x j and
xk, we add the following clauses:

xi ∧ y j → yi xi ∧ yk → yi y j ∧ yk → yi
xi ∧ y j → yi xi ∧ yk → yi y j ∧ yk → yi

It is trivial to prove that this CNF encoding has the counting safety property, because
auxiliary variables in leaves are always true or false, and the values of other auxiliary
variables yi are determined by the values of their child’s auxiliary variables y j and yk
(once we have instantiated the decision variable xi).

In [25] it is proposed an alternative translation from monotonic BDDs to CNF that
only uses two clauses per node and that is also arc-consistent. In this case, we also have
an auxiliary variable per node, and the two clauses are as follows:
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y j → yi
xi ∧ yk → yi

In this case, the resulting formula does not have the counting safety property, as the
following example shows.

Example 8

x1

1 x2

1 0

y1

y2

0 1

0 1

The monotonic BDD on the left, resulting from trans-
lating the pseudo-Boolean constraint 2x1 +x2 ≤ 2, is
translated as the following CNF by [25]

ϕ = {y1, x1 ∧ y2 → y1, x2 → y2}
For the interpretation I(〈x1,x2〉) = 〈0,0〉 the formula
I(ϕ) has two models 〈y1,y2〉 ∈ {〈1,0〉, 〈1,1〉}.

Lemma 9 If we translate a pseudo-Boolean constraint into a BDD, and then, for every
BDD node of the following form we add the clauses on the right,

x

y z

a

b c

0 1

b → a
x∧ c → a
x∧b → a
c → a

then the resulting formula is arc-consistent and has the counting safety property.

PROOF: The formula is an extension of the one proposed in [25], where we add two new
clauses for each node, hence arc-consistent. To prove that the formula has the counting
safety property, assume that the decision variables in the BDD are all assigned. We will
prove by induction that all auxiliary variables get a unique determined value. By induc-
tion hypothesis we have that values of decision variables (the x in the picture) and values
of auxiliary variables in the sons (b and c) are determined. Now, we will prove that they
determine the value of the auxiliary variable in the father (a). To prove this, notice that
by construction the BDD is monotonic and c → b is always satisfied, thus the case c = 1
and b = 0 does not need to be considered. For the rest of cases, the following table gives
the unique value for a allowed by the four clauses:

x b c a
0 0 0 0
0 1 0 1
0 1 1 1
1 0 0 0
1 1 0 0
1 1 1 1
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5. Experimental Results

We have conducted an experimental investigation to explore the density of states of in-
dustrial formulas and test our method. We have run our experiments on machines with
2.27GHz CPU and 1G RAM.

We have selected 10 instances from the Partial MaxSAT industrial category in the
MaxSAT evaluation 2011. We have also added two pigeonhole formulas PHP10

9 and
PHP10

5 where “each pigeon has to go to one hole” is a soft clause, and “two pigeons
cannot go to the same hole” is a hard clause.

As we have said, our approach is parametric on any #SAT solver. Here, we used the
exact #SAT solver sharpSAT [6], and the approximate #SAT solvers satss [8] and sam-
pleCount [19]. We will refer to the resulting solvers as DOS(sharpSAT), DOS(satss) and
DOS(sampleCount). We encode cardinality constraints as cardinality networks as it is
described in Subsection 4.2. Initially, we compute the optimal cost of the MaxSAT (k1)
and MinSAT problems (k2) as described in Section 3. We will only show the results for
the interval c ∈ [k1,k2], since for the rest of the values of c, the number of truth assign-
ments violating c clauses is 0. In the figures, we show the number of truth assignments
that violate exactly c ∈ [k1,k2] soft clauses in the Partial MaxSAT formula. We do not
consider models falsifying the hard clauses.

The timeout for the DOS(sharpSAT) solver is a global limit for the whole in-
stance. We use 20 hours. Therefore, we compute the points following the sequence
c = k1,k2,k1 +1,k2 −1,k1 +2, . . .. When the cutoff is applied, we obtain an incomplete
DOS where middle points (the costliest to compute) are missing. Approximate #SAT
solvers may run forever, trying to improve the accuracy of the solution. In this case, we
have to provide a timeout for each value c. We use 30 minutes.

