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Abstract: The strong generalized minimum label spanning tree problem

(SGMLSTP) is to search the minimum label spanning tree (MLST) from an Edge-

labeled graph (ELG), in which each edge is associated with one or more labels.

SGMLSTP is commonly existed in reality and proven NP-hard. In recent years,

researchers have proposed some algorithms; however, high computational costs are

still severe obstacle, especially for large size graphs. In this paper, we propose a

novel heuristics to solve SGMLSTP. We decompose the problem into two sub-

problems, one is to search a connected subgraph with minimum labels from the

original graph, the other is to search a spanning tree from the subgraph. As the latter

sub-problem is solved, we focus on the former sub-problem and propose a

community-based zigzag piloting algorithm: Firstly a label graph is derived from

the original edge-labeled graph; then the label graph is partitioned and some label

community (or community combinations) is chosen to form an initial solution;

finally, the zigzag piloting process is applied to refine the initial solution. Label

partition finds the initial solution quickly, the zigzag piloting process improves

solution refinement. Experimental results on typical benchmark datasets show better

effectiveness and performance of our algorithm than that of the state-of-the-art

algorithms.

Keywords: edge-labeled graph; minimum label spanning tree; label community;

zigzag piloting

1. Introduction

An edge-labeled graph (ELG) is one with each edge associating some qualitative

characterization(s), instead of a quantitative measurement. ELG applications can be

found in many fields in reality [1], for example, in the scene of transportation, each road

might be assigned one or more labels representing different models; in a television

network, labels might correspond to different channels; in a computer network, labels

might be assigned to different kind of services, etc. Among these applications, the fewer

the chosen labels, the smaller the economic cost, and the less the complexity.

The minimum label spanning tree problem (MLSTP) is to find a spanning tree with

the minimum number of labels (MLST) from an edge-labeled graph, it was firstly
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addressed by Chang and Leu [2], in which each edge has only one label; Chen et al. [3]

proposed a generalized version of MLSTP, namely GMLSTP, where each edge has more

labels but each edge of the extracted tree only choose one of its labels. Cerrone et al [17]

introduced the strong GMLSTP problem (SGMLSTP), in which each edge of the

extracted tree applies all its labels.

In the last decades, researchers found it is unlikely to solve MLSTP, GMLSTP, or

SGMLSTP in polynomial time, therefore, they mainly adopted evolutionary algorithms

or heuristics to handle these problems. However, high computational cost and low

effectiveness are still obstacles, especially for large scale graphs. In this paper, we

propose a novel approach to solve SGMLSTP. Our contributions include: (1)we rewrite

the mathematical model of GMLSTP; (2) we decompose GMLSTP into two sub-

problems, one is to search a sub-graph containing MLSTs from the original graph,

another is to search a spanning tree from the sub-graph; as the latter sub-problem is

solved, we propose a community-based zigzag piloting algorithm to solve the former

one; (3) we perform experiments on typical benchmark datasets to evaluate the proposed

algorithm and the compared algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related

work. The new formulations of the problem and some new terms are introduced in

Section 3. Section 4 describes the proposed algorithm. The experimental results are

demonstrated in Section 5. Finally, the conclusions and our future work are reported in

Section 6.

2. Related Work

2.1 Algorithms for the SGMLSTP and Its Variants

SGMLSTP is a generalized form of MLSTP and GMLSTP. In the last decade, some

researchers have achieved some progress in solving these problems. Generally, these

efforts can be roughly classified into two classes: evolutionary and heuristic algorithms.

MLSTP has been proven NP-complete [2], the authors also presented an A*-based

exact algorithm and an approximation approach based on MVCA (the maximum vertex

covering algorithm), which is commonly applied in construction or rebuilding phases of

evolutionary methods. Xiong et al. [4] and Cerrone et al. [5] adopted the genetic

algorithm and the modified genetic algorithm to solve MLSTP; Zahra et al. [6] adopted

VNS (Variable neighborhood search) technique, Consoli et al.[7] combined VNS and

GRAS (Greedy randomized adaptive search) techniques to search for the optimal

solutions for MLSTP. Consoli et al. [8] adopted the concepts of complementary space as

well as auto-adjusting parameters over a VNS framework, which can acquire better

solutions. Silva et al. [9] proposed a compact binary integer programming model to solve

GMLSTP, in [10] the authors introduced a mixed-integer linear program (MIP)

formulation for MLSTP and applied the capacity of exploration of a new local search

method based on MIP to find results. Other evolutionary algorithms included the

Simulated Annealing and Reactive Tabu Search [11], the Ant Colony Optimization [12],

firefly algorithm [13], multi-objective optimization [14], cross-entropy method [15], etc.

