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Abstract. This article continues the research initiated in [1,2], which established a
connection between Boolean classifiers and legal case-based reasoning. We relax
the assumption that case bases are such that all situations have been decided in
favour of the defendant or the plaintiff and we introduce an inductive strategy for
assigning plausible outcomes to undecided cases. Using counterfactual reasoning,
we propose a method to determine whether, at each step of the induction, a feature
is a factor, i.e., it consistently favours a single outcome, or is irrelevant, i.e., it is
does not favour any outcome, or is ambiguous, i.e., it favours opposite outcomes.
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1. Introduction

Case-based reasoning (CBR) has played an important role in AI & law research. While
different models have been adopted, factor-based representations have been most popu-
lar, where, factors are features of cases that support possible outcomes. This line of re-
search started with HYPO [3,4], in whose framework a factor-based representation en-
ables various patterns of analogical reasoning: citing a precedent, distinguishing it, and
reasoning a fortiori. John Horty has studied the logical properties of legal CBR, devel-
oping a method for determining whether a certain decision is consistent or inconsistent
with a case base [5]. Applying the idea of a fortiori reasoning, he has argued that any
decision in a new case would be inconsistent with a precedent, if that decision is different
from the precedent’s even though the new case has a more (or equally) inclusive set of
facts favouring the precedent’s conclusion and a less (or equally) inclusive set of factors
against that conclusion. Further developments are the so-called reason model, where the
reason is distinguished in a case, namely, it is the specified set of elements that the judge
considers to provide sufficient support to the case decision, outweighing the factors to
the contrary. Scalable factors (also called dimension) have also been studied.

Recent research, such as in [6,7,2], has argued that some of the usual assumptions
in legal CBR can be relaxed or weakened in order to deal with more realistic scenarios.
In particular, in the context of the reason model:

• Inconsistent case bases - The concept of consistency assumes that the initial
background case base is consistent, which is not a realistic assumption; Horty

Legal Knowledge and Information Systems
G. Sileno et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230942

23



[8] outlined a broader interpretation of the reason model’s constraint concept, ex-
tending it to also encompassing inconsistent case bases; recent investigations have
been accordingly developed (such as [6,9]);

• Incomplete knowledge - The idea of complete knowledge assumes that any case
base is such that all situations have been decided in favour of the defendant or the
plaintiff and thus, for example, that all features in the base have a direction (i.e., if
they are pro and con factors). This assumption can also be unrealistic [10,2].

In this paper we follow the approach of [2] and address the second point. In particu-
lar, we work on inference mechanisms with incomplete knowledge for the identification
of factors, among the features that are present in a case base, and the determination of
their direction [11]. Our approach, which is based on the logical framework described in
[12,13], adopts the view that a legal case-based reasoner is nothing but a binary classifier
[1,2]. We argue that, with incomplete-knowledge, the identification of which features are
factors and of their direction, can be achieved through counterfactual reasoning.

In observing the behaviour of classifiers, a fundamental qualification of any feature
p amounts to checking if p can discriminate in favor of an outcome: this happens if there
exists a case such that the feature’s absence in that case would have lead to the opposite
decision. Given that basic idea, a feature can

1. be a factor if it discriminates in favour of an outcome and never discriminates in
favour of the opposite outcome;

2. be irrelevant, if it never discriminates in favour of any outcome;
3. be ambiguous if it discriminates for an outcome and also discriminates for the

opposite outcome.

Taking into account the above taxonomy, we can devise a broad class of classifiers
to infer new cases in the context of incomplete knowledge. In particular,

• On the basis of a fortiori principle we develop an inductive procedure for inferring
classifications for cases.

• The inductive procedure is defined in a static way, without changing the starting
model, and in a dynamic way, by updating the model, as introduced in [12,13].

• We show how the process described in terms of static inference can be equivalently
described in terms of dynamic model updating.

The methodology adopts an inference mode in which we tolerate the presence of
ambiguous features, and we provide a way of inferring the classification of cases for
which there are precedents that support opposite decisions.

The paper is structured as follows. Section 2 recalls the logical background for bi-
nary classifiers of [12,13,1]. Section 3 recalls the formal account of incomplete knowl-
edge of [2] and applies in Section 4 to characterise the notions of factor, irrelevant and
ambiguous feature. Section 5 defines the mechanism for inferring classifications. Some
conclusions end the paper.