10-3

10-2

10-1

100

101

102

103

104

105

106

 1  100  10000  1e+06  1e+08  1e+10  1e+12

tim
e

#models

t=0.001 m0.7

Figure 1. Time needed by sharpSAT on ϕc as a function of the number of models of ϕc for distinct industrial
MaxSAT formulas ϕ (each family of formulas in a distinct color).

We analyze the running time for DOS(sharpSAT) on each data point. We can see that
time is almost proportional to the number of assignments (see Figure 1). In fact, it seems
to follow a relation t = 0.001m0.7, where t is the time in seconds and m the number of
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Figure 2. Density of states, log(dens(ϕ,c)) as a function of c, computed by DOS(sharpSAT), DOS(satss) and
DOS(sampleCount) on some industrial Partial MaxSAT instances and two pigeonhole formulas. We also in-
clude a (truncated) normal distribution interpolation (parabolic interpolation in this logarithmic representation)
computed from the values of dens(ϕ,k1), dens(ϕ,k2) and ∑k2

c=k1
dens(ϕ,c).

models. Therefore, by predicting the c’s with maximum number of assignments we can
also produce the hardest instances for #SAT solvers. Notice that #SAT solvers are tested
on SAT instances, while with our approach we can extend the benchmarks to contain
DOS queries on Partial MaxSAT instances.

Figure 2 shows the density of states dens(ϕ,c) computed by DOS(sharpSAT),
DOS(satss) and DOS(sampleCount). As we can see, the number of truth assignments
that violate c clauses follows approximately a (truncated) normal distribution, since rep-
resenting the results in logarithmic scale we obtain an inverted parabolic representation.
In general, approximate #SAT solvers compute approximate values smaller than the real
values. Results of DOS(satss) seem more accurate than results of DOS(sampleCount).
However, we have to take into account that these solvers are parametrizable. By adjusting
parameters differently, we may obtain better results.
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6. Approximating DOS by Interpolation

SAT-based MaxSAT solvers may be (easily) modified in order to produce a SAT formula
whose models are the optimal assignments. Running a #SAT solver on this formula, we
compute dens(ϕ,k1). In a similar way, we can easily compute dens(ϕ,k2). In a formula
(without hard clauses), the number of possible assignments is 2n, being n the number
of variables. However, in a weighted formula, this number is smaller because we do not
consider assignments violating hard clauses. We can easily compute the number of as-
signments satisfying hard clauses as ∑k2

c=k1
dens(ϕ,c) = #SAT (ϕhard). These three val-

ues represent two points and the area below dens(ϕ,c). They are enough to interpolate a
parabola in the representation of log(dens(ϕ,c)), i.e. to approximate a (truncate) normal
distribution for dens(ϕ,c). We represent this interpolation in Figure 2. As we can see,
in our examples, and probably in most industrial MaxSAT instances, this interpolation is
better than the results obtained by DOS(satss) and DOS(sampleCount). Moreover, it can
be efficiently computed with one call to a #SAT solver to get #SAT (ϕhard), one call to a
MaxSAT solver to get k1, and then a call to a #SAT solver to get dens(ϕ,k1), one call to
a MinSAT solver to get k2, and then a call to a #SAT solver to get dens(ϕ,k2).

7. Conclusions

In this pioneering work, we present the first method to compute exactly the density of
states of a MaxSAT formula. The idea is to reduce the problem to a sequence of com-
putations of #SAT. The use of an approximate #SAT solver results into an approximate
DOS solver.

While there exists previous approximate DOS solvers [1,2] for MaxSAT, this work
describes the first exact DOS solver. Moreover, it is also the first implementation able to
manage Partial and Weighted MaxSAT formulas.

Finally, our work produces sets of test instances for #SAT solvers from over-
constrained instances. Given a formula ϕ , the set of instances ϕc for c ∈ {k1, . . . ,k2} (k1
and k2 are the MaxSAT and MinSAT values respectively), produce a set of benchmarks
of different hardness for a model counter.
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