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Abstract. In this paper, combining count sketch, we construct a count sketch two
greedy subspace Kaczmarz (CS-2GSK) algorithm. In addition, the block count s-
ketch Kaczmarz (BCSK) algorithm is also given, which selects multiple different
rows simultaneously at each iteration. We prove that our methods converge to the
unique solution of the linear systems. Finally, the numerical experiments show the
high efficiency and robustness of our methods.
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1. Introduction

We only consider over-determined linear systems

Ax = b, (1)

where A ∈ R
m×n, b ∈ R

m, m is much bigger than n, and x is what we want to gain. In
particular, we also require linear systems (1) to be consistent. The Kaczmarz method [1]
is a common projection method for solving (1), which has been studied for many years,
and its iterative scheme is

xk+1 = xk +
bi−aT

i xk

‖ ai ‖2 ai.

In 2018, Bai and Wu [2] proposed the greedy randomized Kaczmarz(GRK) algorithm
and Gu and Liu [3] extended the GRK algorithm to the 2GSK algorithm in 2020, and the
theoretical guarantee the convergence of the 2GSK algorithm.

Numerous random sketching matrices [4–7] have been discovered by researchers
over the years. The maximal weighted residual Kaczmarz [8] algorithm was used by Li
and Zhang [9] in 2021, and they provided a CS-MWRK method for solving the systems
(1). Numerical experiments demonstrated that the CS-MWRK method can effectively
reduce computing time, but the number of iterations has significantly increased.
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In this research, we combine the count sketch and 2GSK method, and we present the
count sketch two greedy subspace Kaczmarz algorithm (CS-2GSK), which is motivated
by the works of Zhang and Gu. Furthermore, in order to decrease the calculation times
and iteration times of the CS-2GSK method, we suggest a block count sketch Kaczmarz
algorithm (BCSK), which uses a selecting criterion to choose a block.

The main content of our work is structured as follows. Section 2 begins with sev-
eral lemmas and the definition of count sketch. Sections 3 and 4 detail the proposed ap-
proaches as well as the accompanying convergence. Finally, in Section 5, we show the
numerical results and followed the conclusion in Section 6.

2. Preliminaries

The following is about the definition and the property of count sketch, respectively.
They have been given in detail in [4, 5, 10].

Definition 2.1 A count sketch matrix S ∈ R
d×m is constructed in terms of ΦD.

Here, D∈R
m×m is a random diagonal matrix. Besides, each diagonal entry of D is chosen

to be positive unity or minus one, and Φ is an d×m arbitrary matrix whose entries are
either zeros or ones.

Lemma 2.2 If S is a count sketch matrix defined in Definition 2.1 with (n2 +

n)/(δε2) rows, where δ is a positive constant and ε is a normal number less than 1, then
we have

(1− ε)||Ax||2 ≤ ||SAx||2 ≤ (1+ ε)||Ax||2.

3. The Count Sketch two greedy subspace Kaczmarz algorithm

Given a sufficiently large positive integer � and initial point x0, then, the specific
process of the CS-2GSK algorithm is in Algorithm 2.
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Algorithm 1 The CS-2GSK algorithm

1. Input: A, b, � x0.
2. Output: x�.
3. Initialize: Create S, compute ˜A = SA and ˜b = Sb.
4. for k = 0,1, ..., �−1 do

(a) Compute rk = ˜b− ˜Axk
(b) Select rows ik and jk that satisfy

ik = arg max
1≤i≤d

{ |
˜b(i)− ˜A(i)xk|
‖˜A(i)‖2

2

}, jk = arg max
i∈[m]\ik

{ |
˜b(i)− ˜A(i)xk|
‖˜A(i)‖2

2

}.

(c) Set

xk+1 = xk +
r(ik)k (˜A(ik))T

‖ ˜A(ik) ‖2
2

+
r( jk)

k (˜A( jk))T

‖ ˜A( jk) ‖2
2

.

5. end for.

