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Abstract. This study presents a cutting-edge soft sensing approach for coke-making 

diagnostics, aimed at tackling the challenges posed by multifaceted, nonlinear, non-
Gaussian, and noisy operational data prevalent in coke-making ovens. Our proposed 

method leverages a Bayesian t-distributed mixed regression model, effectively 

capturing the intricate nature of multivariate, nonlinear, and non-Gaussian data. The 
utilization of the t-distribution ensures the model's resilience to interference, with 

model parameter estimation achieved within a Bayesian framework. Conducting 

simulation experiments and real industrial experiments, as well as comparative 
analysis with PLSR, GMR, and GPR models, we demonstrate the model's good 

robustness, excellent prediction accuracy, and robustness, further confirming its 

potential application in coking diagnosis. 
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1. Introduction 

An ethylene cracking furnace plays a pivotal role in steam cracking production[1]. The 

production capacity and technology of the cracking furnace directly influence the 

production scale, yield, and product quality of the entire ethylene plant[2]. Due to the 

unique characteristics of hydrocarbon cracking feedstock, the cracking reaction at high 

temperatures inevitably leads to the formation of coke particles, which adhere to the inner 

wall of the furnace tube, a phenomenon known as furnace tube coking[3]. Furnace tube 
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coking poses a significant threat to ethylene production and can even result in 

catastrophic accidents in severe cases[4-5]. Consequently, accurately predicting the 

extent of cracker tube coking holds the utmost importance. 

Currently, two main methods are used for tube coking diagnosis in ethylene cracking 

furnaces: coking diagnosis based on mechanistic models[6-7] and data-driven coking 

diagnosis through soft sensing[8]. Although mechanistic model-based approaches have 

been employed early on, their accuracy in coking inference is limited due to challenges 

in accurately obtaining parameters for crucial mechanistic models[9-11]. On the other 

hand, data-driven coking diagnosis offers a promising solution by utilizing available 

cracking process parameters as input variables for artificial intelligence algorithms, 

establishing relationships with coking thickness through feature extraction and 

modeling[12]. Among these techniques, artificial neural networks have been widely 

adopted for identifying operating conditions and developing a system model for the 

stochastic distribution of outlet temperatures, laying the foundation for advanced coke 

on temperature (COT) control during the ethylene cracking furnace coking process[13-

14]. Given the multi-modality, nonlinearity, and non-Gaussian characteristics of 

cracking furnace data, modeling methods based on mixture models have proven 

advantageous, with the Gaussian mixture model (GMM) being commonly employed[15]. 

Building upon GMM, the Gaussian mixture regression model (GMR) enables predictions 

of output variables[16-17]. However, in practical scenarios, operating data are 

susceptible to noise, and the use of Gaussian distribution, with its short tails, may lead to 

reduced model accuracy[18]. In contrast, the t-distribution mixture model, characterized 

by wider tails, exhibits better robustness to outliers[19]. 

To overcome the challenges posed by multi-modality, nonlinearity, non-Gaussian, 

and strong noise in cracking furnace operating data, this paper introduces a soft sensing 

method for tube coking diagnosis called the Bayesian t-distribution mixture regression 

model (STMR). The proposed approach effectively captures the complex features of the 

multi-modal, nonlinear, and non-Gaussian data by employing the mixture model. By 

utilizing the t-distribution, the model ensures robustness and accuracy, even in the 

presence of noise. Parameter estimation for the model is achieved through the variational 

Bayesian method, enhancing the reliability of the results. Finally, the predictive accuracy 

of the model is validated through experiments using real-world industrial data, 

demonstrating its practical utility and effectiveness. 

2. Bayesian t-distribution mixture regression model 

2.1. Bayesian t-distribution mixture regression 

Given the auxiliary variable X = {��}���� , and the dominant variable Y = {��}���� , 

where N is the number of samples in the dataset, and the data dimensions for the auxiliary 

variables denoted by d, assuming that auxiliary variable X within the input space is a 

mixture of M t-distributions  

�( �� ∣∣ 
, �, �, 
 ) = � 
���( �� ∣∣ 
�, ��, �� )
�

���
(1) 
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where 
 is the mean � is the precision � is the degree of freedom, M is the 

number of mixed membership components, 
 = {
�}����  is the mixing coefficients 

also known as weighting coefficients, where the element 
�  represents the a priori 

probability value of the mth membership component. The constraints are 0 ≤ 
� ≤ 1∑ 
����� = 1. 

 It is assumed that the auxiliary variable X and the dominant variable Y under 

each mixed t-distribution component in the output space obey a linear relationship, i.e. 

�� = ����� + �� (2) 

where ��  is the regression coefficient between ��  and �� , ��  is the 

measurement noise, and ��~�(0, ��). 

