
Research on Key Technologies of Big Data

Analysis

Jianjun CAI1, Nver REN2, Erxin SUN3, Yang TIAN4, Jingming ZHANG5

China Automotive Technology Research Center Co., Ltd.

Abstract. With the advent of emerging computing services such as cloud computing

and the decline in hardware prices, the unit price per GB of mechanical hard drives

has plummeted by 87%, the amount of information on the Internet has shown

explosive growth. Furthermore, the scale of data in large enterprises has reached EB

level at present. These massive data form subject-oriented, integrated, relatively

stable data warehouses which can reflect historical changes. How to process and

analyze these data has gradually become the key technology of Big data. This paper

will discuss the key technologies of Big data processing and analysis, such as data

preprocessing and Big data analysis framework.

Keywords. EB level, big data, data pre-processing, big data analysis framework

1. Introduction

Big data refers to a collection of data that cannot be captured, managed and processed

with conventional software tools within a certain time frame. It is a massive, high growth
rate and diversified information asset that requires a new processing model to have

stronger decision-making power, insight and discovery power, and process optimization
capabilities. Broadly speaking, Big Data has the 4V characteristics: Volume, Velocity,

Variability, and Value. Processing techniques for Big Data include preprocessing, Big
Data processing framework, etc. Wherein pre-processing involves operations such as

extraction, cleaning and integration of collected data. The data processing framework, as
the carrier of data mining, completes the mapping and reduction of the data. This article

introduces the technology of Big Data preprocessing and its detailed process, as well as
the mainstream framework for Big Data analysis.

2. Big Data Preprocessing Technology

2.1. Background

The mainstream big data processing frameworks currently include the early-born

1Corresponding Author: Jianjun CAI, China Automotive Technology Research Center Co., Ltd.;

e-mail: caijianjun@catarc.ac.cn
2Nver REN, China Automotive Technology Research Center Co., Ltd.; e-mail: rennver@catarc.ac.cn
3Erxin SUN, China Automotive Technology Research Center Co., Ltd.; e-mail: sunerxin@catarc.ac.cn
4Yang TIAN, China Automotive Technology Research Center Co., Ltd.; e-mail: tianyang@catarc.ac.cn
5Jingming ZHANG, China Automotive Technology Research Center Co., Ltd.;

e-mail: zhangjingming@catarc.ac.cn

Advances in Artificial Intelligence, Big Data and Algorithms
G. Grigoras and P. Lorenz (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230923

1086

MapReduce[1], batch-based Spark, stream-based Storm, Spark Streaming, and Flink[2].

However, in these frameworks, the quality of information obtained through data mining
depends not only on the design and performance of the method, but also on the quality

and applicability of the data. Negative factors such as noise, missing values,
inconsistency and redundancy, as well as the large size of samples and features,

significantly affect the information extraction from data[3].

Therefore, data preprocessing[4] is an important and essential step.The main goal of

obtaining the final dataset that can be used for further data mining algorithms, as shown

in the Knowledge Discovery from Data (KDD) process in Figure 1 .

Figure 1. The process of KDD

2.2. Big Data Preprocessing Technology

Although data preprocessing improves the quality of information extraction, it can be

time-consuming. It requires multiple operations, such as data preparation and data

reduction, as shown in Figure 2. The former involves transforming, integrating, cleansing,

and normalizing data. The latter aims to reduce data complexity through feature selection

and discretization. After the preprocessing phase, the obtained datasets can be considered

as reliable and suitable sources for the subsequent data mining algorithms. In this chapter,

we will talk about the existing data preprocessing methods.

Figure 2. The content of data preprocessing

J. Cai et al. / Research on Key Technologies of Big Data Analysis 1087

2.2.1. Missing Value Processing and Noise Processing

Most data mining methods are based on a purportedly complete or noise-free data set.

But real data is very unclean or complete. So when preprocessing data, it is usually
necessary to remove noisy data or recover missing data.

Data that is not stored or collected due to sampling errors, cost limitations, or certain

limitations during the collection process is called missing values.The occurrence of

missing values is unavoidable in data analysis and the processing of missing values is

complex. Improper handling of missing values can easily affect the extraction of feature

knowledge and lead to incorrect conclusions.

