
Accurate Detection of Third-Party Library

Version of IoT Firmware Based on GNN

Jingdong GUOa,b, Ying WANGc1, Zhuo WANGa,b

aHenan International Joint Laboratory of Theories and Key Technologies on
Intelligence Networks, Henan University, Kaifeng 475004, China;

b Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

cSoftware Engineering Intelligent Information Processing Innovation Base-Subject
Innovation Base of Henan Higher Universities,

Henan University, Kaifeng 475004, China;

Abstract. Third-party libraries are widely used in IoT firmware, and different

versions of libraries have different vulnerabilities. Therefore, extracting versions of

third-party libraries is of great significance for discovering known vulnerabilities of

IoT devices. However, identifying the version of third-party library in IoT firmware

is very challenging due to cross-architecture, cross-compiler, and cross-optimization

options issues. To address this challenge, we present FirmAd, a GNN-based system

that accurately detects third-party libraries’ versions in IoT firmware. The system

leverages a two-stage approach that calculates the similarity of different granularity

features to obtain the final TPL version. We evaluate FirmAd on a large-scale

dataset comprising 10,699 TPLs and achieve a version information identification

accuracy of 92.68%, which is 8% higher than existing methods.

Keywords. GNN, Firmware, TPL, Version Identification

1. Introduction

The evolution of communication technology, exemplified by 5G, coupled with

advancements in equipment hardware, has facilitated the extensive deployment and

adoption of IoT devices, including routers, switches, network surveillance cameras,

smart home appliances, and smart cars. These devices have found applications across

diverse domains, such as smart homes, intelligent transportation systems, and smart cities.

Firmware is a crucial component of IoT, and to expedite firmware development, Third-

Party Libraries (TPLs) are extensively employed. Synopsys' 2023 Open-Source Security

and Risk Analysis (OSSRA) Report[7]reveals that up to 92% of the source codes
reviewed in the IoT domain comprise opensource codes. The extensive reuse of TPLs

exposes firmware to potential security risks. For instance, the Heartbleed vulnerability

in OpenSSL[2] affected millions of IoT devices, and this vulnerability only affected

specific versions of OpenSSL, such as OpenSSL 1.0.1 - 1.0.1f. Therefore, identifying

the versions of TPLs in IoT firmware is of paramount importance.

1  Corresponding author: Ying WANG, Software Engineering Intelligent Information Processing

Innovation Base-Subject Innovation Base of Henan Higher Universities, Henan University; e-mail:

wangying@henu.edu.cn

Advances in Artificial Intelligence, Big Data and Algorithms
G. Grigoras and P. Lorenz (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230854

555



To address the potential risks posed by unreliable TPLs, many researchers have

focused on effective TPL version detection methods. Currently, there are several ways

to obtain the versions of TPLs in firmware. One such method is dynamic testing[16],

which involves running TPL in a simulated environment and using version-related

commands to obtain version-related information. However, given that IoT devices have

different architectures, this method requires a large and complex simulation environment,

which is not conducive to large-scale analysis. Another method entails constructing a

candidate library of a known TPL version and extracting binary constant features, such

as function names and strings, for similarity comparison through static analysis.

[8][9][10][12][15][17] Alternatively, structural features of functions, such as control

flow graph (CFG), can be extracted to compare graph similarity and obtain the version

of the target TPL. However, due to the significant impact of TPL cross-architecture

cross-optimization compilation options and the number of functions to be compared, the

accuracy and efficiency of this method in large-scale version detection need to be

improved.

In this paper, we design and implement a system for accurately identifying the TPL

version of IoT firmware, FirmAd. The system extracts coarse-grained and fine-grained

features from TPL and utilizes Embedded-GNN in combination with function-level

statistical features to calculate function similarity. TPL version detection is performed in

two stages, which effectively enhances the accuracy and efficiency of TPL version

detection. Given the absence of a public firmware library and TPL library, we invested

significant time and effort in collecting 230 commonly used opensource projects from

GitHub and SourceForge, manually compiling these projects into 19,700 binary files.

We also collected 167 firmwares from 10 different vendors, spanning various device

classes such as network cameras, routers, and switches. To evaluate FirmAd, we

compared it with state-of-the-art version identification methods on widely used

benchmarks. Experimental results demonstrate that FirmAd outperforms the state-of-the-

art related work OSSPolice,[18] with an average accuracy of 92.68% for version

detection, which is superior to OSSPolice's 83.7%.

2. Methodology

FirmAd is an automated system designed to identify the TPL version used in firmware.

As illustrated in Figure 1, FirmAd comprises three main components: firmware

collection and preprocessing, candidate TPL feature library construction, and target TPL

version identification. The firmware collection and preprocessing module is responsible

for collecting firmware files from various sources and preprocessing them in two steps:

1) identifying the necessary firmware information; 2) unpacking the firmware and

extracting TPLs. The feature library construction module extracts the features of

candidate TPLs in three steps: 1) collecting commonly used TPLs from opensource

repositories such as GitHub and SourceForge; 2) automatically compiling them into

binary files of different versions; 3) extracting different granularity features and storing

them. The final version identification module extracts the coarse-grained and fine-

grained features of the target binary and performs TPL version-level detection in two

stages. The implementation of each module is discussed in the following subsections.

