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Abstract. Formation control of autonomous underwater vehicles is regarded as a

promising way in situ sensing and monitoring of marine activities. However, due to

the harsh marine environment, the full autonomy is still unreachable to fulfill

complex marine tasks. This letter develops a teleoperation formation control system

toward human-on-the-loop for AUVs. A board learning (BL) based estimator is first

designed to estimate the real-time states of master operator and slave AUVs, through

which the BL-based formation controller is developed to steer AUVs to keep

specific formation shape. Compared with the previous works, the BL-based

estimator can capture the real-time states even with time delays, and meanwhile the

BL-based formation controller can achieve bilateral teleoperation without model

parameters. Simulation results are conducted to verify our solution.
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1. Introduction

The unique characteristics of underwater environment make it challenging to construct

underwater teleoperation formation system, including 1) Long time delays: The

propagation delay of underwater acoustic communication is five orders of magnitude

higher than in radio frequency channels [1], and hence, the state and input delays cannot

be ignored. 2) Unknown model parameters: Due to complex underwater environment, it

is difficult to acquire the accurate dynamic models of AUVs [2]. With regards to the first

challenge, refs. [3, 4] considered the delayed states as the desired values, through which

the bounded conditions of the formation controller can be derived. The above design is

feasible for low time delay, however it is not valid for long time delay since the delayed

state can induce large synchronization error. To this end, Zhou et al. developed an

estimator to capture real-time states under input and state delays, however the selection

of estimator gain requires solving complex linear matrix-inequality (LMI) equation [5].

Meanwhile, some system model parameters need to be known. For the second challenge,

the deep reinforcement learning (DRL) and adaptive dynamic programming (ADP) have

been employed to develop model-free formation controllers for AUVs, e.g., [6, 7].

However, the training process in DRL consumes plenty of time due to the large number
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of parameters in the hidden layer, while the selection of basis functions in ADP relies on

lots of experiences to obtain an accurate approximation.

In this work, we first design a BL-based estimator to capture the real-time states.

Based on this, a BL-based formation controller is developed for the underwater

teleoperation system which has the merits of saved training time via flat network and

autonomous approximation via incremental learning. Major contributions lie in three

aspects: 1) BL-based state estimator can capture the real-time states without solving LMI

equation; 2) BL-based formation controller can achieve model-free formation under time

delay; 3) simulation results are conducted to verify its practical value.

2. Problem Formulation

Consider the formation teleoperation system with single master human operator and N
slave AUVs. Denote

T

m m m m m[ , , , ]x y z ���  and
T

m m m m m[ , , , ]u v w r�v  as the state and

velocity vectors of master human operator, respectively.
T

[ , , , ]i i i i ix y z ���  and

T
[ , , , ]i i i i iu v w r�v  are the state and velocity vectors of slave AUV {1,2,..., }i N� ,

respectively. The elements in these vectors are the states in surge, sway, heave and yaw,

respectively. Thereby, the dynamic model of the system can be described as

m m m m m m m m m h( ) ( ) ( )

( )

,

,) ( ( )

h

i i i i i i i i i i i

� � � �

� � � �

M v v C v v G � � J F
M v C v v D v v G � �

�
�

(1)

where lM  is inertial matrix, lC  is coriolis and centrifugal matrix, lG  is gravity

matrix. l�  is input torque for { , }l m i� . Besides, hJ  is the transformation matrix of

human operator, hF  is the human-operator force, and iD  is the hydrodynamic damping

matrix. After that, the system kinematic model can be expressed as

m m m , ,i i i� �J v J v� �� � (2)

where mJ  and iJ  denote the transformation matrices.

In order to depict the topology relationship of slave AUVs, the undirected graph

( , )�� � �  is employed here. Denote {1,2,..., }N�� and {( , ) : , }i j i j� �� �  as the

vertex set and edge set, respectively. ( , )i j  denotes AUV i can receive data from AUV

j . Besides, the neighbor set of the i -th slave AUV is { : ( , ) }.i j i j� � �� � �  Hence,

the adjacency matrix [ ]
N N

ija �� �� �  is defined, where 1ija �  if ij��  else 0ija � .

For the slave AUVs, we consider the leader-follower formation, where AUV 1 acts

as the leader and the other ones are followers. Then, the buoy is employed to relay the

data from master human operator to leader AUV 1, including WiFi link from master

human operator to buoy and acoustic link from buoy to leader AUV 1. Since the AUVs

in slave site are not far from each other, the time delays among AUVs are ignored. Hence,

the time delay from master human operator to slave AUVs can be denoted by d .

Particularly, denote � �;l l l�X � v  as the augmented state vector. ijr  is the relative

position vector between AUVs i  and j . Accordingly, the objective of underwater
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teleoperation formation control is to achieve: 1) States estimation� m m( ) ( )ˆ t t	 XX and

1 1( ) ( )ˆ t t	 XX . 2) Stability: m 1 1 m,ˆ ˆ	 	X XX X  and ˆ
i j ijr	 �X X .