Heuristics show better performance in finding MLST [1], Chwatal and Raidl [16]

abstracted MLSTP and GMLSTP with the mixed integer programming, They proposed

several cuts to strengthen the models and implemented branch-and-cut or branch-and-

cut-and-price algorithms to search feasible MLST solutions; Cerrone et al. [17] applied
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carousel greedy to solve MLSTP; In [18] the authors introduced a single-commodity

flow mathematical formulation that perfectly represents MLST and SGMLST, and

proposed three greedy algorithms, namely MMVCA (multi-label MVCA), MMVCA

extended with CG(Constructive Greedy), and CG with the Pilot Method, to search

promising solutions.

In most cases, the evolution algorithms can find suboptimal solutions for NP-hard

problems, their main disadvantage is the high computational cost, especially for large-

size graphs; heuristic algorithms usually require less computation time, but their

effectiveness heavily depends on the heuristic knowledge.

2.2 Community Detection

Communities are the mid-level components of graphs with dense internal connections

and sparse external connections, which usually consist of network members with higher

similarity and correspond to special behaviors or functionalities. Because community

detection is an important issue in network analysis, In the last decade, numerous

algorithms were proposed to serve scientific or social needs, these algorithms can be

loosely divided into four categories: optimization, clustering, model-based methods and

heuristics methods [19,20].

Optimization methods define objective functions to evaluate network partitions,

such as the modularity function, the Surprise function, the topological potential function,

the spectral graph cutting function, et al.  Many optimization techniques, such as the

genetic algorithm, immune network or simulated annealing, can be employed to search

the optimum graph divisions. The clustering techniques define some similarity

measurement and classify nodes or edges of higher similarity into the same community,

the similarity function can be defined on the eigenvalue spectrum of graph matrices, the

number of common neighbors, the number of polygons, clustering coefficients,

betweenness, density, etc. Model-based methods use probabilistic, diffusion, or

dynamics models to simulate the community detection problem, these models include

the stochastic block model, label propagation, random walks, Potts models, etc. The

heuristic methods comprise the largest family of community detection algorithms, which

usually apply a divisive or expanding strategy to search communities, some measurement

or objective function is applied to terminate the division or expanding process. In our

previous work, a fast and effective expanding heuristic algorithm, namely ICDA [21]

was put forward to support weighted network division.

Exhaustive search methods are of lower efficiency and performance for SMLSTP.

To avoid such disadvantage, we utilize the associations among labels to construct the

initial solution and apply some piloting strategies to refine it.

3. Notations and Mathematical Model

Let G =< �, �, � > be an undirected and unweighted graph, in which V is the node

set, E is the edge set and L is the label set. |V| = n,|E| = m and |L| is the number

of nodes, edges and labels, respectively. Every node is identified with a natural number

i (1 � i � n); symbol e�� � E represents the edge between nodes v�, v�  its weight is

w(e��); usually it is associated with a label set 	
e���(	(e��) � L) (or say 	
e��� is the

label function). For given edge subset ( � E) , �() =
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�v��e�� � S � e�� � �, 1 � �, � � �, � � �� is the corresponding node set, the labeled sub-

graph they are made up of is denoted as < �(), , �(�(), ) >  ( �(�(), ) =
� 	(e��)����� ), �()  is the number of its disjoint components of the graph <
�, , �(�(), ) >.

SGMLST is to find a spanning tree of G with the minimum labels, it is to say, The

goal is to find a tree T =< �, ��, L� >, E� � E(|E�| = n � 1)  , L� = �������	(e��) � L,

and |L�| is minimized.

Definition 1 (Denoted Edges) given label set ! = {	", 	#, … , 	$}, the denoted edges

of the label set ! are denoted as D(!) = {e��|	
e��� � !, e�� � E}.

According to this new concept, we can rewrite the SGMLST problem as two sub-

problems: one is to search a minimum label set with its denoted edges containing a

spanning tree of the original graph; another is to search MST from the sub-graph. They

are presented as follows:

Min % &'*+�- (1)

s.t. � .D
�/+0"{	'}�2 = 1 (2)

� .D
�/+0"{	'} � 	�2 > 1(3	 � �/+0"{	'}) (3)

&' = [0,1] (4)

% 5������6.�7+89{*+}2 = n � 1 (5)

s.t. |�(�:+;0"{e��})| = � (6)

� .�:+;0"{e��}2 = 1 (7)

5'? = [0,1] (8)

Formula (1)-(4) constitute the former sub-problem, formula (1) presents the

objective that the selected labels should be minimized; constraints (2) and (3) ensure the

denoted edges of the chosen label set (� {	'}/+0" ) connect all vertexes of the original

graph; constraint (4) gives the corresponding values of labels.