J. Guo et al. / Accurate Detection of Third-Party Library Version of IoT Firmware Based on GNN556



Figure 1.The workflow of FirmAd

2.1.  Firmware Collection and Preprocessing

The firmware collection module is primarily responsible for gathering firmware from

various manufacturers to construct a comprehensive firmware dataset. We collect

different types of firmware from official websites of manufacturers such as Xiaomi,

Huawei, ASUS, and others[1], as well as firmware files from open-source websites such

as GitHub. Once the firmware is collected, it undergoes preprocessing. Metadata files

and automated scripts are utilized to identify necessary information such as the firmware

manufacturer, operating system, and architecture. Subsequently, Binwalk[3] is employed

to unpack the firmware file, analyze the unpacked file, and extract the TPL file as the

target TPL to be detected.

2.2. Construction of TPL Feature Library

The candidate TPL feature library construction module involves three main steps. Firstly,

we collect the git repository of commonly used TPLs in firmware from open-source
websites such as GitHub and SourceForge.[5] Next, we utilize the cmake tool, combined

with automation scripts, to compile different TPLs into binary files of varying versions

as candidate TPLs. Finally, using idapro [4]and feature extraction scripts, we extract

coarse-grained features such as function names and strings, as well as fine-grained

features such as attribute control flow graph (ACFG)[11] and function call graph (FCG),

from candidate TPLs. Based on the features of different granularities of TPLs of different

versions, we construct a TPL feature library.

2.3. Version Identification

The version identification module will be divided into three steps, 1) Extract different

granularity features of the target TPL, which are the same as those used in the

construction of the above-mentioned feature library; 2) Perform coarse-grained feature
matching; 3) Use Embedded-GNN to calculate the similarity of the graph structure, use

the local sensitive hash to calculate the similarity of the function-level statistical features,

and combine the two similarity scores to obtain the TPL version information.

2.3.1. Feature Extraction

First, we implemented a script to extract coarse-grained features from TPL binary files.

Coarse-grained features include function information (such as function name, function

J. Guo et al. / Accurate Detection of Third-Party Library Version of IoT Firmware Based on GNN 557



comment, and function parameters) and string information. For each TPL, we summarize

its common function names, such as sqlite3_column, which can be clearly distinguished

from different types of TPLs to improve the efficiency of identification at the TPL library
level.

Second, using idapro and script, extract ACFG and FCG from TPL. Attributes in

ACFG include functional basic block-level features (such as the number of call

instructions, jump instructions, and offset instructions) and function-level features (such

as the number of functional basic blocks, CFG edges). According to Asteria[13] and

Asteria-pro [14], the number of Callee and Caller in FCG can improve the accuracy of

function similarity, so it is used as a statistical feature to calculate similarity

2.3.2. Coarse-Grained Feature Matching

For two sets of function names with different TPLs, the Jaccard similarity is used to

calculate the similarity. When it exceeds a certain threshold, it is considered similar. The

calculation formula is shown in Formula 1. For TPL's string features, the similarity of
two strings is calculated using edit distance[6]. Combining the two similarities, a list of

eligible candidate TPLs is preliminarily filtered out.

�(�, �) =
���

���
(1)

2.3.3. Fine-Grained Feature Matching

We feed ACFGs of the target binary and the TPL binary into the GNN. After T iterations,

the output vector is obtained, and the vector similarity is calculated using the cosine
similarity. The parameters of the two GNNs are shared to form a Siamese network. The

network structure is shown in Figure 2.

Figure 2.Network structure

3. System Evaluation

In this section, we firstly introduce the composition of the dataset. Next, we evaluate the

performance of FirmAd and compare it with the two most outstanding works OSSPolice,

BinaryAI [19].

3.1. Datasets

Ground Truth: In order to develop a dataset with cross-architecture and cross-

J. Guo et al. / Accurate Detection of Third-Party Library Version of IoT Firmware Based on GNN558



optimization options to train our Embedded-GNN network, we invested a lot of time and

effort in crawling 230 commonly used open-source projects from Github and

SourceForge. These projects were manually compiled into 19700 binaries covering three
architectures (ARM, x86, x64) and four optimization options (O0, O1, O2, O3). We split

it into training set, validation set and test set with a ratio of 8:1:1.

Real World dataset: To evaluate the ability to handle large-scale firmware TPL

detection tasks, we collected 167 firmwares from 10 different vendors. The firmware

extracted 10,699 binaries across various device categories such as IP cameras, routers,

and switches. The composition of the dataset is shown in Table 1.

Table 1. Dataset scale

Dataset Binaries Content

Ground Truth 19700 cross arch and opti

Real World dataset 12699 cross arch and opti

3.2. Accuracy Evaluation

In this experiment, we use our method to identify TPL versions in real-world datasets

and compare it with two other methods. The experimental results are shown in Table 2.
The experimental results show that the recognition accuracy of our method in the TPL

version is 92.68%, which is higher than OSSPolice's 83.7% and BinaryAI's 84.6%.