Regarding the convergence of the CS-2GSK method, the Theorem 3.1 is given.
Theorem 3.1 Let each row of A ∈R

m×n not be orthogonal to each other. Solving
linear system (1) by CS-2GSK method can produce a series of sequence {xk}∞

k=0. Then
the sequence {xk}∞

k=0 converges to the unique solution of Ax = b. Moreover, the solution
error obeys

‖ xk+1− x� ‖2
2≤

k

∏
q=0

(1−λmin(PqPT
q )) ‖ x0− x� ‖2

2, k = 0,1,2, . . . ,

where Pk = Pik −Pjk with

Pik =
(˜A(ik))T

‖ ˜A(ik) ‖2
·

˜A(ik)

‖ ˜A(ik) ‖2
and Pjk =

(˜A( jk))T

‖ ˜A( jk) ‖2
·

˜A( jk)

‖ ˜A( jk) ‖2
,

where λmin(PqPT
q ) denotes the minimum eigenvalue of PqPT

q .
Proof. In fact, we only let

Pik =
(˜A(ik))T

‖ ˜A(ik) ‖2
·

˜A(ik)

‖ ˜A(ik) ‖2
and Pjk =

(˜A( jk))T

‖ ˜A( jk) ‖2
·

˜A( jk)

‖ ˜A( jk) ‖2
.

The rest of the proof can be completed along the same lines as in [3, Theorem 1], we
omit the details. �

4. The block count sketch Kaczmarz algorithm

The basic goal of the block count sketch Kaczmarz (BCSK) algorithm is to gather
all of the indices that are closest to the greatest entry as the ik and jk in the CS-2GSK
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method. Specifically, we select the index set by

|r( jk)
k |2 ≥ α max

1≤ j≤n
|r( j)

k |2, jk ∈ {1,2, ...,n}. α ∈ [0,1)

It’s clear that BCSK algorithm is retrieving more rows as α increases.
Below, we give the specific process of the BCSK algorithm in Algorithm 2.

Algorithm 2 The BCSK algorithm

1. Input: A, b, α, �, x0.
2. Output: x�.
3. Initialize: Create S, compute ˜A = SA and ˜b = Sb.
4. For k = 0,1, ..., �−1 do

(a) Compute rk = ˜b− ˜Axk

(b) Compute target block τk = { jk| |r( jk)
k |2 ≥ α max

1≤ j≤n
|r( j)

k |2}
(c) Set

xk+1 = xk + ˜A†
τk

rk.

5. end for.

Remark 4.1 In practice, the CGLS [11–13] can be used to calculate the approx-
imation of ˜A†

τk in the fourth step of Algorithm 2.
Next, we will show the convergence of the BCSK method by Theorem 4.2.
Theorem 4.2 Let the condition in Theorem 3.1 be satisfied. Solving linear sys-

tem (1) by BCSK method can produce a series of sequence {xk}∞
k=0. Then the sequence

{xk}∞
k=0 will converge to the unique solution of (1). Moreover, the solution error obeys

‖ xk+1− x� ‖2
2≤

k

∏
q=0

(1− α|τq|
m−|τq−1| ·

(1− ε)2λmin(AT A)
(1+ ε)2σ2

max(A)
) ‖ x0− x� ‖2

2 . (2)

where |τq| represents the cardinality of τq and α ∈ (0,1].
Proof. From Algorithm 2, we have

xk+1− x� = xk− x�+ ˜A†
τk
(˜bτk − ˜Aτk xk)

= xk− x�− ˜A†
τk
˜Aτk(xk− x�)

= (I− ˜A†
τk
˜Aτk)(xk− x�).

Since ˜A†
τk
˜Aτk is an orthogonal projector, we get

‖ xk+1− x� ‖2
2 =‖ (I− ˜A†

τk
˜Aτk)(xk− x�) ‖2

2

=‖ xk− x� ‖2
2 − ‖ ˜A†

τk
˜Aτk(xk− x�) ‖2

2 (3)
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As explained in [2], we have

‖ A(xk− x�) ‖2
2≥ σ2

r (A) ‖ xk− x� ‖2
2,

which leads to

‖ ˜A†
τk
˜Aτk(xk− x�) ‖2

2 ≥
1

σ2
max(˜Aτk)

‖ ˜Aτk(xk− x�) ‖2
2

≥ 1
(1+ ε)2σ2

max(A)
‖ ˜Aτk(xk− x�) ‖2

2

=
1

(1+ ε)2σ2
max(A)

∑
ik∈τk

|˜A(ik)(xk− x�)|2

≥ 1
(1+ ε)2σ2

max(A)
∑

ik∈τk

α max
1≤i≤m

|˜A(i)(xk− x�)|2

≥ |τk|
(1+ ε)2σ2

max(A)
α max

1≤i≤m
|˜A(i)(xk− x�)|2.