We can be obtained 

�( �� ∣∣ ��, �, � ) = � �( �� ∣∣ �����, �� )
�

���
(3) 

where � = {��, ��, … , ��} and � = {��, ��, … , ��}. 

To facilitate variational processing, discrete binary indicator hidden variables Z ={��}����  and robust hidden variables U = {��}����  are introduced for �� . where ��� ∈ {0,1}, ∑ ������� = 1, and ��� denotes the indicator that �� comes from the 

mth mixing component, which is indicated when ��� = 1, and which is assigned to this ��, and vice versa when ��� = 0. In particular, note that each sample can be for only 

one mixing component, and the mixing coefficient π is given to characterize the weight 

that each t-distribution component carries in the mixing model, and thus the conditional 

probability density function of the indicator hidden variable Z and the robust hidden 

variable U can be expressed as 

�(�|
) = � � 
��!"
�

���

�

���
(4) 

�(�|
) = � � # $���% ��2 , ��2 &�!"�

���

�

���
(5) 

Using the conjugate prior property of the exponential family of distributions, the 

prior distributions of the model variables are chosen in the following manner: 

The prior distributions for the mixture coefficients π follow a Dirichlet distribution '*-(
|./), with ./ being the hyperparameter of the Dirichlet prior. The precisions �� 

of each mixture component follow the Wishart prior distribution 6(��|-/, 7/), where -/ and 7/ are the degrees of freedom and scale matrix of the Wishart prior, respectively. 

The means 
�  of each mixture component follow the Gaussian distribution �(
�|8/, 9/) , with 8/  and 9/  being the mean and precision parameters of the 

Gaussian prior, respectively. The coefficients �� in the linear relationship between the 

auxiliary variables X and dominant variables Y are drawn from the Gaussian distribution �(��|0, :�;�. >) , where : = {:�, :�, … , :�} , and :�  represents the precision 
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parameter of the Gaussian prior for ��. As both λ and σ are represented as the precisions 

of Gaussian distributions in the model, the conjugate prior distributions for :� and �� 

are specified as Gamma distributions, with ?/, @/, A/ and B/ as the hyperparameters. 

The degrees of freedom parameters � = {��}����  have no prior distributions and 

can be estimated by maximizing the lower bound on ��. 

The joint distribution hierarchy between the data and the variables is expressed as 

�(C, D, E, F, 
, 
, �, �, :, �) = �( C ∣ D, E, �, � )�( D ∣∣ E, F, 
, � )
× �( F ∣ E )�( E ∣ 
 )�(
)�(�)�(
)�( � ∣ : )�(:)�(�) (6) 

2.2. Variational inference for Bayesian t-distributed mixed regression 

In the Bayesian framework, variational inference is adopted to estimate the model 

parameters. The variable H = {HI, HJK} is set to be the ensemble of the latent variable HI = {E, F} and the variational Bayesian variable HJK = {
, 
, �, �, :, �}. Considering 

the approximate posterior L(H), the logarithm of the likelihood can be expressed as  

MN �(D, C) = ℒ(L) + PQ[L(H)||�(H|D, C)] MN �(D, C)] (7) 

where PQ[L(H)||�(H|D, C)]  is the relative entropy in information theory and 

satisfies PQ[L(H)||�(H|D, C)] ≥ 0. It is called KL scatter, which denotes the distance 

between the true posterior distribution �(H|D, C) and the approximate posterior L(H). PQ[L(H)||�(H|D, C)] = 0  if and only if �(H|D, C) = L(H) . so there is ℒ(L) ≤MN �(D, C), and ℒ(L) is an evidential lower bound for MN �(D, C). The variational a 

posteriori for the variable H can be obtained by taking the variational components of ℒ(L) for each variable in turn. 

The hidden variables of the variable Θ are independent of each other and of the 

individual hyperparameters, factorizing the posterior distribution of the variates, i.e: 

L(H) = L(E, F, 
, 
, �, �, :, �) = L(E)L(F)L(
)L(
)L(�)L(�)L(:)L(�) (8) 

2.3. Parameter estimates 

The approximate posterior distribution of the latent variable HI  is computed below 

L(E) ∝ \�� � � ��� !̂"
�

���

�

���
(9) 

Consider the uncertainty on the robust variables. After normalization, the 

expectation of the indicator variable Z is 

⟨���⟩ = -��∑ -������
(10) 

The posterior distribution L(F) = #(���|b��, c��) of the robust variable U, 

where 
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b�� = �� + ⟨���⟩B
2 (11) 

c�� = �� + ⟨���⟩⟨(�� − 
�)���(�� − 
�)⟩
2 (12) 

In addition, we have ⟨���⟩ = b�� c��⁄ , ⟨QN ���⟩ = d(b��) − MN c�� , where 

ψ(∙) is the digamma function. 

