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Abstract. To address the problem that traditional bearing fault diagnosis methods
rely on professional knowledge and are tedious, this paper proposes an end-to-end
CNN-based bearing fault diagnosis model to achieve automatic fault recognition. In
addition, considering the problem that noise exists in the actual working conditions,
a bearing fault diagnosis model based on Auto-encoder(AE) combined with CNN
is proposed(AE-CNN). The noisy signal is coded and decoded by the designed
AE, and the de-noised result is used as the input of the designed CNN to achieve
the bearing fault diagnosis under noisy conditions. Experiments on CWRU have
proved the effectiveness of the designed CNN and AE-CNN. The designed CNN
achieves 99.83% fault diagnosis accuracy under noise-free condition. The AE-CNN
achieves 97.14% fault diagnosis accuracy under - 4db signal-to-noise ratio(SNR)
noise condition, which is 2.31% higher than the CNN with the same noise, and
compared with the results of other advanced methods, it has achieved competitive
results.
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1. Introduction

During the service of a certain naval gun, it relies on various mechanical equipment.
Conducting research on mechanical equipment fault diagnosis can help maintain the safe
operation of mechanical equipment, improve its reliability and stability. As an essential
component, bearings account for a large proportion of mechanical equipment failures[1].
This paper focuses on the key components of mechanical equipment, bearings, and con-
ducts research on bearing fault diagnosis methods based on vibration signal analysis.

Traditional methods heavily rely on professional knowledge to process raw signals
and extract features. The bearing fault diagnosis method based on deep learning can
automatically obtain the bearing vibration features of the original vibration signal to
achieve end-to-end bearing fault diagnosis, without the need for professional domain
knowledge to manually design and extract features. In [2-6], CNN, Long Short Term
Memory, attention mechanism and a series of deep learning methods were applied to
bearing fault diagnosis and achieved good results.

These methods have made some progress, but have not taken into account the noise
issues in actual working conditions. Some researchers have shifted their focus to the
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Figure 1. Structure of CNN-based bearing fault diagnosis model.

problem of bearing fault diagnosis under noisy conditions. Li et al. [7] proposed a new
Transfer learning method based on domain confrontation training to achieve bearing fault
diagnosis under -4dB 8dB SNR. The multi-scale noise-modulated SR method based on
wavelet packet transform is studied in [8] and in the data reconstruction stage of [9],
noise is reduced and the useful information hidden in the raw data is extracted. Although
there have been studies focusing on bearing fault diagnosis in noisy environments, there
is relatively little research available, and there is still significant room for improvement
in diagnostic accuracy.

In response to the problem of traditional bearing fault diagnosis methods relying
on professional knowledge and being cumbersome, this paper first takes the vibration
signals of rolling bearings as the object, establishes an end-to-end fault diagnosis model
based on CNN, and considers the problem of noise in actual working conditions, a bear-
ing fault diagnosis model based on AE-CNN is proposed. The original vibration signals
with added noise are encoded and decoded through AE, and the obtained denoised signal
is used as the input of the designed CNN for feature extraction to achieve end-to-end
bearing fault recognition and achieve bearing fault diagnosis under noisy conditions.

2. Methodology

This paper first establishes a bearing diagnosis model based on CNN, and the details
are introduced in section 2.1. Afterwards, considering the actual working conditions of
noise, a bearing diagnosis model based on AE-CNN is established, and the details are
introduced in section 2.2.

2.1. CNN based bearing fault diagnosis model

This paper takes the vibration signal of rolling bearings as the object and establishes a
bearing fault diagnosis model based on CNN, as shown in figure 1. Utilizing the powerful
feature extraction ability of CNN, useful information is automatically extracted from the
original bearing vibration signal, thereby achieving end-to-end bearing fault diagnosis.

The specific parameters of the CNN network model are shown in Table 1. The CNN
model constructed in this paper has a total of three convolution modules, each of which
uses the form of splitting the 3×3 convolution into 1×3 and 3×1 for convolution op-
erations. There are two convolution layers, and each convolution layer passes through a
batch normalization layer(BN) and a Relu layer, which can reduce the number of param-
eters and increase the nonlinear layer. And the first two convolutional modules end up
using max pool, while the last convolutional module ends up using average pool, as can
be seen in some classic networks [10].
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Table 1. Parameter values of CNN-based bearing fault diagnosis model

Network layer Kernel size Padding Stride Output size

Conv (3,1,16) (1,0) 1 (32,32,16)

BN (-,-,16) - - (32,32,16)

Relu - - - (32,32,16)

Conv (1,3,16) (0,1) 1 (32,32,16)

BN (-,-,16) - - (32,32,16)

