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Abstract. Case-based reasoning is known to play an important role in several le-
gal settings. We focus on a recent approach to case-based reasoning, supported by
an instantiation of abstract argumentation whereby arguments represent cases and
attack between arguments results from outcome disagreement between cases and a
notion of relevance. We explore how relevance can be learnt automatically with the
help of decision trees, and explore the combination of case-based reasoning with
abstract argumentation (AA-CBR) and learning of case relevance for prediction
in legal settings. Specifically, we show that, for two legal datasets, AA-CBR with
decision-tree-based learning of case relevance performs competitively in compar-
ison with decision trees, and that AA-CBR with decision-tree-based learning of
case relevance results in a more compact representation than their decision tree
counterparts, which could facilitate cognitively tractable explanations.
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1. Introduction

Case-based reasoning (CBR) is a methodology in which concrete past occasions are di-
rectly used as sources of knowledge and solutions for new situations. It has been studied
in AI and Law since its inception [1]. This is a not a surprise, given the centrality of the
use of cases in Common Law systems, although not exclusively [2].

In this paper we focus on recent approaches to CBR [3,4,5,6] using argumenta-
tion [7]. Argumentation itself has a long history in AI and Law, and its use to support
CBR has been shown to pave the way towards novel forms of explanations for the out-
comes of CBR, including via arbitrated dispute trees [8,9]. Specifically, we focus on
the AA-CBR approach [3,4,5], where arguments correspond to cases and attacks be-
tween arguments result from outcome disagreement between cases and relevance be-
tween cases, guided by a partial order over cases capturing some notion of specificity.
Originally [3], AA-CBR expects a representation of cases in terms of sets of manually
engineered binary features and the partial order is defined via the subset relation. This
expectation is a restriction for applicability. While previous work has generalised beyond
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binary features in order to support different applications [4], a systematic generalisation
to tabular datasets, including categorical and continuous data, is still missing. This is
essential for applying AA-CBR to realistic datasets, including legal ones, to realise the
original inspiration from legal reasoning for AA-CBR. In this work we close this gap,
focusing on applying AA-CBR to possibly non-binary tabular data from legal settings.

Our first contribution is a general method for applying AA-CBR to any tabular data
by extracting binary features from decision trees when learning for the final task. Our
second contribution is showing that this method is competitive with decision trees on
two legal datasets: COMPAS [10] and a simulated legal dataset [11] for welfare benefit.
Finally, as a third contribution, we show that our method creates smaller models, leading
to potentially more cognitively tractable explanations.2

Background. We use the formulation of AA-CBR� by [5]. We highlight that ev-
ery case consists of a characterisation and an outcome, the set of characterisations is
equipped with a partial order �, and there is a particular default case. The partial order
� defines a notion of relevance ∼ between characterisations, where x1∼x2 iff x2�x1.
This notion and crucially irrelevance (defined as �∼) are used to compare new and past
cases as well as two past cases (thus in AA-CBR� relevance is not symmetric). The
idea is that the partial order � captures specificity between cases, and that the outcome
for a new case depends only on past cases than which the new case is more specific.
Each case becomes an argument in an (abstract) argumentation framework (AF). We also
apply cAA-CBR� [5] and use arbitrated dispute trees (ADTs) for explanation [8,9].

2. Learning Relevance

Learning relevance in AA-CBR� amounts to learning the partial order �, which repre-
sents specificity. Here we use decision tree learning to extract characterisations suitable
for AA-CBR⊇ (i.e. AA-CBR� with �=⊇) from tabular data. Specifically, we use the
CART algorithm for decision trees, in which decision nodes are greedily created choos-
ing the feature and the split threshold which minimises a loss function; each split can
then be seen as a binary feature, and each example can be characterised as a set of binary
features. Thus specificity here is having all (binary) features of another case.

Example 1. Consider the dataset with the examples below and a decision tree trained on
it (left of Figure 1):

α = ((age = 20, prior_count = 2),+), γ = ((age = 35, prior_count = 7),+),

β = ((age = 30, prior_count = 1),-), ε = ((age = 19, prior_count = 1),-),

η = ((age = 19, prior_count = 10),+)

Assume further that the default outcome for AA-CBR�is +, reflecting the majority
output recid. Then on the right of Figure 1 we show the AF mined from the processed
dataset: each example is represented by the split tests for which it is evaluated true. The
result is then used as a casebase for AA-CBR⊇. The correspondence is one to many,
since examples falling into the same leaf may correspond to different cases in the AF.

2An extended version of this paper is available at: www.github.com/GPPassos/
learning-relevance-aacbr-technical-report
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Figure 1. On the left, decision tree learnt from D in Example 1. On the right, the AF mined from D drawn
from the splits in the decision tree. Dotted lines show correspondence between leaves (left) and cases (right).