Similarly, derive the posterior distributions of the other model parameters. In 

addition, the degree of freedom parameter �� can be optimized by maximizing the log-

likelihood function for ��, since there is no information about the prior distribution. 

In order to simplify the numerical computation, in this paper, the nonlinear equations 

are not solved, and using Stirling's formula MN e(�) ≈ (� − 1/2)MN � − � + 1/2MN 2
 + h(1/�), the updating formula for �� can be obtained 

�� = − i1 + ∑ ⟨���⟩���� ( ⟨MN ���⟩ − ⟨���⟩)
∑ ⟨���⟩����

j
;�

(13) 

The purpose of the parameter update is to maximize the evidence lower bound ℒ(q), 

which is computed below based on the variational posterior of the parameter 

ℒ(L) = ⟨MN �(D, C, E, F, 
, 
, �, �, :, �)⟩ − ⟨MN L(E, F, 
, 
, �, �, :, �)⟩ (14) 

The difference of the evidence lower bound ℒ(L) is computed after each iteration, 

and the algorithm is recognized to have converged when this difference is below a 

predetermined queer value k. i.e: 

|ℒ(L)l − ℒ(L)l;�| < k (15) 

3. Soft measurements based on STMR 

The data of the ethylene cracker consists of two parts: input data x includes the entrance 

and exit temperatures of the furnace tube, the outer surface temperature of the furnace 

tube, the adiabatic pressure ratio, the pressure across the section, and the venturi pressure, 

and the output data y is the coking degree of the furnace tube. Assuming that the new 

input variable is ��no  and the corresponding output variable is ��no , in order to predict 

the output, it is necessary to construct a soft-measurement model based on Bayesian t-

distribution mixture regression. For the mth mixture component, the posterior probability 

about ��no  and the conditional probability about ��no  are estimated as 

�(��no = 1|��no) = ⟨
�⟩��(��no|⟨
�⟩, ⟨��⟩, ��)
p ⟨
�⟩��(��no|⟨
�⟩, ⟨��⟩, ��)�

���
= r�� (16) 

�(��no|��no) = � r���(
�

���
��no|��so� ⟨��⟩, ⟨��;�⟩ + ��so� t�;���no) (17) 
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Finally, the predicted output �u�no is 

�u�no = � r����so� v�
�

���
(18) 

4. Experiments and analysis of results 

Within this section, a numerical simulation and an application to an actual industrial 

process are employed to authenticate the viability and efficacy of the soft measurement 

algorithm based on STMR. In parallel, the Gaussian mixture regression model (GMR), 

Gaussian process regression model (GPR), and partial least squares regression (PLSR) 

are chosen for comparative analysis. For GMR, the optimal number of components is 

determined using the Bayesian Information Criterion (BIC). In tandem, the root mean 

square error (RMSE) is employed in this study to assess the performance of various 

models. The configurations of the used computer are given as follows: CPU: 

Core i7-1165G7@2.80GHz, RAM: 16 GB, OS: Windows 10, and Software: MATLAB 

(R2016a).  

4.1. Numerical simulation 

A system is set up with a 2-dimensional input variable D = (��, ��)w and an output 

variable C . The input variable x obeys a mixed Gaussian distribution, and the 

relationship between X and Y is shown in Eq. (2). The specific parameter settings of the 

model are shown in Table 1. 

Table 1 Parameters of three Gaussian components for numerical simulation 

m=1 m=2 m=3 

πy 0.2 0.2 0.6 

μy (−3,1)w (2,4)w (3, −3)w 

Λy $2 11 1& $1 11 2& $ 3 −1−1 1 & 

ωy (1,1, −2)w (1, −1,0)w (−1,1,1)w 

σy 0.25 0.25 0.25 
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Figure 1 Spatial distribution of pure data Figure 2 Spatial distribution of data under 7% noise 

pollution

The overall dataset comprises 5000 samples, with 2000 samples allocated to the 

training set and 3000 samples assigned to the prediction set. To assess the model's 

robustness, the training set is intentionally subjected to noise pollution by randomly 

introducing 1%, 5%, and 7% outliers. These outliers simulate adverse conditions and 

contribute to the dataset's noise-contaminated variant. Figure 1 visually portrays the 

spatial distribution of pristine data untarnished by noise, while Figure 2 illustrates the 

spatial distribution of data exposed to 7% noise pollution. This comparative visualization 

effectively underscores the impact of noise on the data distribution.

Figure 3 RMSE values of the model at different proportions of outliers

Figure 3 offers a comprehensive evaluation, employing the Root Mean Square Error 

(RMSE) metrics, to compare the performance of the four models in the presence of 

varying proportions of outliers. A conspicuous trend unfolds within the visual 

representation: the STMR model consistently exhibits superior performance as outliers 

are progressively introduced. As the dataset incrementally incorporates outliers, a 

discernible yet moderate increase in the RMSE curves of all four models is observed. 