Formula (5)-(6) form the equations of the latter sub-problem, formula (5) presents

the objective of the spanning tree with the least number of labels; constraints (6) and (7)

request the selected edges is a spanning tree of the original graph; constraint (8) gives

the corresponding values of edges.

Because searching MST from a graph is already solved, in this paper we focus on

the former sub-problem. Firstly we introduce some concepts helpful for such efforts.

Definition 2 (Label Graph) Given ELG G =< �, �, � >, the corresponding label

graph is LG =< �, �- > , e:/
@ � �-  is the relationship between labels 	:  and 	/  if

they coexist in some edge of G, E- = {e:/
@ |	: � 	
e��� � 	/ � 	
e���, e�� � E}, w(e:/

@ ) =
% 1/|	
e���|�B7

C .
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The label graph consists of labels from the original graph as vertexes, their

coexistences as weighted connections. Given labels 	F and 	H, if they coexist on some

edge e�� in the original graph, 	F and 	H are transformed as two vertexes of the label

graph and they are connected with part of the edge weight as 1/|	
e���|, the total weight

of the edge between them is the summary probability of their co-existence, which equals

to % 1/|	
e���|�B7
C .

Definition 3 (Label Community) when a given weight label graph LG =< �, �- >
is partitioned, its disjoint label communities {I", … , IJ } ensure labels with higher

connections are clustered together and labels with sparse connections belong to different

components, which can be measured with the modularity Q = "
#K

% [M:/ �:,/
(NBN7

#O
)] P(I:, I/) (where W = % M(e:,/

@ ):,/ , and P is the Kronecker function, if the

two labels 	:  and 	/  belong to the same disjoint community ( I(	:) == I(	/) ),

P
I(	:), I(	/)� = 1; otherwise it equals to 0.

Definition 5(Preferable index) for label communities IR(1 � U � X) of the label

graph LG =< �, �- >, its preferable index is denoted as pi(IR) = [|IR| + �
Z(IR)�].
Labels of the same community have close associations. Given a label community,

the less its preferable index is, the more likely its denoted edges belong to an optimum

solution of the former sub-problem. For the former sub-problem, we choose someone

community (or combinations of communities) with smaller preferable indexes to form

the original solutions.

Definition 6(Label additional index) Given a label set ! = {	", 	#, … , 	$} \ � of

labeled graph G =< �, �, � > , �
Z(!)� > 1 . The additional index of label 	(	 �
�¥!)is A_(	) = �
Z(!)� � �
Z(! ` {	})�.

Any label with a positive additional index is an additional one, the larger it is, the

more likely it should be appended into the current chosen labels.

Definition 7(Label Reduced index) Given a label set �= {	", 	#, … , 	$}(! \ L) of

labled graph G =< �, �, � > , �
Z(!)� = 1. The reduced index of label 	(	 � !) is

denoted as:

R_(	) = Z(!) � Z(! � {	}).
Any label with smaller reduced index can be swapped out to refine the current

solution set.

When some label community (or community combinations) is chosen as an initial

solution, the denoted edges of these labels are likely not a connected subgraph of the

original graph, we can add external labels in addition: we sort external labels according

to their additional indexes, each time the label with the largest additional index is added

until the denoted edges of all chosen labels constitute a connected subgraph of the

original graph. To optimize the current solution, we can also reduce labels with smaller

reduced indexes. The expanding and reducing sub-process can appear in any

combination, consist of the whole zigzag piloting process. Figure 1 illustrates an edge-

labeled example graph and the optimum solution to its former sub-problem. Figure 2

shows the corresponding label graph with communities being extracted out and their

denoted edges.
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(a)Example edge-labeled graph

(b) the optimal solution to the former sub-problem

Figure 1 Example labeled graph and the optimal solution to the former sub-problem

(a) Label graph and label communities

(b)Denoted edges of the left label community

(c)Denoted edges of the right label community

Figure 2 Label graph and label communities, denoted edges of different communities