Relu - - - (32,32,16)

Maxpool (2,2) - 2 (16,16,16)

Conv (3,1,32) (1,0) 1 (16,16,32)

BN (-,-,32) - - (16,16,32)

Relu - - - (16,16,32)

Conv (1,3,32) (0,1) 1 (16,16,32)

BN (-,-,32) - - (16,16,32)

Relu - - - (16,16,32)

Maxpool (2,2) - 2 (8,8,32)

Conv (3,1,64) (1,0) 1 (8,8,64)

BN (-,-,64) - - (8,8,64)

Relu - - - (8,8,64)

Conv (1,3,64) (0,1) 1 (8,8,64)

BN (-,-,64) - - (8,8,64)

Relu - - - (8,8,64)

Averagepool - - - (1,1,64)

2.2. Bearing Fault Diagnosis Model Based on AE-CNN

Under real working conditions, noise is inevitable, and its source and size are uncertain,
which will affect the model’s extraction of bearing vibration signal features and ulti-
mately affect the diagnostic results. To address this problem, this paper proposes a bear-
ing fault diagnosis model based on AE-CNN. The original vibration signal with added
noise is encoded and decoded by AE. The denoised signal is used as the input of the
designed CNN for feature extraction to realize bearing fault identification. The network
structure is shown in figure 2.

AE is an unsupervised neural network that first extracts data into higher dimensions
through feature extraction, and then reconstructs the input. Based on the encoding and de-
coding structure, the encoder encodes low dimensional data into high dimensional data.
The decoder receives high dimensional data and attempts to reconstruct the original low
dimensional data, learning by changing the original input data from one representation
to another. Some researchers applied AE to bearing fault diagnosis[11-13], but there is
still room for improvement. In the fault diagnosis model based on AE-CNN constructed
in this paper, AE is used to encode and decode the original vibration signal with added
noise, and the denoised signal obtained is used as the input of the designed CNN for
feature extraction.

For the details of the encoding and decoding process of the original vibration signal
with added noise through AE: firstly, signal x is input into the encoder for feature ex-
traction, and the signal undergoes downsampling, reducing spatial features; afterwards,
the feature y = f (x) after passing through the encoder is input into the decoder, and up-
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Figure 2. Structure of AE-CNN-based bearing fault diagnosis model.

sampling is carried out through transposed convolution to increase the width and height
of the input, in order to achieve the purpose of noise reduction and signal recovery. The
signal is restored to the original signal data x̃ = g(y) = g( f (x)) that is close to no noise,
allowing x̃ to replicate the input x as much as possible. During the signal recovery pro-
cess, the number of channels decreases and the spatial scale increases. The encoding of
the middle layer here is the most important mapping from the input signal to the encoder,
which is to achieve automatic feature extraction of the signal. It can be expressed as
follows:

y = f (x) = A(wx+b)

x̃ = g(y) = A(w
′
x+b

′
)

LAE(x, x̃) = LAE(x,g( f (x)))

(1)

Where, A represents the activation function Relu, LAE represents the loss function mean
squared error(MSE).

The whole model is trained end-to-end, and the total loss L is the sum of the MSE
after AE and the cross entropy loss after the original model.

L =− 1
N

N

∑
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log
eW T

yi
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+

1
2 ∑

k
(y

′
k − yk)

2 (2)

Among them, n represents the number of fault categories; N represents the size of
the batch size; xi ∈ Rd , which represents the feature vector of the i− th sample, with
an d -dimension; yi represents the category label of the i− th sample; W ∈ Rd×n is the
weight matrix, and Wj represents the j− th column of W ; b j ∈ Rn is offset; y

′
k represents

data prediction output, i.e. decoder output; yk represents the true label of the fault data; k
represents the dimensionality of the data.

As the parameters of the original CNN model are already described in the previous
section, the specific parameters of the encoder and decoder parts in the model are listed
here, as shown in Table 2 and Table 3, respectively. The formula for calculating the size
of the feature map after transposed convolution operation is:
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Hout =(Hin −1)× stride[0]−2× padding[0]+

dialation[0]× (kernelsize[0]−1)+

outpadding[0]+1

Wout =(Win −1)× stride[1]−2× padding[1]+

dialation[1]× (kernelsize[1]−1)

+outpadding[1]+1

(3)

Among them, index [0] represents the data in the height direction, index [1] repre-
sents the data in the width direction, and dialation is a parameter that uses empty convo-
lution. In this paper, the default is 1.