Also, when multiple cases would have the same characterisation but different outcomes,
either an incoherence is generated, or it is avoided via preprocessing.

3. Experiments

We train decision trees with pre-pruning, that is, limiting maximum depth and number
of leaf nodes as regularisation, with values chosen by cross-validation. We consider: for
maximum depth, varying from 3 to 13, in a step of 2; for maximum number of leaf
nodes, from 4 to 512, in geometric progression of ratio 2. Nodes are created in a best-
first search fashion, using Gini impurity. We evaluate three approaches for the problem
of incoherence: 1. keep: to keep the incoherence and let each model deal with it in their
own ways; 2. removal: to remove every incoherent pair of cases; 3. majority: for
each characterisation in the resulting transformation, select the majority outcome.

COMPAS Dataset. This dataset contains predicted scores of recidivism and data of
actual (measured) recidivism [10]. Our goal is simply to use this dataset as a way of
evaluating our methodology in a legally relevant scenario. This should not be seen as
results of a ready-to-deploy system or which allow conclusions from a criminal justice
point of view. We use the two-year recidivism dataset and apply the original filtering
strategy for missing data, resulting in 6172 entries. Each row corresponds to a defendant
and contains personal information, information about the current charge, criminal history
and whether the defendant has reoffended. We experimented with 4 different feature sets,
each removing (A) no features; (B) age_cat; (C) age_cat and race; (D) age_cat,
race and gender. We do so since age_cat is redundant with the age feature, while race
and gender are protected features. When we do not specify the feature set, we mean C.

COMPAS Results. Comparing the strategies, keep is the weakest strategy even for
cAA-CBR�, which deals with incoherence directly, while majority is the strongest.
This is shown not only on the test set directly (Table 1) but also over almost all hy-
perparameter choices (Table 2). On Table 3 we directly compare performance. Under
our method, AA-CBR� and cAA-CBR� show comparable performance with decision
trees on COMPAS. Interestingly in most cases the optimal hyperparameter choice for
AA-CBR� and cAA-CBR� resulted in both having the same behaviour on the test set,
suggesting they may have learned the same decision function, despite different structures.
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Table 1. Percentage accuracy of each AA-CBR model and each strategy for incoherence in the casebase,
aggregated over hyperparameter choice. Results on COMPAS test set, feature set A.

AA-CBR� cAA-CBR�

keep removal majority keep removal majority

min 45.6 54.4 58.2 47.0 54.4 57.5

max 55.3 63.9 68.1 57.8 61.9 68.1

avg±stddev 49.1± 4.3 57.3± 2.2 64.1± 4.0 52.3± 3.0 57.4± 2.4 63.9± 4.2

Table 2. Difference in percentage accuracy between the removal or keep strategies and the keep strategy
for incoherence, aggregated over hyperparameter choice. Aggregation is performed over the difference. Results
on COMPAS test set, feature set A.

AA-CBR� cAA-CBR�

removal − keep majority − keep removal − keep majority − keep

min 2.1 2.9 −0.1 1.8

max 13.0 22.5 10.4 21.00

mean±stddev 8.1± 4.1 15.0± 8.2 5.1± 3.5 11.6± 7.1

Table 3. Percentage accuracy for COMPAS, averaged over 5-fold cross validation, with standard deviation,
and using hyperparameter optimisation by internal validation split.

Feature set A Feature set B Feature set C Feature set D

Decision tree 67.60± 1.31 67.60± 1.31 67.48± 1.56 67.00± 1.15

AA-CBR� 66.32± 1.20 66.32± 1.20 66.32± 1.20 66.41± 1.31

cAA-CBR� 66.32± 1.20 66.32± 1.20 66.32± 1.20 66.41± 1.31

Welfare Benefit Dataset. The welfare benefit domain was originally proposed in [12],
with the goal of having a dataset that captures conditions typically found in law. Our goal
is evaluating our method for learning relevance for AA-CBR�, so a thorough evaluation
of rationales is outside our scope. We use the available WelfareFailMany dataset,
containing contains 2000 cases, where 1000 are eligible cases and 1000 are ineligible.

Welfare Benefit Results. Table 4 shows that majority is the stronger strategy also for
Welfare. Interestingly, for AA-CBR� keep shows better performance than removal,
that presents very high variance. By inspecting the learned models, this happened since
many such learned models end up containing very few cases or even just the default case,
due to the learned AFs having always incoherent cases for each or many characterisa-
tions. This also suggests a higher sensibility of cAA-CBR� to noise. This is shown here
by the high variance of the removal strategy. On the other hand, majority has not
only a higher average, but also is more stable, with a smaller variance. Overall, the results
confirm the ones seen for COMPAS, where majority is a better strategy in which both
AA-CBR approaches show performance on par with decision trees.