However, in this context, the performance of the remaining three models experiences a 

swift degradation. Specifically, both the Gaussian Process Regression (GPR) model and 

the Gaussian Mixture Regression (GMR) model suffer diminishing accuracy, with the 

RMSE values of the Gaussian Mixture Regression (GMR) model escalating by 185%, 

and those of the Gaussian Process Regression (GPR) model increasing by 173% as 

outlier instances grow to 7% of the dataset. This escalation directly correlates with the 
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proliferation of outlier instances. Conspicuously, the Partial Least Squares Regression 

(PLSR) model emerges as particularly vulnerable to the disruptive influence of outliers, 

evidenced by a substantial 201% elevation in RMSE values. In stark contrast, the STMR 

model exhibits remarkable resilience, registering a mere 68% increase in RMSE values. 

This striking contrast underscores the STMR model's exceptional robustness, rendering 

it minimally susceptible to the adverse influence of outliers. In this regard, the STMR 

model attains a commendable status, epitomizing both superior predictive accuracy and 

unparalleled resilience in the face of outlier-influenced datasets.  

4.2. Actual industrial data 

In this study, the actual data from the #1 ethylene cracker of a large petrochemical 

company, which has 11 crackers, numbered H-110 to H-120, are used, and each cracker 

has 8 observation windows, each of which can observe 12 or 13 furnace tubes. The 

ethylene crackers H-114 and H-115 were selected as the experimental subjects, and the 

corresponding operating data and the labeled values of the degree of intersection of all 

the furnace tubes in one operating cycle of the crackers were used as the experimental 

data to validate the feasibility and validity of the soft measurement algorithm for coking 

diagnosis with Bayesian t-distributed mixed regression model (STMR).  It was also 

analyzed in comparison with the Gaussian mixture regression model (GMR), Gaussian 

process regression model (GPR), and partial least squares regression (PLSR). 

Performance is evaluated using root mean square error (RMSE). A total of six auxiliary 

variables were screened by the steam cracking process mechanism and the experience of 

the field experts, which were the outlet temperature of the furnace tube, the inlet 

temperature of the furnace tube, the outer surface temperature of the furnace tube, the 

adiabatic pressure ratio, the pressure across the section, and the venturi pressure. The 

coking degree of the stovepipe was also categorized into four classes. Technicians 

usually categorize the degree of coking of the furnace tube into four classes: normal, 

mild coking, moderate coking, and severe coking. 

In order to make the output results of the model more accurately express the coking 

degree of the furnace tube, the output results of the model are processed as follows 

�u�no = � ��, |�u�I� − ��| < 0.5����, �u�I� − �� = 0.5 (19) 

where �� is the coking degree level of the furnace tube, �u�I�  is the unprocessed 

model output, and �u�no is the predicted coking degree level of the furnace tube. 

The total number of experimental data samples in this paper is 5000. The number of 

samples in the training set is 2000 and the number of samples in the prediction set is 

3000. the root mean square error RMSE is used as an index to measure the prediction 

accuracy of the STMR model and other models. 

Table 2. Model prediction results 

model RMSE 
PLSR 1.1795 

GPR 0.3428 

GMR 

STMR 

0.2986 

0.1112 

The graph of prediction results of the PLSR model, GPR model, GMR model, and 

STMR model for industrial data is given in Table 2, STMR model has the best model 
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performance with the smallest RMSE value compared to the other three models. The 

error distribution of the STMR model is reduced by 90.6%, 67.5%, and 62.8% compared 

to the PLSR model, GPR model, and GTMR model. The main reason for this analysis is 

that the STMR model has better robust performance as the model is less affected when 

dealing with experimental data containing noise. 

5. Conclusion 

Focusing on the operational data from cracker furnaces, known for their distinctive 

attributes of multimodality, nonlinearity, non-Gaussianity, and pronounced noise, this 

study presents a novel approach for coking diagnosis through a Bayesian t-distribution 

mixed regression (STMR) model. The model's parameter estimation is meticulously 

conducted within the Bayesian framework, accounting for these intricate characteristics. 

By means of simulation experiments and real-world industrial data validation, the study 

establishes that the proposed model not only exhibits remarkable predictive accuracy but 

also displays robustness in the presence of noise. As a prospect for future investigations, 

the research aims to explore the amalgamation of deep learning techniques with STMR 

models. This amalgamation aspires to augment the soft measurement model across 

dimensions such as characterization, adaptability, and predictive performance. 

Consequently, this initiative seeks to fortify the model's capability to adeptly address the 

intricate intricacies inherent in industrial processes linked to cracking and coking. 
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