(4)

From the iteration of the BCSK, we have

(˜b− ˜Axk+1)τk =
˜bτk − ˜Aτk xk− ˜Aτk

˜A†
τk
(˜bτk − ˜Aτk xk)

= ˜bτk − ˜Aτk xk− ˜Aτk
˜A†

τk
˜bτk +

˜Aτk
˜A†

τk
˜Aτk xk

= ˜bτk − ˜Aτk xk− ˜Aτk
˜A†

τk
˜bτk +

˜Aτk xk

= ˜bτk − ˜Aτk
˜A†

τk
˜bτk

= ˜Aτk x�− ˜Aτk
˜A†

τk
˜Aτk x�

= ˜Aτk x�− ˜Aτk x�

= 0,

which implies the inequality

‖ ˜b− ˜Axk ‖2
2= ∑

i∈[m]\τk−1

|˜b(i)− ˜A(i)xk|2 ≤ (m−|τk−1|) max
1≤i≤m

|˜b(i)− ˜A(i)xk|2.

Hence, for any α ∈ (0,1], combining Lemma 2.2, we have

max
1≤i≤m

|˜b(i)− ˜A(i)xk|2 ≥ α
m−|τk−1| ‖

˜A(xk− x�) ‖2
2≥

(1− ε)2α
m−|τk−1| ‖ A(xk− x�) ‖2

2 .

As a result, we see that

‖ ˜A†
τk
˜Aτk(xk− x�) ‖2

2 ≥
|τk|

m−|τk−1| ·
(1− ε)2α

(1+ ε)2σ2
max(A)

‖ A(xk− x�) ‖2
2

≥ α|τk|
m−|τk−1| ·

(1− ε)2λmin(AT A)
(1+ ε)2σ2

max(A)
‖ xk− x� ‖2

2 .

(5)
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Thus, substituting Eqs.(5) and (4) into Eq.(3), we obtain

‖ xk+1− x� ‖2
2≤ (1− α|τk|

m−|τk−1| ·
(1− ε)2λmin(AT A)
(1+ ε)2σ2

max(A)
) ‖ xk− x� ‖2

2 .

Then,

‖ xk+1− x� ‖2
2≤

k

∏
q=0

(1− α|τq|
m−|τq−1| ·

(1− ε)2λmin(AT A)
(1+ ε)2σ2

max(A)
) ‖ x0− x� ‖2

2 .

Thus, we complete the proof. �

5. Numerical experiments

In this part, we will use BCSK and CS-2GSK methods to solve (1) and compare
with the 2GSK [3] and CS-MWRK [9] methods in terms of the number of iteration
steps (denoted as IT) and the computing time (denoted as CPU). All experiments were
on a personal computer with 2.00 GHz central processing unit (Intel(R) Core(TM) i5-
1038NG7 CPU), 16.00GB memory, and Windows 10 operating system. In addition, the
version of MATLAB we use is R2018b.

Example 5.1 We consider the case of stochastic systems in this experiment.
The matrix A ∈ R

m×n and the exact solution x� are gained randomly by using the MAT-
LAB function randn(m,n). All the experiments start from zero vector and we repeat the
experiment fifty times and average it. Otherwise, the experiment stops if

RES =
||xk− x�||22
||x�||22

≤ 10−6

or IT exceeds 200,000.
The numerical results are listed in Table 1 illustrates that the CS-2GSK method

has its pros and cons. More particular, CS-2GSK requires fewer IT than CS-MWRK
and significantly less CPU time than 2GSK when m� n. Additionally, CS-2GSK need-
s more IT than the 2GSK method. This is due to the fact that the CS-2GSK approach
converges a little more slowly due to its bigger convergence factor. In addition, we
observe that IT of CS-2GSK approach lowers as d increases, suggesting that the CS-

2GSK method converges more quickly. The computation of ik = arg max
1≤i≤d

{ |˜b(i)−˜A(i)xk|
‖˜A(i)‖2

2
}

and jk = arg max
i∈[m]\ik

{ |˜b(i)−˜A(i)xk|
‖˜A(i)‖2

2
} in each iteration will take longer as d rises. As a result,

the CS-2GSK method’s overall processing time grows. Then, we can see that, for all test
values of d, BCSK method uses substantially less CPU and has smaller IT than the other
three algorithms.

Example 5.2 In this example, we use the function paralleltomo(N,θ , p) in the
MAT LAB package AIR TOOLS [14]. We set N = 30, θ = 0 : 2 : 178◦ and p = 120, then
A is a 10800× 1600 matrix. What’s more, we run these methods a thousand times and
then observe how clear the image recovered.
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Table 1. Numerical results for the 2GSK, BCSK (with α = 0.16), CS-MWRK and CS-2GSK methods

with random matrix.