Table 2. Encoder parameter values of AE-CNN-based bearing fault diagnosis model

Network layer Kernel size Padding Stride Output size

Conv (3,3,64) 1 1 (32,32,64)

BN (-,-,64) - - (32,32,64)

Relu - - - (32,32,64)

Maxpool (2,2) - 2 (16,16,64)

Conv (3,3,128) 1 1 (16,16,128)

BN (-,-,128) - - (16,16,128)

Relu - - - (16,16,128)

Maxpool (2,2) - 2 (8,8,128)

Conv (3,3,128) 1 1 (8,8,128)

BN (-,-,128) - - (8,8,128)

Relu - - - (8,8,128)

Maxpool (2,2) - 2 (4,4,128)

Conv (3,3,128) 1 1 (4,4,128)

BN (-,-,128) - - (4,4,128)

Relu - - - (4,4,128)

Averagepool - - - (1,1,128)

3. Experiment

3.1. Dataset

The experiment uses the open dataset CWRU bearing vibration database of Case Western
Reserve University in the United States to verify the proposed algorithm [14]. There are
three types of bearing faults in this database, and a total of 10 different bearing health
status data, corresponding to labels 0-9.
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Table 3. Decoder parameter values of AE-CNN-based bearing fault diagnosis model

Network layer Kernel size Padding Out padding Stride Output size

Transposed conv (3,3,128) 1 1 2 (2,2,128)

BN (-,-,128) - - - (2,2,128)

Relu - - - - (2,2,128)

Transposed conv (3,3,64) 1 1 2 (4,4,64)

BN (-,-,64) - - - (4,4,64)

Relu - - - - (4,4,64)

Transposed conv (3,3,64) 1 1 2 (8,8,64)

BN (-,-,64) - - - (8,8,64)

Relu - - - - (8,8,64)

Transposed conv (3,3,64) 1 1 2 (16,16,64)

BN (-,-,64) - - - (16,16,64)

Relu - - - - (16,16,64)

Transposed conv (3,3,64) 1 1 2 (32,32,64)

BN (-,-,64) - - - (32,32,64)

Relu - - - - (32,32,64)

Conv (1,1,1) 0 - 1 (32,32,1)

Figure 3. Image of original signal.

3.2. Data preprocessing

Adding noise to the original signal. Noise is widely present in various environments,
among which additive white Gaussian noise (AWGN) is one of the most representative
and easily quantifiable noises. This paper uses AWGN as additional noise to study the
impact of noise on bearing fault signal classification. Five types of SNR are added, from
strong to weak: -4dB, -2dB, 0dB, 2dB, and 4dB. Figure 3 and figure 4 shows the normal
time-domain signal without noise added and the signal with noise added when the load
state is 0. The SNR added is -4db. It is evident in figure 4 that the noise signal will
seriously interfere with the original signal feature extraction.
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Figure 4. Image of signal after adding noise.

Data segmentation. This paper uses the data processing method where each seg-
ment has partial overlap to expand the effective data, and sets the length of a single data
sample for overlapping sampling to 1024. During the experimental process of this pa-
per, 70% of the sample data is randomly selected from each type of health status data as
training data, 10% of the sample data is selected as validation data, and the remaining
20% of the sample data is selected as testing data.

Data rearrangement. This paper performs a rearrangement operation on one-
dimensional time-domain signal, elevating it to a two-dimensional image. To obtain an
image of N2 size, the original vibration signal is randomly truncated with a length of
N ×N signal. Let Q(i), i = 1,2,3...,N represent the numerical value of the original one-
dimensional vibration signal, and P( j,k), j,k = 1,2,3...,N represent the pixel intensity
of the image. This paper rearranges the shape of 1024 one-dimensional data to a two-
dimensional 32×32 image as the input.

3.3. Implementation detail

The adam optimizer is used for training. The initial learning rate and weight factor are set
to 10−3 and 10−4 respectively, and the batch size used is 16. There are 25 periods in the
training phase, and the learning rate of the 15th and 20th dropped by 90%. The graphics
card used in this experiment is GTX1660Ti, with a dedicated GPU memory size of 6GB.

3.4. Experimental results and analysis

3.4.1. Experimental results of bearing fault diagnosis model based on CNN

This paper first conducted experiments on CRWU using the constructed CNN based
bearing fault diagnosis model to verify the effectiveness of it. The accuracy of the val-
idation and testing sets at each epoch is shown in the figure 5. It can be seen that at
the 25th epoch, the accuracy rates are 100% and 99.83% respectively. Starting from the
15th epoch, the curves obtained on the three datasets tended to be stable and close to 1,
proving the stability and accuracy of the model.
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Figure 5. Accuracy of CNN-based bearing fault diagnosis model in the absence of noise.

