132 Machine Learning and Artificial Intelligence
J.-L. Kim (Ed.)

© 2023 The authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230775

Smart Mountain: A Solution Based on a
Low-Cost Embedded System to Detect
Urban Traffic in Natural Parks

Paulo COSTA 2, Eduardo PEIXOTO ¢, and Davide CARNEIRO !

2Escola Superior de Tecnologia, Instituto Politécnico do Cdvado e do Ave (IPCA)
Y CIICESI, Escola Superior de Tecnologia e Gestdo, Instituto Politécnico do Porto
¢ Centro Algoritmi, Universidade do Minho, Braga, Portugal

Abstract. We live in an era in which the preservation of the environment is being
widely discussed, driven by growing concerns over climate issues. One major fac-
tor contributing to this situation is the lack of attention societies give to maintaining
high sustainability levels. Data plays a crucial role in understanding and assessing
sustainability impacts in both urban and rural areas. However, obtaining compre-
hensive data on a country’s sustainability is challenging due to the lack of simple
and accessible sources. Existing solutions for sustainability analysis are limited by
high costs and implementation difficulties, which restrict their spatial coverage. In
this paper, we propose a solution using low-cost hardware and open-source tech-
nologies to collect data about the movement of people and vehicles. This solution
involves low-cost video-based meters that can be flexibly deployed to various loca-
tions. Specifically, we developed a prototype using Raspberry Pi and YOLO which
is able to correctly classify 91% of the vehicles by type, and 100% of the events
(entering of leaving). The results indicate that this system can effectively and af-
fordably identify and count people and vehicles, allowing for its implementations
namely in remote sensitive areas such as natural parks, in which the access of peo-
ple and vehicles must be controlled and monitored.

Keywords. Video-based counters, Smart Data, Sustainability, Raspberry PI, Yolo

1. Introduction

As people increasingly seek natural and greener spaces, namely for for holidays or leisure
activities, urban mobility[1] extends to rural areas[2], posing a potential threat to these
often sensitive ecosystems. At the same time, while Smart Cities programs have been
implemented in many cities worldwide, rural areas have seen limited initiatives[3,4]. To
monitor and control the expected impact of this shift, smart monitoring solutions can
play a crucial role [5,6].

However, the lack of systematic and consistent monitoring processes has hindered
the development of sustainable policies. Namely, insufficient data on these specific envi-
ronments poses challenges for local entities and private companies alike, as they require
accurate data to justify investments, make informed decisions, and assess policy impacts.

ICorrespondence: dcarneiro @estg.ipp.pt

P. Costa et al. / Smart Mountain: A Solution Based on a Low-Cost Embedded System 133

In this study, we propose an inexpensive vehicle counting system specifically tai-
lored for natural parks and similar environments. Rather than developing advanced so-
lutions, our goal is to use inexpensive hardware and open-source solutions, that can be
effectively adopted by municipalities and natural parks management. The system enables
the implementation of numerous counting points, revolutionizing activity detection and
providing sustainability indicators for rural planners and society.

2. Measuring mobility in real-time in the rural environment

In this research, we investigate how to measure the overall mobility activity in natural
parks so that it can be monitored in real-time. The collected data can also be used to
control accesses, namely in sensitive areas, and to support the design of better policies
that can take into consideration people’s movement patterns and the local characteristics.

The system is implemented using a Raspberry Pi: a low-cost, low-power, small-size,
single-board computer. The version in use for the implementation of this work is the
Raspberry Pi 3B, which has a 64-bit Quad Core CPU at 1.2GHz, 1 GB of RAM, Wi-fi,
Bluetooth and other useful inputs.

Several interconnected components were implemented (Figure. 1). A camera that
is connected to the Raspberry Pi, which in turn runs the traffic detection software that
includes an Al model to detect people and vehicles, as well as all the inherent logic
necessary for a detection and subsequent accurate and effective tracking.

This detection service runs in three distinct threads: one for reading the images sent
by the camera, another for processing the images read and calculating the positions of
objects, and the last for drawing the results obtained and keeping a buffer accessible by
the HTTP server for video streaming by MJPEG.

Raspberry Pi 3

LLLLL _ ____________________________ |
3 C | I
E [@)] =Hi—— Read Frames [——» ProcessFrames ——» Draw Resul :
3 = i

T ‘ :

Camera |Traffic detection service [

w HTTP Server
SCLite

Figure 1. High-level diagram of the system.

The visualization of the results, as well as the configuration of the parameters of
the detection service, is made available through a dashboard accessible from the HTTP
server that acts as an intermediary between the system and the end user, allowing their
interaction through a small API.