3. Design and Analysis

We first design BL-based state estimator to capture the real-time states. To this end, an

admissible control policy 1��  to steer slave AUV 1 from time t to T. Denote the generated

states as 1 1 1{( ( ), , ( )}t T� 
X X� . Simultaneously, these states and corresponding control

inputs are relayed to the master human operator, which are denoted as

2 1 1{( ( ), , ( )}t d T d� � 
 �X X�  and 3 1 1{ ( ), , ( )}t d T d� � 
 �� �� �� . Then, divide

the above data via ( ) /T t t� �  time windows with window length t� . We select n
windows of data as the labels, i.e., 1 1,1 1,{ , , }n


 
 
� 
X X� ,
# #

2 1,1 1,{ , , }n

 
 
� 
X X�  and

3 1,1 1,{ , , }n

 
 
� 
� �� �� , where 1 ( ) /n T t t� � ��  is the random number of windows,

#
1, 1,,a a

 
X X  and 1,a


��  denote the state data, delayed state data, and delayed control input

data in the a -th [1, ]n�  window, respectively. In this way, the label set � �1


�	 �  and

feature set � �2 3,

 
�
 � �  can be acquired for estimator training

Then, the BL network is employed to estimate the real-time states of slave AUV 1.

To this end, the feature set is regarded as the input, and the estimated states of slave AUV

1 are considered as the output. The label set is to evaluate the accuracy of the estimated

states. One constructs the p -th feature node p�  and the q -th enhancement node q�  as

1 # #

1 2( ), {1,2, , , ( ), {1,2, , ,} }K
p p p p q q q qp K q K� �� � � 
 � � � 
� � � �� 
 � �  (3)

where p�  is the feature mapping function. q�  is the activation function. p�  and

p� are weight and bias of feature nodes, respectively.
#
q�  and

#
q�  are the weight and

bias of enhancement nodes, respectively. Denote the stacked feature nodes and

enhancement nodes as 1

11[ , , ]K
K� 
� � �  and 2

21[ , , ]K
K� 
� � � , respectively.

From (3), the initialization, network reconfiguration, and real-time state estimation
are conducted to acquire the weight matrix W of the network, such that the estimated

states of slave AUV 1 can be calculated since � AW� , where �  and A  are the state

output and activation function for the estimator, respectively.

1) Initialization. Denote 1 2

0 |
K K� � �� �A � �  and

T 1 T

0 0 0 0(( ) ) ( )
�� �W A A I A
 	

as the initial activation function and weight of network, respectively.  Randomly generate

the weight and bias. One can get the initial output of the estimator by 0 0 0� A W� .

2) Network reconfiguration. Add enhancement node to reduce the estimation error.

Denote the b -th added enhancement nodes as 1

# # # 3( ), {1,2, , ,}K
b b b b b K�� � � 
� �� �

where #b�  is the activation function. #b�  and #b�  are the random weight and bias for

the added enhancement node, respectively. Stack all the added enhancement nodes as
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3 3

1[ , , ]K K� 
� � � . The network parameters can be updated as

3 3 3

1 1

T T
| , ,, ; ,K K K�

� �� � � � �� �� � �� � � �A A W H A N A HW HL L� � � � ��� � �	 	

If �N 0 ,
T( )��L N  else

T 1 T T .((1 ) ( ))� �� �L H H L A� (4)

3) Real-time state estimation. The termination condition of iteration satisfies
2

1 2
�� � �� �� � . After iterating, the estimated states are output by 1 1 1� � �� A W� � �� .

Note that the design of master human operator state estimator is the same as the

above steps, which is omitted here.

After that, we employ the BL system to design a model-free teleoperation formation

controller. For ease of analysis, the system dynamic model (1) can be rearranged as

� �
� �

m m m m m m1 ( ( )) ( ( ))

1 ( ( )) ( ( )) ,

,

i i i i i i

k f k c k

k f k c k

� � �

� � �

X X X �

X X X �
(5)

where k  is the sampling time. Denote 1,m m 1( ) ( ) ( )ˆk k k� �e X X ,

m,1 1 m( ) ( )ˆk k� �e X X  and , ( ) ( )i h i f ihk k r� � �e X X  as the tracking errors of the master

human operator, slave AUV 1, and slave AUV h ( 1)h� ��� . Accordingly, define the

cost function as

T T

m 1,m 1,m 1,m m m m

T T

1 , , ,

T T
1 m,1 m,1 m,1 1 1 1,

( , ) ,

,

h
i h i h i h h h hih h

g

g

g

�

� �

� �

� �

�
e Q e � R �

X � e Q e � R �

e Q e � R �

�

(6)

where 1,mQ , m,1Q , ,i hQ , mR , 1R  and hR  are positive definite matrices.

Accordingly, the teleoperation formation control optimal problem can be described as

� �( ) ( ( ), ( )) ( ( 1)) , .r {g ,1,a m n }i ss s s s sk g k k J k s m h
 � � � ��� X � X (7)

To solve optimization problem (7), the model preprocessing, autonomous
approximation and network reconfiguration are conducted to obtain the optimal policy.