2. Background: Logic of Binary Classifiers

In this section we briefly recall language and semantics of binary-input classifier logic
BCL first appeared in [12,13] and already introduced to model legal CBR [1,2].
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We denote a finite set of atomic propositions by Atm, which is a disjoint union
Atm0 ∪Dec, where the former stands for the set of input variables of the classifier and
Dec= {t(c) : c∈Val= {0,1,?}} for the set of all three possible output values of the clas-
sifier. In addition, let Val = {1,0,?} where elements stand for plaintiff wins, defendant
wins and indeterminacy respectively. Hence t(c) reads as “the actual decision/outcome
(of the judge/classifier) takes value c”. For c ∈ {0,1}, the “opposite” c is noted for the
value 1− c. The modal language L (Atm) of BCL is therefore defined as:

ϕ ::= p | t(c) | ¬ϕ | ϕ ∧ϕ | [X ]ϕ,

where p ranges over Atm0, t(c) ranges over Dec, and X ⊆ Atm0.1 Modal operator 〈X〉
is the dual of [X ] and is defined as usual: 〈X〉ϕ =def ¬[X ]¬ϕ . Their meanings will be
revealed after Definition 2.

The language L (Atm) is interpreted relative to classifier models defined as follows.

Definition 1 (Classifier model). A classifier model (CM) is a pair C = (S, f ) where:

• S ⊆ 2Atm0 is a set of states (or fact situations), and
• f : S −→ Val is a decision (or classification) function.

The class of classifier models is noted CM.

A pointed classifier model is a pair (C,s) with C = (S, f ) a classifier model and s∈ S.
Formulas in L (Atm) are interpreted relative to a pointed classifier model, as follows.

Definition 2 (Satisfaction relation). Let (C,s) be a pointed classifier model with C =

(S, f ) and s ∈ S. Then:

• (C,s) |= p ⇐⇒ p ∈ s;
• (C,s) |= t(c)⇐⇒ f (s) = c;
• Standard valuation conditions for the Boolean connectives;
• (C,s) |= [X ]ϕ ⇐⇒∀s′ ∈ S : if (s∩X) = (s′ ∩X) then (C,s′) |= ϕ .

A formula ϕ of L (Atm) is said to be satisfiable relative to the class CM if there exists a
pointed classifier model (C,s) with C ∈ CM such that (C,s) |= ϕ . It is said to be valid if
¬ϕ is not satisfiable relative to CM and noted as |=CM ϕ .

We can think of a pointed model (C,s) as a pair (s,c) in f with f (s) = c. The
formula [X ]ϕ is true at a state s if ϕ is true at all states that are modulo-X equivalent
to state s. It has the selectis paribus (SP) (selected things being equal) interpretation
“features in X being equal, necessarily ϕ holds (under possible perturbation on the other
features)”.2 Notice when X = /0, [ /0] is the S5 universal modality since every state is
modulo- /0 equivalent to all states, viz. (C,s) |= [ /0]ϕ ⇐⇒ ∀s′ ∈ S,(C,s′) |= ϕ .

1Notice p and t(c) have different statuses regarding negation: ¬p means that the input variable p takes value
0, but ¬t(c) merely means the output does not take value c: we do not know which value it takes, since the
output is trinary.

2[Atm0 \X ]ϕ has the standard ceteris paribus (CP) interpretation “features other than X being equal, neces-
sarily ϕ holds (under possible perturbation of the features in X)”.
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3. From Classifiers Models to Case Bases

As we discussed in Section 1, classifiers should allow incomplete-knowledge: not all
factual situations are associated with a decision in favour of the defendant or the plaintiff.
Under this assumption, according to [2] two conditions must be guaranteed. First, a fact
situation, besides 0 and 1, can also be classified as ?, where ? means absence of decision.
That is, we consider classifier models whose classification function is of the form:

f : S −→ Val with Val = {0,1,?}. (1)

Secondly, we have to suppose that every possible situation is taken into account by
the classifier. Namely,

S = 2Atm0 . (2)

Then, CMinc = {C ∈ CM : C satisfies (1),(2)}, is the class of possibly incomplete-
knowledge classifier models. Satisfiability and validity wrt. CMinc are defined as usual.
An incomplete-knowledge classifier model C ∈ CMinc models a possibly incomplete-
knowledge case base defined as CBC = {k | k = (s, f (s)) with s ∈ S}.