IT CPU
m×n d 2GSK CS-MWRK BCSK CS-2GSK 2GSK CS-MWRK BCSK CS-2GSK

5000×50 10n 34.0000 85.2000 1.1200 56.0000 0.0069 0.0109 0.0013 0.0100
20n 34.0000 67.4800 1.0400 49.4400 0.0075 0.0100 0.0044 0.0091
30n 32.0000 61.5400 1.0600 48.9800 0.0084 0.0128 0.0034 0.0106
40n 35.0000 58.5000 1.0000 47.6000 0.0075 0.0138 0.0028 0.0103
50n 31.0000 56.5600 1.0200 47.2800 0.0075 0.0125 0.0044 0.0134

5000×100 10n 60.0000 172.2600 1.3800 119.7000 0.0219 0.0159 0.0075 0.0150
20n 64.0000 137.6000 1.1200 103.1400 0.0222 0.0175 0.0166 0.0166
30n 60.0000 126.6200 1.1000 99.0800 0.0200 0.0297 0.0097 0.0306
40n 60.0000 122.0600 1.0800 97.2200 0.0213 0.0437 0.0091 0.0362
50n 61.0000 118.6600 1.0800 95.5800 0.0213 0.0750 0.0088 0.0316

5000×150 10n 92.0000 260.8600 2.1200 189.7400 0.0547 0.0431 0.0128 0.0316
20n 95.0000 213.4600 1.4400 164.1200 0.0603 0.0587 0.0219 0.0547
30n 97.0000 198.6200 1.4000 157.5800 0.0597 0.1744 0.0184 0.0881
40n 90.0000 192.2600 1.3200 154.0800 0.0512 0.2334 0.0244 0.1441
50n 95.0000 191.0000 1.1400 151.1000 0.0591 0.2972 0.0262 0.1844

5000×200 10n 131.0000 354.3600 4.1600 267.0400 0.1244 0.0847 0.0338 0.0666
20n 131.0000 295.5000 2.0800 233.1800 0.1247 0.3050 0.0259 0.1672
30n 131.0000 281.5600 1.9000 222.7800 0.1259 0.4469 0.0344 0.2822
40n 135.0000 271.9200 1.6800 212.9000 0.1256 0.5791 0.0384 0.3781
50n 132.0000 265.7800 1.3000 204.1200 0.1278 0.7116 0.0397 0.5525

Figure 1. Numerical results for the 2GSK, BCSK (with α = 0.16), CS-MWRK and CS-2GSK methods

with paralleltomo test problem.

From the left of Figure 1, we see again that, under the same IT, BCSK algorithm can
achieve better reconstruction results than CS-2GSK, CS-MWRK and 2GSK algorithms
with generally smaller working blocks. The right side of Figure 1 shows that, as IT
increases, the RES of the BCSK method decays considerably more fast than those of
CS-2GSK, CS-MWRK, and 2GSK algorithms. In fact, we can see that at the thousandth
iteration, the RES of BCSK is less than 10−6.

6. Conclusion

In order to solve a sizable consistent linear system (1), we modified the GRK al-
gorithm in this study to the count sketch two greedy subspace Kaczmarz (CS-2GSK)
method and the block count sketch Kaczmarz (BCSK) method. We offer theoretical as-
surances that the two algorithms would converge. We demonstrate certain situations in
the experiments section, where the BCSK algorithm performs better than the 2GSK al-
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gorithm and the CS-MWRK algorithm in terms of IT and CPU times. In light of this, the
BCSK algorithm could be a helpful tool when compared with the CS-2GSK algorithm
and the CS-MWRK algorithm.
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[11] Björck Å. Numerical methods for least squares problems[M]. Society for Industrial and Applied Math-
ematics, 1996.

[12] Drineas P, Mahoney M W, Muthukrishnan S, et al. Faster least squares approximation[J]. Numerische
mathematik, 2011, 117(2): 219-249.

[13] Clarkson K L, Woodruff D P. Low-rank approximation and regression in input sparsity time[J]. Journal
of the ACM (JACM), 2017, 63(6): 1-45.

[14] Hansen P C, Saxild-Hansen M. AIR tools-a MATLAB package of algebraic iterative reconstruction
methods[J]. Journal of Computational and Applied Mathematics, 2012, 236(8): 2167-2178.

Y. Wang and P. Zhang / Two Count Sketch Kaczmarz Algorithms for Linear Systems628