1) Model preprocessing. We introduce the admissible policy s�� , such that (5) can

be rearranged in the � -th iteration steps

� �1 ( ( )) ( ( ))( ( ) ( )) ( ( )) ( ).s s s s s s s s s sk f k c k k k c k k� �� � � � �X X X � � X ��  (8)

Based on this, one has the following Bellman error

1( ( 1)) ( ( )) 2 ( ) ( ( ) ( )).s s s s s s sJ k J k g k k k� � � ��� � � � � �X X � R � �� (9)

Next, we adopt ADP with BL to design critic-actor networks, through which

( ( ))sJ k� X  and
1( )s k���  can be approximated without choosing basis function.
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2) Autonomous approximation. The tracking errors are employed to construct the

� -th feature node s��  and the � -th enhancement node s�� . Then, stack all the feature

nodes and enhancement nodes as 4

41[ , , ]K
s s sK� 
� � �  and 5

51[ , , ]K
s s sK� 
� � � ,

respectively. Based on this, the unknown items can be approximated by

T 1 T
c, c, a, a ,

ˆ ˆ( ( )) ( ), ( ) ( ),s s s s s sJ k k k k� ��� �X W A � W A (10)

where
T
c,sW  and 4 5

c, c, c,[ | ]K K
s s s�A � � are the weight vector and BL-based basis

function for the critic network, respectively.
T
a,sW  and 4 5

a, a, a,[ | ]K K
s s s�A � � represent the

weight vector and BL-based basis function for the actor network, respectively. Hence,

one has the temporal difference error

T T T

c, c, a , a ,( ) ( ) ( ( ), ( )) 2( ) ( )vec( ),s s s s s s s sE t I g t k k�� � � � � � �A W X � � R A W  (11)

where c, c, c,( 1) ( )s s sk k� � � �A A A  and ( ) ( )s s sk k�� � �� � �� . Denote the

weight as
# # #

c, a,all [ ; ]s s�W W W� � �
. Then, the gradient descent method is adopted to update

it.

3) Network reconfiguration. To improve approximation ability, one adds

enhancement node s�  into critic-actor networks. Denote the stacked added enhancement

nodes as 6

61[ , , ]K
s s sK� 
� � � . Similar to (4), update the weight matrices of networks.

To ensure the transparency, the feedback force F�  is perceived by human operator

1 m

1
0.5 , 0.

1 e
  

� �

! "� � #$ %�& '� �F� (12)

Theorem 1: Consider the collected label set 	 and feature set 
 , one constructs

the additional reinforcement nodes in for incremental learning, then the estimated states

are convergent as the weight matrix update, i.e.,
2

1 2
lim 0	( � � �� �� 	 .

Proof. Define ( )U �
 	  and 0( )P �
 � . The initial output of estimator can be

denoted as 1 2( ) ( ) ( )K KP f f� �� �
 
 
 , where 1 ( )Kf� 
  and 2 ( )Kf� 
  are outputs of

the feature node and enhancement node, respectively. Then the distance between ( )P 

and ( )U 
  on the compact set

)* + I can be represented as

2

( ( ), ( )) ( ( ) ( )) ( )P U E P U d
*

� �* � �, -� �.
 
 
 
 
 (13)

where [0;1]) ) )� +I � is the standard hypercube. Since the feature mapping

function is bounded, and 1 ( )Kf� 
  is bounded and integrable. One can deduce that the

resident function 1( ) ( ) ( )Kef U f� � �
 
 
  is bounded and integrable. Following this,

one has a continuous function f/  to make 001 # , i.e., ( ( ), ) / 2.ef f/ 0* �
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From (14), one can further deduce

2( ( ), ( )) ( ( ), ) ( ( ), ) ,KeP U f f f f/ / 0* 2 * � * 2�
 
 
 
 (14)

which means the initial output of estimator is convergent. Since the network

architecture has not changed after � -th incremental learning, one has

2

1 2
lim 0	( � � �� �� 	 .

4. Simulation and Experiment Results

In simulation studies, we consider the slave site consisting of four AUVs to perform

formation task. The topology relationship of slave AUVs is 12 14 32 34 1a a a a� � � � .

The parameters are set as 0.5d � , 0.25� � , and 30 � . The desired shape of slave

AUVs is a square with side length of 4 meters. The trajectories of master human operator

and slave AUVs are shown in Figs. 1(a)-(b). It is shown that the slave AUVs track the

movement of master human operator and form the desired formation shape. In the above

process, the real-time states of master human operator and slave AUV 1 captured by BL-

based bilateral estimators are shown in Figs. 1(c)-(d). Clearly, the estimators capture the

bilateral real-time states successfully under time delay. This verifies the effectiveness of

BL-based real-time states estimator in this paper.

(a) Trajectory of master site.                                   (b) Trajectory of slave AUVs.

    (c) Estimation states of master site.                          (d) Estimation states of slave AUVs.

Figure 1. Simulation results for underwater teleoperation formation control
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5. Conclusion

In this paper, the teleoperation formation control of AUVs under time delay has been

investigated. The BL-based estimators have been designed to capture bilateral states,

through which the slave AUVs can form formation by BL-based formation controller.

Simulation results are given to verify the effectiveness of our solution. In the future, we

consider the co-design of detection, communication and control of underwater

teleoperation system. Moreover, more complex scenario will be considered.
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