Table 2. The accuracy of TPL version identification

Experiment Cross optimization Cross architecture Cross arch and opti

OSSPolice 97.9% 83.7% 83.7%

BinaryAI 96.9% 85.3% 84.6%

FirmAd 96.7% 92.68% 92.68%

3.3. Efficient Evaluation

The time consumption of component analysis in the experiment is shown in Table 3. In

terms of detection efficiency, our method averages each TPL detection time is 8.36s.
Although it is not the fastest detection speed, our method has achieved a good balance

between accuracy and efficiency.

Table 3. Efficient evaluation

Experiment Time-cost
OSSPolice 0.161s
BinaryAI 17.93s

FirmAd 8.36s

4. Conclusion

In this paper, we design and implement a GNN-based accurate detection system for the

TPL version of IoT firmware. We conduct experiments on real-world datasets to evaluate

our method, and the results show that in our dataset, the accuracy of TPL version

detection can reach 92.68%, and the average detection time is 8.36s.

J. Guo et al. / Accurate Detection of Third-Party Library Version of IoT Firmware Based on GNN 559



Acknowledgements

This work is supported in part by the Key Technology Research and Development Project of Henan Province

under Grant 222102210055; in part by Henan Higher Education Teaching Reform Research and Practice

Project(Graduate Education) under Grant 2019SJGLX080Y; in part by Postgraduate Education Reform and

Quality Improvement Project of Henan Province under Grant YJS2022JD26; in part by Research and Practice

Project of Postgraduate Education and Teaching Reform of Henan University under Grant YJSJG2022XJ039;

and in part by Postgraduate Training Innovation and Quality Improvement Action Plan Project of Henan

University under Grant (Talent Plan) SYLYC2022148, Grant (Education Innovation Training Base)

SYLJD2022008, SYLKC2022028.

References

[1] 2023.Dlink firmwares website. http://files.dlink.com.au/Products/

[2] 2023.OpenSSL. https://www.openssl.org/

[3] 2023.Binwalk. https://github.com/ReFirmLabs/binwalk

[4] 2023.Idapro. https://hex-rays.com/IDA-pro/

[5] 2023. Sourceforge. https://sourceforge.net/

[6] 2022. Edit Distance. https://en.wikipedia.org/wiki/Edit_distance.

[7] 2023.https://www.synopsys.com/zh-cn/software-integrity/resources/analyst-reports/open-source-security-

risk-analysis.html

[8] Xulun Hu, Weidong Zhang, Hong Li, Yan Hu, Zhaoteng Yan, Xiyue Wang, and Limin Sun. 2020. VES:

A Component Version Extracting System for Large-Scale IoT Firmwares. In WASA, Dongxiao Yu,

Falko Dressler, and Jiguo Yu (Eds.),Vol. 12385. 39–48

[9] Zhao B, Ji S, Xu J, et al. A large-scale empirical analysis of the vulnerabilities introduced by third-party

components in IoT firmware[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on

Software Testing and Analysis. 2022: 442-454.

[10] Li S, Wang Y, Dong C, et al. LibAM: An Area Matching Framework for Detecting Third-party Libraries

in Binaries[J]. arXiv preprint arXiv:2305.04026, 2023.

[11] Xu X, Liu C, Feng Q, et al. Neural network-based graph embedding for cross-platform binary code

similarity detection[C]//Proceedings of the 2017 ACM SIGSAC conference on computer and

communications security. 2017: 363-376.

[12] Gao J, Yang X, Fu Y, et al. VulSeeker: A semantic learning based vulnerability seeker for cross-platform

binary[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. 2018: 896-899.

[13] Yang S, Cheng L, Zeng Y, et al. Asteria: Deep learning-based AST-encoding for cross-platform binary

code similarity detection[C]//2021 51st Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). IEEE, 2021: 224-236.

[14] Yang S, Dong C, Xiao Y, et al. Asteria-Pro: Enhancing Deep-Learning Based Binary Code Similarity

Detection by Incorporating Domain Knowledge[J]. arXiv preprint arXiv:2301.00511, 2023.

[15] David Y, Partush N, Yahav E. Firmup: Precise static detection of common vulnerabilities in firmware[J].

ACM SIGPLAN Notices, 2018, 53(2): 392-404.

[16] Qasem A, Shirani P, Debbabi M, et al. Automatic vulnerability detection in embedded devices and

firmware: Survey and layered taxonomies[J]. ACM Computing Surveys (CSUR), 2021, 54(2): 1-42.

[17] Zhan X, Fan L, Chen S, et al. Atvhunter: Reliable version detection of third-party libraries for

vulnerability identification in android applications[C]//2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE). IEEE, 2021: 1695-1707.

[18] Duan R, Bijlani A, Xu M, et al. Identifying open-source license violation and 1-day security risk at large

scale[C]//Proceedings of the 2017 ACM SIGSAC Conference on computer and communications security.

2017: 2169-2185.

[19] Tencent Security Keen Lab. 2022. BinaryAI. https://www.binaryai.cn/.

J. Guo et al. / Accurate Detection of Third-Party Library Version of IoT Firmware Based on GNN560


