
Insurance Portfolio Analysis as
Containment Testing

Preston CARLSON a Michael GENESERETH a

a Stanford University

Abstract. Insurance Portfolio Analysis (IPA) is the process of comparing multiple,
potentially overlapping insurance portfolios with an eye to detecting and charac-
terizing redundancies and gaps in coverage. Unfortunately, insurees usually do not
have the time or patience to compare policies from multiple insurance providers,
and they often do not have the legal background needed to understand the com-
plex legal wording of the contracts associated with those policies. Past work has
shown that, by encoding policies as logic programs, it is possible to automatically
determine compliance of specific claims with a policy’s terms and conditions. In
this paper, we show that it is also possible to automatically analyze multiple-policy
portfolios for gaps and redundancies by assessing coverage over multiple hypothet-
ical claims. We formalize the process of IPA and show how to use well-studied
techniques for logic program containment testing to automate the process.

Keywords. insurance, computable contracts, logic programming

1. Introduction

We often think of insurance policies as being partitioned into distinct areas – home insur-
ance, auto insurance, health insurance, travel insurance, and so forth; and we frequently
buy different policies to provide coverage in these different areas. In reality, things are
more complicated, with policies in different areas often providing overlapping coverage.
For example, rental car damage may be covered by a policy purchased from a rental car
company, a personal auto insurance policy, a credit card, a travel insurance policy, and
even, in some cases, a home insurance policy. If we are unaware of these overlaps, we
can end up paying more for insurance than we need; what’s worse, there can be gaps
between policies of which we are unaware.

Insurance Portfolio Analysis (IPA) is the process of comparing multiple, potentially
overlapping insurance portfolios with an eye to detecting and characterizing redundan-
cies and gaps in coverage [1]. For example, while renting a car, we may realize that we
do not need to purchase collision insurance from Hertz because we are already covered
if we use our Visa credit card. At the same time, we may realize that we need to purchase
additional insurance for travel in Ireland, since our credit card insurance does not apply
there.

Legal Knowledge and Information Systems
G. Sileno et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230957

137



The problem is that Insurance Portfolio Analysis is not easy. Insurees usually do
not have the time or patience to compare policies from multiple insurance providers;
and, even if they have the time, they often do not have the legal background needed to
understand the complex legal wording of the lengthy, 100-page contracts associated with
those policies.

The good news is that, with advances in information technology, it is now possible
to implement computer systems to help automate this process. By representing insurance
policies and insurees’ coverage needs as logic programs, we can detect redundancies and
gaps in coverage using the well-studied test of logic program containment.

This paper first presents a description of how insurance contracts are represented as
logic programs, then discusses how such contracts are currently used to analyze specific
insurance claims. After establishing this foundation, we introduce the primary analyses
that comprise IPA, provide their formulations, and demonstrate how to analyze and com-
pare entire insurance portfolios using techniques for containment testing. We conclude
by discussing limitations of existing containment testing techniques, and future work.

2. Insurance Contracts as Logic Programs

Key to automating IPA is the encoding of insurance policies as computable contracts,
and current computable contracts emphasize the automation of claims analysis. Such a
computable contract seeks to determine the compliance of a specific situation with the
terms and conditions of a specific insurance policy.

Most computable contracts are designed such that claims analysis can be performed
via a standard evaluation of the program, and this is also true when contracts are encoded
as logic programs. Accordingly, the input and output relations of these logic program
insurance contracts have a consistent structure.

The input relations represent information that is relevant to determine coverage for a
specific claim. (E.g. which policy it was filed under, where a specific hospitalization oc-
curred, etc.) The set of output relations varies substantially between different computable
insurance contracts, but it always includes a covered relation, which holds of a claim
if-and-only-if the claim is covered by the policy. Additionally, the rules of the program
represent policy-specific logic, and information about the world that is generally rele-
vant to determining coverage, but which is not claim-specific. (E.g. geography, kinship
relationships, general exclusions and conditions, etc.)