Example 1. Let C = (S, f ), with S = 2Atm0 , Atm0 = {p1, p2, p3} and f : 2Atm0 −→
{0,1,?}, s.t. f (s) = 0 iff s∈ {{p1, p2, p3}, /0}, f (s) =? iff s∈ {{p1, p3},{p2, p3}}, f (s) =
1 otherwise. The incomplete-knowledge case base is CBC = {ki | ki = (si, f (si)), i =
1, ...,8} detailed in the following table.

si f (si)

k1 : {p1, p2, p3} 0
k2 : {p1, p2} 1
k3 : {p1, p3} ?
k4 : {p2, p3} ?
k5 : {p1} 1
k6 : {p2} 1
k7 : {p3} 1
k8 : /0 0

Observing the table, we note that p1 represents the only difference between the fac-
tual situation of case k5, classified as 1, and that of case k8, classified as 0. Intuitively we
can state that p1 is discriminating in favour of 1 and that it counterfactually explains the
1-decision settled for k5. Furthermore, there is no pair of cases such that p1 is discrimi-
nating in favour of 0. Hence, we claim that p1 is a factor in the direction of 1.

4. Factors, Irrelevant and Ambiguous Features

As we argued above, we can distinguish three notions: the notion of factor (unidirec-
tional feature), ambiguous (multi-directional) feature and irrelevant (no-directional) fea-
ture. The distinction has been formally characterised in [2] using the idea of strong coun-
terfactual explanation for binary classifiers [12].

We start by recalling the following notion of similarity between states.
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Definition 3 (Similarity between states). Let C = (S, f ) be a classifier model, s,s′ ∈ S.
The degree of similarity between s and s′ in S relative to the set of features Atm0, noted
simC(s,s′,Atm0), is defined as follows:

simC(s,s′,Atm0) = |{p ∈ Atm0 : (C,s) |= p iff (C,s′) |= p}|.

The dual notion of distance can be defined. In accordance with [14], it is nothing but
the Hamming distance, which counts the cardinality difference of features’ values.

The following definition introduces the notion of counterfactual in Lewis’ style of
the form ϕ ⇒ ψ whose reading is “if it were ϕ , (wrt. features in Atm0) it would be ψ .”

Definition 4 (Counterfactual conditional). Let C = (S, f ) be a classifier model, s ∈ S.
Then, (C,s) |= ϕ ⇒ ψ if and only if closestC(s,ϕ,Atm0)⊆ ||ψ||C, where

closestC(s,ϕ,Atm0) = argmax
s′∈||ϕ||C

simC(s,s′,Atm0),

and for every ϕ ∈ L (Atm): ||ϕ ||C = {s ∈ S : (C,s) |= ϕ}.
The idea is that ϕ ⇒ ψ holds in a state of a classifier model iff all the closest (i.e.,

most similar) states to the current one, which make ϕ true, also make ψ true.3

A feature is said to be discriminating in one direction if just removing it from a case
classified in that direction suffices for having the opposite classification. Then, the dis-
criminating aspect of features is captured by the notion of strong counterfactual explana-
tion for a decision, which we can express in the language L (Atm). Indeed, we will say
that a formula ϕ of L (Atm) strong counterfactually explains a decision c ∈ {0,1} for a
certain situation s, if not satisfying ϕ would lead s to be classified as c.

Definition 5 (Strong counterfactual explanation). We write SCfXp(ϕ,c) to mean that ϕ
strong counterfactually explains a decision for c ∈ {0,1} and define it as

SCfXp(ϕ,c) =def t(c)∧
(¬ϕ ⇒ t(c)

)
.

Given this notion, we can formally define the notions of (a) factor (a feature dis-
criminating only in one direction), (b) irrelevant feature (a feature that does not explain
any decision), (c) ambiguous feature (a feature explaining opposite decisions).4

Definition 6 (Factor, irrelevant feature, ambiguous feature [2]). We write

• Factor(p,c) to mean that p is a factor in the direction of c ∈ {0,1} such that

Factor(p,c) =def 〈 /0〉SCfXp(p,c)∧ [ /0]¬SCfXp(p,c);

• Irrelevant(p) to mean that p is irrelevant such that

Irrelevant(p) =def¬〈 /0〉SCfXp(p,1)∧¬〈 /0〉SCfXp(p,0);

3Formula ϕ ⇒ ψ captures the standard notion of conditional logic. One can show that ⇒ satisfies all seman-
tic conditions of Lewis’ logic of counterfactuals VC [15].