Figure 1(a) presents an edge-labeled example graph with 10 nodes and 16 edges, in

which labels {a, b, c, e, h} (Fig. 1(b)) is the optimal solution of the former sub-problem,

from which a minimum label spanning tree can be acquired with the existing algorithm

for MST. Figure 2(a) demonstrates the label graph of the example edge-labeled graph, in

which label communities are drawn with different shapes: the left one contains labels

{a, b, c, e} and the right one includes labels {d, f, g, h}; the denoted edges of the left and
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the right label community are illustrated in Figure 2(b) and Figure 2(c). The left label

community has the preferable index of 6 (the label community has 4 members, their

denoted edges constitute 2 connected components); the denoted edges of the right label

community have the preferable index of 10 ( the label community has 4 members, and

their denoted edges constitute 6 components). We choose the left label community to

form an initial solution for the former sub-problem, because its denoted edges don’t

contain any spanning tree of the original graph, label {h} is additionally added to form

a feasible solution. As none of the left label community can be removed, hence labels

{a,b,c,e} {h} form a optimum solution for the former sub-problem of the example edge-

labeled graph.

4. The Proposed Algorithm

In this section, we introduce the proposed algorithm for the former sub-problem of the

SGMLSTP. This algorithm is based on the label communities and the zigzag piloting

strategy, it mainly consists of three phases: (1) derive the label graph; (2) partition the

label graph into communities and choose label communities (or combination of

communities) with smaller preferable indexes as initial solutions for the former sub-

problem, (3) adopt the zigzag piloting strategy to append additional labels and remove

redundant labels. Algorithm 1,2,3 describe the details of the three phases.

Algorithm 1 label graph extraction

Input: G =< �, �, � >
Output: LG =< �, �- >  //label graph

(1)k[|L|][|L|] l 0; //label co-occurrence
(2)E@ l Ø; //connection between labels;
(3)For each edge e��     // label co-occurrence calculating
(4) For two label 	:, 	/ � 	
e���:

(5) W[	:][ 	/]�W[	:][ 	/]+ 1/|	
e���|;
(6)For i, j=1..|L| //label graph creation
(7)      if W[�][ �]>0;

(8) E@ l E@ {(i, j, W[�][ �])

Algorithm 2 community detection and initial solution construction

Input: LG =< �, �- >, Comm, k

Output: initSol //initial solutions
(1) initSoll Ø
(2) Comm�ICDA(E@) //label graph partition
(3)for each item Comm[i]: //calculate preferable indexes for each label community
(4)   calculate pr(Comm[i])=|Comm[i]| + �
Z(Comm[i])�
(5)Comm�sort(Comm,pr)

(6) initSol�combination(Comm,p) //initial solutions by combinating label communities

Algorithm 3 the zigzag piloting strategy

Input: G =< �, �, � >, initSol

Output: Optsol //optimum solution
(1) Optsoll Ø
(2)for each item in initSol: //zigzag piloting process for initial solutions
(3)   if s( D(Comb[i]))>1:
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(4)       for lu � L¥ Comb[i]:  // calculate appending indexes for Nonselected labels

(5)          calculate AxyzH[�](	:)
(6) L¥ Comb[i] �sort(L¥ Comb[i], AxyzH[�](	:)) //sort Nonselected labels
(7) Comb[i] �Comb[i]�first(L¥ Comb[i]) //append additional labels
(8)  if �
 Z(Comb[i])� = 1:

(9)      for 	: � Comb[i]:
(10)          if �
 Z(Comb[i]�	:)� = 1:

(11) Comb[i] �Comb[i] � 	: //remove redundant labels
(12)Optsol�min'|Comb[i]| //the optimum solution is the I��� item with the least labels

We assume the total number of labels is |L| and the average label number for edges

is LF, the number of label communities is |C|. In algorithm 1, Steps (3)-(5) search all

labeled edges, calculate label co-occurrence and search related edges for labels, the

computation cost is O(m � LF
# ); Steps (6)-(8) create the label graph according to labels

co-occurrence, the complexity is O(|L|#), Hence algorithm 1 has the complexity as

O(mLF
# + |L|#).