For this paper we follow two conventions. First, we frequently refer to a logic pro-
gram insurance contract simply as a policy. Second, we treat the covered relation as
unary, simply expressing the presence or absence of coverage for a claim. (This is in
contrast to a binary relation, which could also express the quantity of payout for a given
claim.) We do this for several reasons: (1) in practice, it is a prerequisite for determining
the quantity of coverage since there is no payout if coverage is not present, (2) the analy-
ses presented in later sections are more clearly stated when covered is unary, and (3) it
is often more important to policyholders that their claim be covered at all by their policy
than that the payout be a particular amount.

P. Carlson and M. Genesereth / Insurance Portfolio Analysis as Containment Testing138



As a worked example of a policy, we encoded the Chubb hospital cash insurance
policy from [2] as the following ruleset:

covered(C) :-

policy(C,P) & active(P) & hospitalization(C,H) &

validreason(H) & ~excluded(C)

active(P) :- signed(P) & paid_premium(P) & ~canceled(P)

validreason(H) :- reason(H,sickness)

validreason(H) :- reason(H,accidental_injury)

excluded(C) :- cause(C,skydiving)

excluded(C) :-

hospitalization(C,H) & patient(H,X) & age(X,A) & A>=75

This policy determines coverage for a given claim by computing whether (1) the
insurance policy is active, (2) the hospitalization referred to in the claim is for sickness
or accidental injury, and (3) no exclusions apply to the claim. And, as expected, the
input relations only represent information that is relevant to a specific claim and pol-
icy: policy, hospitalization, signed, paid_premium, canceled, reason, cause,
patient, and age.

3. Claims Analysis

Once we have a logic program in the form described above, the formulation of claims
analysis in the presence of complete information is straightforward. We provide a formu-
lation of it here to better highlight the distinction between claims analysis and Insurance
Portfolio Analysis.
Claims Analysis (Formulation): Consider an insurance claim claim1, and an input
dataset D, where D is constructed such that it contains information about claim1 that
is relevant to the determination of whether coverage is present for claim1. Also con-
sider P, a policy within which we would like to determine whether claim1 is covered.
Finally, P is executed on D and queried for the fact covered(claim1).
Coverage is present for claim1 under the policy P iff this query evaluates to true.

As an example, let’s consider querying the policy from before, executed on the
dataset below. It evaluates to true when queried for the fact covered(claim1), indicat-
ing that the claim is covered. We emphasize that claims analysis as just discussed can be
performed via a standard evaluation of the logic program.

policy(claim1, pol1) paid_premium(pol1)

hospitalization(claim1, hosp1) reason(hosp1, sickness)

cause(claim1, none) patient(pol1, john_smith)

signed(pol1) age(john_smith, 35)

4. Insurance Portfolio Analysis as Containment Testing

The goal of Insurance Portfolio Analysis (IPA) is to “detect and characterize redundan-
cies and gaps in coverage”. Doing so requires more than computing coverage of individ-
ual claims within individual policies — it requires reasoning about the sets of claims that
are covered by all of the policies comprising a policyholder’s insurance portfolio.

P. Carlson and M. Genesereth / Insurance Portfolio Analysis as Containment Testing 139



However, this cannot be done by simply enumerating and computing coverage for
every possible claim, as there are infinitely many possible claims that could be filed under
any given policy. Instead, we need to reason symbolically about the sets of claims that
each policy can be evaluated on.

Fortunately, when computable insurance contracts take the form of logic programs,
we can do exactly this via techniques for testing logic program containment — a sym-
bolic computation that allows us to reason about the answers returned by logic programs
when evaluated on arbitrary input databases.
Definition (Containment Testing): Consider two logic programs P1 and P2 over the
same set of input relations. Let query be a distinguished output relation defined for
both P1 and P2. Finally, consider an arbitrary input database D, and let P(D) be the
result of a program P executed on D. We say that P1 is contained in P2 (equivalently,
P2 contains P1) iff P1(D)⊆ P2(D). That is, every answer returned by P1 is also returned
by P2.

In the context of individual logic program insurance contracts, we take covered to be
the distinguished output relation. Intuitively, this means that a policy P2 contains another
policy P1 iff every claim covered by P1 is also covered by P2.