In this architecture, there are two key functionalities: 1) object detection and track-
ing; and 2) the decision component of accounting for an inflow or outflow. These func-
tionalities are implemented using YOLO and OpenCV.

YOLO (You Only Look Once) is a family of algorithms for object detection that
efficiently identify and localize objects in an image or video in real-time by dividing the

134 P. Costa et al. / Smart Mountain: A Solution Based on a Low-Cost Embedded System

image into a grid and predicting bounding boxes and class probabilities simultaneously
[7].

OpenCV (Open Source Computer Vision Library) is a popular open-source com-
puter vision and image processing library that provides a wide range of tools and func-
tions for tasks such as image/video manipulation, object detection, and feature extraction
[8].

The system works as follows. First, a specifically trained YOLO model is loaded,
after which the system is ready to operate. For each image obtained from the video,
the model is used to detect and localize the different objects. For each detected object
the system returns its class, the confidence, the bounding box, the position in which the
object is first detected and whether the object is crossing an entry/exit line.

The object tracking functionality is responsible for identifying a same object as
unique along the frames. This is implemented through a combined use of the IoU (Inter-
section over Union) of each object and the distance of their centroids. IoU is a method
that evaluates the percentage of overlap between 2 rectangles, in this case the current
position of the object and the position of the last frame in which it was detected. Cen-
troid distance is a measure that tells the distance between the centroids of two rectangles,
again comparing the current position of the object with the position of the last frame in
which it was detected.

By combining these two concepts, we explore the advantages of both: while the
centroid distance is a fast and efficient approach for objects in linear motion, the IoU
helps to solve more complex situations, such as object occlusions. This results in a robust
and accurate tracking, capable of handling a variety of challenging scenarios that may
arise.

Regarding the functionality of accounting for an entry or exit of an object on the
monitored area, it first requires the the definition of the entry and exit lines in a configu-
ration file. Then, the following steps are followed (Figure. 2 is used as a support for this
explanation).

Figure 2. Chart demonstrating the calculation of positions. (Green line - entry line; Red line - exit line; 1 -
traveling object; Ci - centroid of the entry line; Co - centroid of the outgoing line; U - direction vector; V -
vector between object and line for which the position is calculated)

First, the direction vector is calculated, using the equations depicted in Equation. 1.
For the scenario given in Figure. 2, the direction vetor would have the value (—m, —m) .

P. Costa et al. / Smart Mountain: A Solution Based on a Low-Cost Embedded System 135

xi + xf

2

_ i+ yf
= =

x = —
Unit Vetor = l m centroid =

v= =

magnitude (m) = VAx® + Ay? (1)

After calculating the direction vector, the pool of detections is iterated, processing
the respective positions, which fall into one of 2 cases: either the object is detected in the
bounding area for the first time, or it is detected outside of the bounding area for the first
time. As previously mentioned, the position where the object was detected for the first
time is first validated, which allows us to decide which case to deal with. This condition
is verified, taking into account the coordinates of the object, in relation to both lines, and
it must be found between them. This means before the entry line and after the exit line,
and can be calculated as depicted in Equation. 2.

Ax

Vetor = { *
y Ay

Scale Product = ax +bx + ay » by

Scale Product
Angle Between Vetors (©) = cos 1 [u]
ma = mb

@

After obtaining the vector between the centroid of the object and the centroid of the
line for which we want to know its position, in this case the entry line, we calculate the
angle between this same vector and the direction vector, initially obtained, if this angle is
greater than 7, we can conclude that the object is before the intended line, otherwise it is
after it. At this point, the system is able to conclude the position of the object, relative to
any of the lines, which allows us to count the entry and exit of objects in the monitored
area, or to track their movement.

3. Results

This section describes the results obtained from the implementation of a prototype of the
proposed system. The main parameters used are described in Table 1.

Table 1. Main configurations used.

Configuration Value
Confidence threshold 0.5
Non-maximum threshold 0.3
Input size 416 x 416
IoU threshold 0.5
Maximum frames not detected 30
Maximum distance threshold 50

For the purpose of this paper, the system and the model were tested with a short
video clip containing cars, buses and trucks. Specifically, 5 cars entered the monitored
region and 2 existed, 1 bus entered the region, and 2 trucks entered and 1 existed. The

136 P. Costa et al. / Smart Mountain: A Solution Based on a Low-Cost Embedded System

events observed in the video were as follows: car entry, bus entry, truck entry, car exit,
four car entries, one car exit, one truck entry and one truck exit.