Figure 6. Accuracy of CNN-based bearing fault diagnosis model in the presence of noise.

Considering the noise under actual working conditions, this paper conduct experi-
ments on the CNN based bearing fault diagnosis model with added noise. The experi-
mental results are shown in figure 6. When adding noise of -4db, at the 25th epoch, the
accuracy obtained by the validation and test sets are 96.35% and 94.95% respectively,
which are 3.65% and 5.04% lower than those without noise. It can be seen that noise
interferes with the model’s extraction of signal features, which affects the fault diagnosis
results.

3.4.2. Experimental results of bearing fault diagnosis model based on AE-CNN

According to the above experimental results, it can be seen that noise will reduce the
accuracy of the model. Therefore, this paper proposes a bearing fault diagnosis model
based on AE-CNN. The constructed model is tested on CRWU with added noise, and the
accuracy obtained on the validation and test sets under different SNR noise conditions

F. Yuan et al. / Bearing Fault Diagnosis Based on Auto-Encoder Combined with CNN 341



Figure 7. Accuracy of AE-CNN-based bearing fault diagnosis model in the presence of noise.

is shown in Table 4. The curves of the validation and test sets with SNR of -4db noise
added are shown in figure 7. Figure 8 shows the confusion matrix, showing the details
of AE-CNN fault diagnosis results. Compare the accuracy obtained with some advanced
methods, and the experimental results are shown in Table 5.

Table 4. Comparison of fault diagnosis accuracy of AE-CNN model with different SNR

SNR(dB) -4 -2 0 2 4

Validation set accuracy(%) 97.92 99.14 99.58 99.90 1.00

Test set accuracy(%) 97.14 98.49 99.32 99.64 99.79

From Table 4, it can be seen that the fault diagnosis accuracy of the AE-CNN is at a
high level under various SNR conditions, indicating that the method proposed has strong
noise suppression ability.

From figure 7, it can be seen that at the 25th epoch, the accuracy rates obtained by
the validation and test set of AE-CNN are 97.92% and 97.14% respectively, which are
1.63% and 2.31% higher than the original CNN model, demonstrating the robustness of
AE-CNN under noise conditions.

From the Confusion matrix in figure 8, we can see that AE-CNN has a high diagnos-
tic accuracy rate for various bearing fault types. Except for rolling element fault B14 with
fault size of 14mil, the diagnostic accuracy rate is 89.30%, the recognition rate for other
fault types is higher than 90%, and the recognition rate for eight fault types is higher than
95%, and the recognition rate for three fault types is 100%. The rolling element fault B14
with a fault size of 14mil is easily confused with the rolling element fault B7 with a fault
size of 7mil and the outer ring fault OR14 with a fault size of 14mil because their fault
features are similar under noise conditions, leading to severe misjudgment by the model.

From Table 5, it can be seen that the AE-CNN has obtained competitive results com-
pared with the experimental results of advanced methods. Compared to the siamese net-
work [9], the AANN[15] and MCNN[16], it has increased by 0.91%, 4.03%, and 8.90%
respectively, proving the effectiveness of the proposed AE-CNN model. The model pre-
sented in paper [17] [18] is relatively complex and achieves slightly higher accuracy than
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Figure 8. Accuracy of AE-CNN-based bearing fault diagnosis model in the presence of noise.

Table 5. Comparison of fault diagnosis accuracy of different methods under noise situation

Methods Fault diagnosis accuracy(%)

The designed CNN 94.95

Siamese network[9] 96.26

AANN[15] 93.38

MCNN[16] 89.2

DLSTM[17] 97.21

CORAL[18] 97.85

AE-CNN[This paper] 97.14

our method. Our model is simple and easy to implement, capable of achieving good fault
diagnosis accuracy, and has practical engineering significance.

4. Conclusion

This paper is based on deep learning methods for bearing fault diagnosis. Firstly, a CNN
model is designed for end-to-end bearing fault diagnosis. Then, considering the presence
of strong noise in actual working conditions, a bearing fault diagnosis model based on
AE-CNN is proposed to achieve bearing fault diagnosis under noisy conditions. The
experiment results on the CWRU demonstrate the effectiveness of the proposed model.
The method proposed in this paper can be used for fault diagnosis of bearings under noise
conditions, and has engineering practical value. However, due to the simplicity of the
model, it still has a certain degree of scalability. On the one hand, the latest methods such
as attention mechanism can be added to improve feature extraction capabilities, thereby
improving the accuracy of fault diagnosis. On the other hand, the method proposed in
this paper is to denoise the data before feature extraction and classification. In future
research, we can improve the progressiveness of the model, which can directly extract
and classify the data under noise conditions.
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