But we aren’t limited to testing containment between individual policies! We can
also test containment within an entire insurance portfolio by treating it as a union
of logic programs. To do so, we represent an insurance portfolio as a set of policies
S = {P1,P2, · · · ,Pn} that all accept the same inputs, and all have a unary output relation
covered. Then, the portfolio S covers a claim claim1 iff any Pi ∈ S covers claim1. Ac-
cordingly, the portfolio S contains a policy P iff every claim covered by P is also covered
by S. (Checking this is not as simple as testing containment pairwise between P and each
Pi ∈ S, because it may take multiple policies in S to cover all of the claims covered by P.)

Now, let’s state the two analyses that constitute IPA in terms of sets of claims.
First, there is the determination of whether an insurance policy is redundant with

the other policies in a portfolio. That is, we need to determine if the set of situations for
which a policy expresses coverage is a subset of the set of situations for which the rest of
their insurance portfolio expresses coverage.

Second, there is the determination of whether a policyholder’s coverage needs are
met by their insurance portfolio. That is, we need to determine whether the set of situ-
ations for which the policyholder wants coverage is a subset of the set of situations for
which their insurance portfolio expresses coverage.

Once the insurance policies and the policyholder’s coverage needs are encoded as
logic programs, we can formulate these “Redundant Coverage” and “Coverage Needs”
analyses as follows:
Redundant Coverage/Coverage Needs Analysis (Formulation):

Consider an insurance portfolio S = {P1,P2, · · · ,Pn}. Let P be a policy, and R be a
program encoding coverage needs. Finally, let covered be the distinguished output
relation in P, R, and in each Pi ∈ S.
We say that the coverage provided by P is redundant with that provided by S iff P is
contained in S. Similarly, we say that the coverage needs expressed by R are met by S
iff R is contained in S.

P. Carlson and M. Genesereth / Insurance Portfolio Analysis as Containment Testing140



Note that since testing containment is necessary and sufficient for performing both
analyses, any techniques developed for one analysis are directly applicable to the other!

As an example of Redundant Coverage Analysis, consider two auto insurance poli-
cies, Policy A and Policy B.

Policy A is encoded as the following rule, which expresses coverage for any claim
in which the driver wasn’t renting the vehicle mentioned in the claim.

covered(C) :- driver(C,D) & vehicle(C,V) & ~renting(D,V)

Policy B is encoded as the rules below, which express coverage for any claim in
which the car wasn’t moving (regardless of whether it was being rented) or in which the
car was moving and was not being rented.

covered(C) :- vehicle(C,V) & ~moving(C,V)

covered(C) :-

driver(C,D) & vehicle(C,V) & moving(C,V) & ~renting(D,V)

Via algorithms for containment testing, we can determine that Policy B contains
Policy A, because any claim in which the driver wasn’t renting the vehicle in the claim
is also one in which the vehicle either wasn’t moving, or was moving and was not being
rented. Likewise, we can determine that Policy A does not contain Policy B, since Policy
B covers claims that Policy A does not (namely, claims in which the vehicle was not
moving but was being rented).

Existing techniques allow for testing containment between many expressive classes
of logic programs. Testing containment between programs with no negation, views, or
interpreted functions (Unions of Conjunctive Queries) is as simple as program evaluation
[3]. Additionally, algorithms have been developed for when negations [4], arithmetic
comparisons [5], general interpreted functions [6], or limited recursion [7] are permitted.

Extensions of these techniques allow us to test containment between programs with
rules defined in terms of views (i.e. output relations), in many cases. When views aren’t
negated, we can flatten them into a union of single-rule queries and apply the algorithms
above. When views are negated, we can often invert them into equivalent programs in
terms of base relations. Unfortunately, we can’t always invert negated views — for ex-
ample, when rules are recursive. And, it is known that containment testing is not decid-
able for arbitrary logic programs [8]. Despite these limitations, all of the insurance con-
tracts we have attempted to translate have been expressible as logic programs for which
containment testing is decidable.