Explainability. Explanations come in two forms: global explanations, which explain
the behaviour of entire model over all possible inputs; and local explanations, which ex-
plain the behaviour of (or around) a particular prediction. Given that both decision trees
and AA-CBR� are intrinsically interpretable models, the models themselves are subject
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Table 4. Percentage accuracy for Welfare, for each strategy for incoherence, using hyperparameter search by
internal validation split. Averages over 5-fold cross-validation, with standard deviation.

Decision Tree AA-CBR� cAA-CBR�

keep removal majority keep removal majority

99.6± 0.1 99.3± 0.6 90.5± 18.0 99.5± 0.4 82.9± 18.8 90.5± 18.0 99.6± 0.2

to human inspection and can thus be evaluated as global explanations. As for local expla-
nations, we use explanations tailored for each model. For decision trees, we consider the
decision path traversed by the classified example. As for AA-CBR�, we use ADTs. We
choose an ADT with minimum number of nodes by a minimax tree search algorithm. As
there are no standard methodologies in the literature to evaluate explanations, we here
use explanation size as a proxy for ease of interpretation. As the explanations that we
use are all rooted graphs, they can be evaluated uniformly. We compare depth, number
of nodes, and number of unique nodes (which all coincide for decision paths).

Explainability Results. As illustrated on Figure 1, a single leaf can become many nodes
in AA-CBR� and cAA-CBR�. While only half of the nodes of the decision tree are
leaves, AA-CBR could suffer from a combinatorial explosion of many features. How-
ever, this is not what we see empirically (Table 5). For COMPAS we see a 91.2% reduc-
tion in of the average size for AA-CBR� and 94.2% for cAA-CBR�. This is subject
to the high variance in decision tree size, but the AA-CBR models show consistently
smaller sizes. For Welfare there is a 29.1% reduction of the average size for AA-CBR�
and 58.8% for cAA-CBR�, with minimal variance for decision tree sizes. Thus, for
comparable accuracy, AA-CBR� and (specially) cAA-CBR� can generate notably
smaller models. Therefore, for scenarios where an interpretable graph form of the model
is required, AA-CBR� and cAA-CBR� present a strong advantage over decision trees.

As for the local explanations (Table 6), ADTs show a larger number of nodes than
decision paths. This is expected, since ADTs require multiple occurrences of sub-graphs
of the original AF. ADTs for cAA-CBR� show comparable number of nodes to decision
paths in COMPAS, but are still larger in Welfare. The number of unique nodes is con-
siderably larger than decision paths for AA-CBR� and marginally so for cAA-CBR�.
Furthermore, both AA-CBR approaches result in a reduced depth as compared to de-
cision paths. Thus, ADTs result in wider explanations, with multiple paths in the tree,
but each path smaller than decision paths. Besides, an important difference between the
AA-CBR approaches and decision trees is that every node in AA-CBR corresponds to
at least one case in the casebase, as each node contains some counterfactual information
(what would the outcome be for an input exactly equal to the past case, but not only [13]).
Therefore the smaller representations also contain more information, despite requiring a
more complex computation. This reflects into the size of the local explanation, with more
nodes being required for it to be sufficient. The trade-off is favourable for AA-CBR,
especially for cAA-CBR�, which has ADTs of similar size to decision paths.

4. Conclusions and Future Work

We presented an approach to learn case relevance for AA-CBR from data on the case of
COMPAS and Welfare Benefits, two tabular legal datasets. We show that binary splits of
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Table 5. Size of models in number of nodes. Averages over 5-fold cross-validation, with standard deviation.

COMPAS Welfare

Decision Tree AA-CBR� cAA-CBR� Decision Tree AA-CBR� cAA-CBR�

143.0± 184.9 12.6± 3.1 8.2± 1.6 11.0± 0.0 7.8± 4.3 4.6± 0.5

Table 6. Size of local explanations. Averages over 5-fold cross-validation, with standard deviation.

COMPAS Welfare

depth # nodes # unique depth # nodes # unique

Decision Tree 6.2± 1.6 6.2± 1.6 6.2± 1.6 4.2± 0.1 4.2± 0.1 4.2± 0.1

AA-CBR� 5.6± 0.3 11.9± 1.7 7.9± 1.1 3.5± 0.0 8.1± 3.9 5.1± 1.1

cAA-CBR� 5.9± 0.4 6.1± 0.4 6.0± 0.3 3.9± 0.5 5.1± 0.4 4.5± 0.4

learned decision trees can be used as features for AA-CBR and allow its instantiation as
AA-CBR⊇. Future work includes comparing with other forms of CBR for legal tasks
[14,15,16,6], as well as learning case relevance for images and text [17].
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