4[2] has shown that, in this context, building similarity between cases via Hamming distance coincides with
building it via subset inclusion relation (i.e., via shared properties as done in HYPO).
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• Amb(p) to mean that p is an ambiguous feature such that

Amb(p) =def 〈 /0〉SCfXp(p,1)∧〈 /0〉SCfXp(p,0).

A classifier model that does not admit ambiguous features is consistent.

Definition 7 (Consistency). A classifier C = (S, f ) is consistent given the current classi-
fications if and only if for every s ∈ S, (C,s) |= Cons, where

Cons=def
∧

p∈Atm0

¬Amb(p).

Example 2. Considering Example 1, we can verify that both p1 and p2 are factors in
the direction of 1 , while p3 is an ambiguous feature. Hence, C is not consistent.

In [2] a variant of the a fortiori reasoning by Horty was introduced, taking also into
account ambiguity and irrelevance. Intuitively, we expect that if the classifier associates
a situation s to an outcome c, then it must assign the same outcome to every situation
s′ such that: (a) s′ includes all factors in the direction of c that are in s (b) s′ does not
include factors in the direction of c that are outside of s and (c) s′ includes exactly the
same ambiguous and irrelevant features that are in s. In this sense, we can also say that
s supports a decision as c for each s′ as above. Looking at Example 1, we can say that
this form of reasoning a fortiori fails and will create conflicting situations.

Example 3. Consider Example 1. The factual situation in k1 is classified as 0 and it
contains more factors in the direction of 1 (namely p2) than the situation in k3. So, a
fortiori, k3 should be decided as 0. Namely, k1 supports a decision in the direction of 0
for k3. But, we can see that, since p1 is a factor for 1, k7 supports a decision for 1 for k3.

5. Inferring Classifications

One interesting research issue is how to infer new factors given a set of features variously
qualified. Such inference mechanisms can be very useful, e.g., when (a) new decisions
for previously undecided cases are provided or discovered or (b) robust explanatory mod-
els are needed to assess the outcome obtained through machine learning and predictive
algorithms applied to judicial corpora. In these cases, it could for instance happen that: a)
features previously labelled as irrelevant may become ambiguous or factors, b) features
previously labelled as factors may become ambiguous in the “updating” of the case base,
etc. If so, we identify pro tanto irrelevant features and pro tanto factors, i.e. features that
are irrelevant or factors given the current information.

We don’t require here consistency (Definition 7) and adopt a rather “liberal” ap-
proach, according to which we tolerate the presence of ambiguous features, and we pro-
vide a way of inferring the classification of cases for which there are precedents that
support opposite decisions. Notice that more skeptical modes are possible, for example
if one infers classifications for cases but stops the inference process for cases involved if
some features turn out to be ambiguous.

In adopting this approach, our aim is to infer as much as possible new classifications,
without stopping the inference. However, it may happen that not all potential inferences
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can be drawn in a consistent way, or that some features that were previously classified
as factors are no longer so. In order to choose among more inferential options, we need
to associate the classifiers with a total pre-order on the powerset of the set of states S.
Conceptually, such a solution seems to us reasonable, because the order can be built
using, e.g., the ranking of courts involved in the previous classifications, the importance
of values promoted [16], and so forth.

Definition 8 (Ordered Classifier). An ordered classifier model is a triple Cor = (S, f ,�)
where S is a set of states, f is a classification function and � is a total preorder on P(S).

The class of ordered classifier models is noted CMor. A pointed ordered classifier
model is a pair (Cor ,s) with Cor = (S, f ,�) an ordered classifier model and s ∈ S. Formu-
las in L (Atm) are interpreted relative to a pointed ordered classifier model as usual (see
Definition 2). Satisfiability and validity wrt. CMor are defined in the usual way.

We now inductively define the inference mechanism of classifications for cases pro-
viding both a static and a dynamic version. In doing so, we retain the a fortiori principle
and resort to the preorder only when more incompatible inferences are available.