5. Conclusion and Future Work

This paper introduces the concept of Insurance Portfolio Analysis (IPA) and distin-
guishes IPA from traditional insurance claims analysis. It presents an approach to au-
tomating IPA using well-studied algorithms for testing logic program containment (by
symbolic evaluation rather than explicit enumeration of claims). And it shows how this
approach can be used to perform the two analyses that constitute IPA — Redundant
Coverage Analysis and Coverage Needs Analysis.

Note that a key to our solution is the encoding of insurance policies as logic pro-
grams. This is preferable to encoding policies in traditional imperative programming
languages (e.g. Java), since performing IPA requires determining program equivalence,
and doing so with imperative programs is effectively impossible. This is likewise prefer-

P. Carlson and M. Genesereth / Insurance Portfolio Analysis as Containment Testing 141



able to directly processing insurance policies in natural language, as current NLP/LLM
systems cannot answer even single-claim coverage questions “reliably and at-scale” [9].

Improving containment testing algorithms for more complex programs, especially
those with interpreted predicates, would greatly improve the speed of Redundant Cover-
age and Coverage Needs analyses. And in order to accurately represent a user’s coverage
needs, UI/UX research must be done to allow users without programming experience to
generate logic programs that express their needs. Furthermore, these analyses should be
extended. Once it is determined that a policy is not redundant with, and that a policy-
holder’s coverage needs are not met by, a portfolio, the overlaps (resp. gaps) in coverage
should be characterized and explained to the policyholder. And, importantly, these anal-
yses should be extended to cover programs that can compute the quantity of coverage in
addition to its presence.

References

[1] Genesereth M. Insurance Portfolio Management [Internet]. 2022. Available from:
https://law.stanford.edu/2022/07/30/insurance-portfolio-management/

[2] Goodenough O. Using “Toy Agreements” to Model Computable
Contracts: Video Demonstration [Internet]. 2022. Available from:
https://law.mit.edu/pub/usingtoyagreementstomodelcomputablecontractsvideodemonstr ation

[3] Ullman JD. Information integration using logical views. Theoretical Computer Science. 2000 May
28;239(2):189–210. doi:10.1016/s0304-3975(99)00219-4

[4] Mohamed KB, Leclére M, Mugnier M-L. Containment of Conjunctive Queries with Negation: Al-
gorithms and Experiments. In: Bringas PG, Hameurlain A, Quirchmayr G, editors. Proceedings of
Database and Expert Systems Applications, DEXA 2010; 2010 Aug 30-Sep 3; Bilbao, Spain. Berlin,
Heidelberg: Springer; c2010. p. 330-45, doi:10.1007/978-3-642-15251-1 27

[5] Klug A. On conjunctive queries containing inequalities. Journal of the ACM. 1988;35(1):146–60.
doi:10.1145/42267.42273

[6] Zhang X, Ozsoyoglu ZM. On efficient reasoning with implication constraints. In: Ceri S, Tanaka K, Tsur
S, editors. Deductive and Object-Oriented Databases, DOOD 1993; 1993 Dec 6-8; Phoenix, AZ. Berlin,
Heidelberg: Springer; c1993. p. 236–52, doi:10.1007/3-540-57530-8 15

[7] Calvanese D, De Giacomo G, Vardi MY. Decidable containment of recursive queries. Theoretical Com-
puter Science. 2005;336(1):33–56. doi:10.1016/j.tcs.2004.10.031

[8] Shmueli O. Decidability and expressiveness aspects of logic queries. In: Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’87; 1987 Mar
23-25; San Diego, CA. New York (NY): Association for Computing Machinery; c1987. p. 237–49,
doi:10.1145/28659.28685

[9] Ancellin R, Carlson P, Doulcet P-L. Exploring Technologies for Automating In-
surance Contracts Reasoning: A Beginner’s Guide [Internet]. 2023. Available from:
https://law.stanford.edu/2023/06/27/exploring-technologies-for-automating-insurance-contracts-
reasoning-a-beginners-guide/

P. Carlson and M. Genesereth / Insurance Portfolio Analysis as Containment Testing142