We tested three different version of YOLO models (v3, v4 and v7). While v7 had
the fastest prediction times, v3 was slightly better in terms of predictive accuracy. Given
the need for conciseness, we limit this analysis to v3. Specifically, Table 2 details the
detections made by the model, the confidence level and the actual events.

Table 2. Predicted vs. observed detections by a specifically trained YOLOv3 model.

Predicted Class Confidence Actual class Event Actual Event
Car 0.90 Car Entry Entry
Bus 0.99 Bus Entry Entry
Truck 0.97 Truck Entry Entry
Car 0.96 Car Exit Exit
Car 0.97 Car Entry Entry
Car 0.97 Car Entry Entry
Truck 0.84 Car Entry Entry
Car 0.98 Car Entry Entry
Car 0.98 Car Exit Exit
Truck 0.96 Truck Entry Entry
Truck 0.96 Truck Exit Exit

Two main aspects can be evaluated from these results. The first concerns the ability
of the model to correctly classify the objects in the video. In the case of the model
described, it was able to correctly classify 91% of the objects in the video. The second
is the correct classification of the events (i.e. entry and exit). In this case, the approach
implemented, which combines IoU with centroid distance, was able to correctly identify
100% of the events.

Asides from collecting data from the identified vehicles, the system also provides
estimates of the emissions in the area. This kind of information can then be used by
policy-makers and other actors to evaluate the impact of mobility on a certain area, and
to devise better policies. The prototype of the frontend developed also allows the user to
easily change some of the most important configurations (Figure 3).

Welcome to the Smart Traffic Detector!

Y Exit counter Energy Consumption for 20km

8800 kg ns s 820000 ki

[vesvansorvce B ovo srsine

Cars: 242
Persons: 0

System Configuration

it mage et rgut mage beht

Figure 3. Prototype of the frontend developed.

P. Costa et al. / Smart Mountain: A Solution Based on a Low-Cost Embedded System 137
4. Conclusions and Limitations

In this paper we detailed the implementation of a traffic detection system, designed with
the aim of facilitating and improving the management of natural parks in what concerns
the access of people and vehicles, and their impact. It is nowadays clear that Artificial
Intelligence and data and image processing techniques play a crucial role in solving these
problems in a cost-effective way.

The proposed and implemented solution, although relatively simple, proved to be
efficient and capable of dealing with the complexity of the problem addressed, proving
the robustness, flexibility and validity of the chosen technologies. It is able to monitor
the traffic in a certain area autonomously, providing sustainable indicators and counters
in real time, supporting more informed decision-making processes. Moreover, the whole
system can fit into a small box containing only the Raspbery Pi and a camera.

The main limitation of the work is that it was only briefly validated, and using exist-
ing video streams of traffic. So in future work we will still implement this system on an
actual part, in a real setting, in which there is interest in monitoring and controlling ac-
cess of certain types of vehicles or of people. This will allow to do an on-site validation,
in real conditions.

Still, given the results, we are confident that the model will generalize well to that
specific setting and perform as necessary for the intended tasks.

References

[1] M. Miskolczi, D. Foldes, A. Munkdacsy, and M. Jaszberényi, “Urban mobility scenarios until the 2030s,”
Sustainable Cities and Society, vol. 72, p. 103029, 2021.

[2] S.Porru, F. E. Misso, F. E. Pani, and C. Repetto, “Smart mobility and public transport: Opportunities and
challenges in rural and urban areas,” Journal of traffic and transportation engineering (English edition),
vol. 7, no. 1, pp. 88-97, 2020.

[3] L. Butler, T. Yigitcanlar, and A. Paz, “Smart urban mobility innovations: A comprehensive review and
evaluation,” Jeee Access, vol. 8, pp. 196 034—196 049, 2020.

[4] L. Camarero and J. Oliva, “Thinking in rural gap: mobility and social inequalities,” Palgrave Communi-
cations, vol. 5, no. 1, 2019.

[5] C. Toma, A. Alexandru, M. Popa, and A. Zamfiroiu, “Iot solution for smart cities” pollution monitoring
and the security challenges,” Sensors, vol. 19, no. 15, p. 3401, 2019.

[6] S. Paiva, M. A. Ahad, G. Tripathi, N. Feroz, and G. Casalino, “Enabling technologies for urban smart
mobility: Recent trends, opportunities and challenges,” Sensors, vol. 21, no. 6, p. 2143, 2021.

[7]1 P.Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm developments,” Procedia Com-
puter Science, vol. 199, pp. 10661073, 2022.

[8] S. Gollapudi and S. Gollapudi, “Opencv with python,” Learn Computer Vision Using OpenCV: With Deep
Learning CNNs and RNNs, pp. 31-50, 2019.