5.1. Static Inference

Definition 9. Let k ≥ 0 , c ∈ {0,1}. We write Clk(c) to mean that a classification in the
direction of c for the current factual situation can be inferred at step k, by preference
over conflicting precedents and define it recursively as follows.

1. (Cor,s) |= Cl0(c) iff (Cor,s) |= t(c);
2 (Cor,s) |= Clk+1(c) iff

(Cor,s) |= ¬Cl j≤k(c)∧∨
T⊆2Atm0 SupDec

k(c,T )∧¬∨
U⊆2Atm0 ,T�U SupDeck(c,U);

where

• Clj≤k(c) is an abbreviation for
∨

j≤k Cl
j(c)

• for all T ⊆ 2Atm0 , c ∈ {0,1}
(Cor,s) |= SupDeck(c,T ) iff
T = {s1 ∈ S | (Cor,s1) |= Clj≤k(c),s1 \ s ⊆ Fk

c and s\ s1 ⊆ Fk
c }

and Fk
c =def {p | (Cor,s′) |= Factork(p,c) for all s′ ∈ S} with

• Factork(p,c) =def 〈 /0〉SCfXpk(p,c)∧¬〈 /0〉SCfXpk(p,c) and
SCfXpk(p,c) =def Cl

j≤k(c)∧ (¬p ⇒ Clj≤k(c)).

Plainly speaking, we can explain the definition ‘from the bottom up’. The inference
process proceeds as follows. Suppose we have inferred the classifications up to step k
(Clj≤k(·)). Based on these, we can then extract on the basis of strong counterfactual expla-
nation at step k (SCfXpk(p,c)) factors at step k (Factork(p,c)) in the usual way. Then, we
will say that a set T of situations supports a decision in the direction of c (SupDeck(c,T ))
for a given situation s, if each situation of T forces a classification for c on the basis
of inferred factors, as intuitively introduced at the end of the previous section (i.e. if it
includes an equally or more inclusive set of factors for c, and no additional factor for c
wrt. to s). Finally, we infer a classification as c at step k+1 (Clk+1(c)), for a considered
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situation s, if 1) s was not already inferred in the opposite direction; 2) there is a set T of
states supporting a decision in the direction of c for s, and there is no set U of situations
that support a decision in the direction c, such that U is preferred to T wrt. the order �.

Example 4. Let us elaborate Example 1 to obtain an ordered case base. In particular,
we require that for all U ⊆ 2Atm0 , U � T with T = {{p1, p2, p3}}. Recall that the set of
factors in the direction of 1 at step 0 is F0

1 = {p1, p2}. Note that we have for s ∈ {s3,s4}
that (Cor,s) |= ¬Cl0(1)∧ SupDec0(0,T ). So, we can infer k3 and k4 as 0, since T is
“stronger” than any other U ⊆ 2Atm0 . We infer the classification of all other states again,
with the exception of k7. We cannot infer it as 0 because it has already been classified as
1; we cannot infer it as 1 because T supports a decision for k3 in the direction of 0.

si Cl0 Cl1

k1 : {p1, p2, p3} 0 0
k2 : {p1, p2} 1 1
k3 : {p1, p3} ? 0
k4 : {p2, p3} ? 0
k5 : {p1} 1 1
k6 : {p2} 1 1
k7 : {p3} 1 −
k8 : /0 0 0

In the table “-” means that no classification as 0 or 1 can be inferred. 5 This aspect
deserves further attention. The fact that a classification for k7 cannot be inferred hints
that k7 is involved in a form of ambiguity. Recall p3 is an ambiguous feature, and is
essentially so by virtue of counterfactual reasoning applied to cases k1 and k7. We also
know that k1 is stronger than any other case. Accordingly, we would say that k7 should
have been classified in the opposite direction in order to avoid the ambiguity of p3. This
intuition is reflected in the impossibility of inferring the classification of k7 at step 1.6

We highlight that we make it explicit in the definition that we can infer the clas-
sification in a direction c for a case if we have not already inferred for that case the
classification in the opposite direction c. Based on this, we obviously have the following.

Proposition 1. Let k ≥ 1. It holds the following validity

|= Clk(c)→
∧
j≥k

¬Clj(c).

Since we cannot infer in a different direction an already inferred case, at most we
can have 2Atm0 iterations, inferring one new case per iteration. Namely, the inferential
process we have defined gets stabilised:

Proposition 2. It exists k ≤ 2|Atm0| s.t there is no s ∈ 2Atm0 s.t (Cor,s) |= Clk(c) and
(Cor,s) �|= Clj≤k−1(c).