In algorithm 2, Step (2) calls ICDA algorithm to partition the label graph and acquire

label communities with the cost of O(k � |L|) (k is a constant related to the average

degree of the label graph), step (4) calculates the preferable index for a label community,

in which the cost to search the denoted edges is O(LF � m) and the cost to calculate the

components of the denoted edges is O(m + n) , the complexity to calculate the

preferable indexes for all label communities (step (3) and (4)) is O(|C| � (LF � m + m +
n)) � O(|C| � |L| � m); step (5) sorts all label communities according to their preferable

indexes, the cost is O(|C|#); the next step chooses � label communities at the forefront

and combine them to acquire some initial solutions, the cost is O(p); algorithm 2 has the

cost of O(m|C||L| + |C|# + p)

In algorithm 3, steps (2)-(11) apply the zigzag piloting on each initial solution,

describe the zigzag piloting process, in which steps (3)-(7) accomplish the expanding

sub-process, step (4) and (5) calculate the appending indexes for non-selected labels with

the cost of O(|L| � (LF � m + m + n)), step (6) sorts the non-selected labels with cost

O(|L|#), step (7) appends the first non-selected label into the initial solution with the cost

O(1), the cost of the expanding sub-process is O(|L| � (LF � m + m + n) + |L|#). Steps

(8)-(11) execute the reduction sub-process with the cost of O(|L| � (LF � m + m + n)).

The summary cost of the zigzag piloting process (from step(2) to step(11)) is

O([|L| � (LF � m + m + n) + |L|# + |L| � (LF � m + m + n)]) � O(m|L|#). The cost of

step (12) is O(p). The summary cost of algorithm 3 is O(pm|L|#).

By combining the cost of three algorithms, the complexity of the proposed algorithm

is O(mLF
# + |L|# + m|C||L| + |C|# + p + |L|#m) � O(|L|#m). When the cost to solve

the later sub-problem is also included (the complexity is O(nlogn)), the total complexity

is O(|L|#m + nlogn).

5. Experimental Results

In this section, we choose two state-of-the-art algorithms, carousel greedy [17] and

MMVCA [18] to compare with the proposed algorithm. All the algorithms are

implemented on the Python platform and experiments are executed on a Windows10

desktop with Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz and 16G RAM.
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The benchmark instances are generated as Cerrone et al. [18] described. The

instances are randomly generated labeled graphs with the node number |V| as 50, 100, or

200; the label number |L| equals to the node number and the edge number |E| is equals to

� � n(n � 1)/2, where h is a density measure equals 0.2, 0.5, or 0.8; the label number

for each edge is set as 2, 3, 5, or a random integer less than 5. For each combination of

parameters, ten different instances will be generated and the total number of labeled

graphs is 360. We take the best, the worst and the average execution time and the

minimum labels of ten instances of each combination of parameters for the algorithms’

comparison, to avoid endless execution, the execution time limit is set as 7,200 seconds

(2 hours). Figure 3 and 4 illustrate the experimental results of the compared algorithms.

(a) Average/Best/Worst execution time on different instances (density=0.2)

(b) Average/Best/Worst on different instances (density=0.5)

(c) Average/Best/Worst on different instances (density=0.8)

Figure 3 the execution time of the compared algorithms on different instance
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Figure 3(a) show the average, the best and the worst execution time on 10 instances

when the density is set as 0.2; figure 3(b) show the average, the best and the worst

execution time on 10 instances when the density is set as 0.5; figure 3(c) show the

average, the best and the worst execution time on 10 instances when the density is set as

0.8. In almost every case, our proposed algorithm requires the least execution time, when

the graph size is expanded as 200 nodes and 200 labels, CG and MMVCA can’t

accomplish searching of MLST in the execution limit.

Figure 4 show the average, the best and the worst minimum labels on 10 instances

when the density is set as 0.2, 0.5, 0.8, respectively. We can see in different situations,

our proposed algorithm can acquire MLST solutions not worse off than that of CG and

MMVCA, conversely, on a small part of instances; our algorithm can acquire better

solutions.

(a) Average/Best/Worst minimum label numbers on different instances (density=0.2)

(b) Average/Best/Worst minimum label numbers on different instances( density=0.5)

(c) Average/Best/Worst minimum label numbers on different instances (density=0.8)

Figure 4 the minimum labels of the compared algorithms on different instance
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6. Conclusions

In this paper, we decompose SGMLSTP into two sub-problem and focus on the former

one, we develop a community-based zigzag piloting heuristics to solve it: labels that

always appear together have close associations, we transform the labels and their

relationships into a label graph and partition it into disjoint communities, combination of

label communities are chosen as an initial solution for the former sub-problem, and the

zigzag piloting strategy is adopted to refine the initial solution. We compare the

heuristics with the state-of-the-art algorithms on some benchmark datasets. Experimental

results show our heuristics outperforms current algorithms.
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