The pioneering work on imputation of data comes from statistics. Statisticians model

probability functions of data and analyze the causes of missing data. By using a

maximum likelihood approach, they sampled the approximate probability model to

impute missing values. Because the real statistical model of a specific dataset is often

unknown, so machine learning and deep learning methods that do not require prior

knowledge have recently become popular research directions.
In order to solve the noise problem in data mining, two methods are usually used to

preprocess the data. The first is data smoothing to correct outliers, especially when the

noise affects the labeling of examples, but this is usually limited by the amount of noise,

otherwise the workload will become unimaginable. The second option is to use noise

filtering methods to identify and remove noise instances from the training data, without

modifying the data mining.In addition, for data noise in clustering, Outlier can be

monitored, and then the Outlier that are farther away from the cluster center than any

other data point can be deleted after comparing and analyzing the results according to
business logic.

2.2.2. Dimensionality Reduction Processing

Data mining methods encounter dimensionality problems as the number of predictors

and dataset instances increases[5]. This is a serious problem since it will slow down data

mining techniques as computing costs climb. This section will introduce feature selection

(FS) and spatial transformation, the two most often used dimensionality reduction

techniques.

The procedure of locating and eliminating unnecessary and duplicate information is

known as feature selection (FS)[6]. As demonstrated in Figure 3, the goal of feature

selection is to extract a subset of features from the original dataset that accurately

characterize it. In general, this subset serves as the model's training set. Feature selection

eliminates redundant and pointless information, which could result in unexpected model
weights in the learning algorithm and reduce the model's accuracy. In this way, the risk

of model overfitting is decreased by the use of feature selection. Furthermore, the feature

selection limit the search space dictated by features in learning process, which will be

quicker and less memory-intensive.

Contrary to feature selection, spatial transformation techniques combine existing

features to create a completely new set of features rather than just choosing the most

evident ones. There are many methods for combining original features, such as PCA and

factor analysis, etc.

After dimension reduction, it can effectively improve the calculation efficiency,

reduce the storage space, improve the Data and information visualization effect and the

accuracy of the model.

J. Cai et al. / Research on Key Technologies of Big Data Analysis1088

Figure 3. Feature selection

2.2.3. Discretization

Discretization is receiving more and more attention, and it is often used to preprocess

data[7]. It converts quantitative data into qualitative data by dividing numerical

characteristics into a limited number of non overlapping intervals. Using the generated

boundary, each value is mapped to each interval and becomes discrete. Any data mining

algorithm that needs fixed class data benefits from Discretization, because many

practical applications usually produce real value output. For example, three of the top

ten methods in data mining need external or embedded data Discretization: C4.5, Apriori

and Naive Bayes.
There are other advantages to discretization, not only the benefits of data

simplification and reduction, thus accelerating and improving the accuracy of learning,

but also improving the readability of data. Because discrete attributes are usually easier

to understand, use, and interpret. However, these benefits come at a cost: any

Discretization process will lead to information loss. In order to minimize information

loss, Discretization usually tries to select the best segmentation point or interval division

method. However, because the optimal Discretization is an NP complete problem, some

literatures provide a wide range of alternatives, such as equal frequency, equal distance,

clustering and other methods[8]. Although these alternative solutions cannot guarantee

finding the global optimal solution, they have been proven to be effective and feasible in

practical applications.

3. Big Data Processing Technology

3.1. Background of the Big Data Processing Framework

As Big Data has evolved, many data processing systems have emerged, starting from the

first batch processing system MapReduce in the "Google Troika" to Spark, Storm and

Flink, which are based on stream processing. In this section, we mainly introduce

MapReduce, Spark, and Flink.

3.2. Big Data Processing Framework

3.2.1. Mapreduce

Figure 4 illustrates the various parts of MapReduce. First is the client, which submits

jobs to the cluster. The job tracker oversees the execution plan, coordinates the jobs, and

J. Cai et al. / Research on Key Technologies of Big Data Analysis 1089

schedules the task tracker. The task tracker decomposes the job into Map and Reduce.

Each task records the process of executing Map and Reduce and the output results. Then,

the input data is sliced and segmented according to the input format. Input splitting is
equivalent to a Map task running in parallel. The input format determines how to parse

the file into MapReduce. The Map stage splits the input into temporal key-value pairs

according to user-defined code. The Shuffle and Sort stages output and move the

intermediate key-value pairs to the Reduce stage and sort them by key. The Reduce stage

reduces all key-value pairs associated with the same key, and then generates output

according to user-defined code.