5Recall that, by definition 9, we can infer classifications as 0 or 1. We cannot infer them as ?, which means
absence of decision. Instead, the symbol ”-” indicates impossibility of inference.

6This intuition should make it possible to correct and revise the case base. But this is left for future work.
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5.2. Dynamic Update

Let Cor = (S, f ,�) be an ordered classifier model. This time, we can update the model
iteratively as follows, . Define

• C0
or =def (S,h0,�) with h0 =def f .

• For k ≥ 0 update the model as Ck+1
or =def (S,hk+1,�), with

hk+1(s) =

⎧⎪⎨
⎪⎩

0 if (Ck
or,s) |= Cl1(0)

1 if (Ck
or,s) |= Cl1(1)

hk(s) otherwise.

Note that Cl1(0) and Cl1(1) are defined in Definition 9. So, we update the model each
time with new classifications following the same reasoning applied at each step of static
inference. In this sense, it is sufficient to perform “the first inference step”, described in
Definition 9.

The following proposition shows a form of equivalence between static inference and
dynamic updating. More precisely, dynamic inference at a certain step ‘cumulates’ what
has been inferred statically until that step.

Proposition 3. For all s ∈ S, k ≥ 0, c ∈ {0,1}, (Cor,s) |= Cl j≤k(c) iff (Ck
or,s) |= t(c)

Proof. Let k = 0. Then (Cor,s) |= Cl0(c), c ∈ {0,1} iff (C,s) |= t(c) iff (C0
or,s) |= t(c).

Suppose that for all k ≥ 1, (Cor,s) |= Cl j≤k(c), iff (Ck
or,s) |= t(c).

Suppose now that (Cor,s) |= Cl j≤k+1(c). So, we know that (Cor,s) |= ¬Cli≤k(c) ∧∨
T⊆2Atm0 SupDec

k(c,T ) ∧ ¬∨
U⊆2Atm0 ,T�U Supdeck(c,U). By induction hypothesis we

can verify that (Ck
or,s) |=¬t(c)∧∨

T⊆2Atm0 SupDec
0(c,T )∧¬∨

U⊆2Atm0 ,T�U Supdec0(c,U).
Hence we have (Ck

or,s) |= Cl1(c). So (Ck+1
or ,s) |= t(c). To prove that (Ck+1

or ,s) |= t(c)
implies (Cor,s) |= Clk+1(c), proceed in “reverse order”.

Example 5. Consider Cor of Example 4. Recall that statically we infer a classification as
1 for k7 at step 0 but not at step 1. Namely (Cor,s7) |= Cl0(1)∧¬(Cl1(1)∨Cl1(0)). But
then, by definition, h1(s7) = 1 and so, in dynamic updating at step 1, we have (C1

or,s7) |=
t(1) (i.e. s7 is still classified as 1 at first step). This reflects the cumulativity nature of
dynamic updating. Moreover, this shows that static inference, differently from dynamic
updating, allows the cases ‘causing ambiguity’ (e.g. k7 here) to be highlighted.

6. Conclusion

Following the extensive AI & Law literature springing from the study of HYPO and
CATO, in the last decade a significant effort has been put in investigating axioms as well
as formal properties of factor-based case-based reasoning, and in providing the logical
foundations for such a type of reasoning (see, among others, [8,17,18,19,20,21,6,1,11,
22]). Also due to development of explainable AI (XAI) [23,24], the quest for logical
foundations of factor-based CBR has been recently focused, e.g., on formal models of
argumentative explanation [21] or on logics for classifier systems [1].

C. Di Florio et al. / Inferring New Classifications in Legal Case-Based Reasoning 31



As suggested in [11]—especially in the machine learning perspective—one aspect
has remained in the background and needs a specific logical inquiry: the identification of
factors, among the features within a case base, and the determination of their direction.

In [2] we proposed a novel approach to address this issue, starting from the intuition,
introduced in [1], that a case base can be represented through a binary classifier.This
enabled us to identify not only factors but also ambiguous and irrelevant features. In this
paper, we have presented an inductive framework which allowed us to extend such a
features analysis, to infer undecided cases in a conflict tolerant setting.
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