Figure 4. Diagram of MapReduce

3.2.2. SPARK

Figure 5. Schematic diagram of Spark reuse data set process

J. Cai et al. / Research on Key Technologies of Big Data Analysis1090

MapReduce and its derivative frameworks have achieved great success in dealing with

large-scale data intensive applications, but these systems usually use the acyclic data

flow model, so they are not suitable for applications that need to reuse working data sets,
such as iterative machine learning algorithms and interactive data analysis tools. To

address this issue, a new framework called Spark has been introduced. Spark retains the

scalability and fault tolerance of MapReduce and introduces an abstract class called

Elastic Distributed Dataset (RDD), which is a collection of read-only objects across

multiple machine partitions. If a partition is lost, these objects can be rebuilt, as shown

in Figure 5. By using RDD, Spark can efficiently support applications that reuse working

datasets and achieve performance tens of times better than MapReduce in iterative

machine learning assignments.

Spark comes with a machine learning library Spark MLlib. Spark MLlib consists of

common machine learning algorithms and statistical tools. Its main functions include:

classification, regression, clustering, collaborative filtering, optimization, and
dimensionality reduction. This library is specifically designed to simplify the flow of

machine learning data in large-scale environments. In the latest version of Spark, the

MLlib library is split into two packages MLlib and ML. MLlib is built on RDDs, while

the ML package is mainly used on DataFrames for building data streams.

3.2.3. Flink

A recent open-source framework for distributed batch and stream data processing is

called Flink. It focuses on processing large amounts of data with extremely low data

latency and high fault tolerance on distributed systems. Real-time data processing of

streams is a key function of Flink.

Despite the fact that Spark and Flink both support data reuse and iteration, Spark

plans its execution as an acyclic graph plan, which requires it to schedule and execute

the same set of instructions in each iteration. On the other hand, Flink's engine uses
iterative processing that is based on cyclic data flow (scheduled once per iteration).

Furthermore, it offers incremental iteration to benefit from operations that alter only a

portion of the data. The state of data flow applications can also be restored using a highly

fault-tolerant mechanism provided by Flink. A consistent snapshot of the distributed data

flow and operator state is being created by this mechanism. The system can resort to

these snapshots if something goes wrong.

Figure 6. Execution flow of Flink

A schematic of Flink's execution flow is shown in Figure 6. Data sources for Flink

include file systems, databases, real-time events, KVStore, and more. Flink programs are

represented by a dataflow graph (i.e. directed acyclic graph - DAG) executed on Flink's

J. Cai et al. / Research on Key Technologies of Big Data Analysis 1091

core, which is a distributed streaming dataflow engine. Stateful operators and

intermediate dataflow partitions make up a dataflow graph. Each operator is executed by

a number of parallel instances, the number of which depends on the parallelism level.
Each instance of a parallel operator runs in its own independent task slot on a computer

cluster machine.

4. Conclusion

By introducing the big data preprocessing process and the conventional analysis

framework and highlighting their similarities and differences, this article demonstrates

some key technologies in the big data processing process. Big data is a growing sector

with enormous potential for service and economic value. Big data practitioners should

constantly raise their own standards, utilize big data technology to its fullest potential,

increase productivity, and support economic growth.

References

[1] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[J]. Communications of

the ACM, 2008, 51(1): 107-113.

[2] Chintapalli S, Dagit D, Evans B, et al. Benchmarking streaming computation engines: Storm, flink and

spark streaming[C]//2016 IEEE international parallel and distributed processing symposium workshops

(IPDPSW). IEEE, 2016: 1789-1792.

[3] Pyle D. Data preparation for data mining[M]. morgan kaufmann, 1999.

[4] García S, Luengo J, Herrera F. Data preprocessing in data mining[M]. Cham, Switzerland: Springer

International Publishing, 2015.

[5] Bellman R, Kalaba R. On adaptive control processes[J]. IRE Transactions on Automatic Control, 1959,

4(2): 1-9.

[6] Hall M A. Correlation-based feature selection for machine learning[D]. The University of Waikato, 1999.

[7] Liu H, Hussain F, Tan C L, et al. Discretization: An enabling technique[J]. Data mining and knowledge

discovery, 2002, 6(4): 393-423.

[8] Carbone P, Katsifodimos A, Ewen S, et al. Apache flink: Stream and batch processing in a single

engine[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4).

J. Cai et al. / Research on Key Technologies of Big Data Analysis1092

