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Abstract. In this paper, we propose a new reconstruction algorithm called Block
Multipath Matching pursuit (BMMP), which is an extension of multipath matching
pursuit (MMP) in block compressed sensing. Then the reconstruction condition
of BMMP based on restricted isometric property (RIP) is established. In addition,
we also provides a guarantee of reconstruction in the case of noise measurement.
Finally, the effectiveness and advancement of the BMMP algorithm are verified by
numerical experiments.
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1. Introduction

Compressed sensing (CS) is widely used to reconstruct the K-sparse signal x ∈R
N from

Eq.(1), and it has received extensive attention in the recent decade [1, 2].

y = Φx, (1)

where Φ∈R
M×N(N�M) is the measurement matrix. An original method to reconstruct

the sparse signal x from Eq.(1) is to solve a sparsity promoting optimization problem:

min
x∈RN

‖x‖0: subject to ‖y−Φx‖2 ≤ ε, (2)

However, solving Eq.(2) is NP-hard. Recently, greedy algorithm has obtained huge
interest due to their high computational efficiency, such as orthogonal matching pursuit
(OMP) algorithm [3]. We know that multipath matching pursuit (MMP) [4] based on
multipath selection investigates multiple promising candidates by arranging the correla-
tion between the Φ column and the residual, which is is an improved algorithm of OMP
in reconstruction performance with computational higher complexity. For the reconstruc-
tion of block sparse signal, using the non-zero component distribution of signal to design
the algorithm can have better reconstruction performance. For example, block orthog-
onal matching tracking (BOMP) [5, 6] algorithm is more suitable than OMP algorithm
because of its better performance for block sparse signals. Our research mainly focus on
reconstructing block sparse signals [7, 8] in this paper.
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In this paper, we introduce MMP algorithm into the block compressed sensing to
further improve the reconstruction performance. We propose a algorithm called block
multipath matching pursuit (BMMP), which identifies the index of the Φ based on the
degree of correlation between the block and residuals, and uses the tree-searching strat-
egy to store these candidates for generating L subpaths on each iteration. BMMP can
significantly improve the reconstruction performance, and has obvious advantages over
the traditional MMP algorithm in running time.

This paper is structured as follows: Section 2 describes notations. Section 3 intro-
duces the implementation process of the algorithm. In Section 4, we analyze the con-
ditions for accurate sparse signal reconstruction based on RIP. Section 5 compares our
work with relevant algorithms for sparse signal reconstruction. In Section 6 we give the
conclusions of this paper.

2. Notions

In this section, notations are summarized. Let D = N/d denotes the number of blocks,
the initial value of Ω be {1,2, . . . ,D}. Let x be a K-sparse signal, T ∈Ω is its true block
support set, and |T | ≤ K. Ω\T denotes the block index set contained in Ω but not in T ,
where |T | is the cardinality of T . Φ′ denotes the transpose of Φ. Let T c and Sc be the
complementary set of T and S, i.e., T c = Ω\T and Sc = Ω\S. Φ[S] is the submatrix of Φ
that contains only the column with block indices by S. x[S] is a subvector that guarantees
only x with a block index of S, and φ j denotes the j-th column of Φ, xi is the i-th entry of
x. At the k-th iteration, let Sk be the set of all candidate sets, and sk

i be the i-th candidate.
L denotes the number of paths in each iteration. rk

i denotes the residual of candidate sk
i .

For any full column rank matrix Φ[S], Φ†[S] = (Φ′[S]Φ[S])−1 Φ′[S] is the Moore-Penrose
pseudoinverse of Φ[S]. Let P[S] = Φ[S]Φ†[S] denote the projection of span(Φ[S]), and
P⊥[S] = I−P[S] denote the orthogonal complement of P[S].

3. Proposed Algorithms

In general, the block K-sparse signal x ∈ R
N can be modeled as

x = [x1, · · · ,xd︸ ︷︷ ︸
x[1]

,xd+1, · · · ,x2d︸ ︷︷ ︸
x[2]

, · · · ,xN−d+1, · · · ,xN︸ ︷︷ ︸
x[D]

]′, (3)

where ‖x‖2,0 = ∑D
i=1 I(‖x[i]‖2 > 0)≤ K, where ‖x‖2,0 is a mixed �2/�0-norm and I(·) is

a indicator function. The mixed �2/�p-norm (where p = 1,2,∞) denotes ‖x‖2,p = ‖w‖p,
where w ∈R

D with w� = ‖x[�]‖2 for 1≤ �≤D. We found the block-sparsity will reduce
to normal sparsity for d = 1. Therefore, a signal with block sparsity K can be regarded
as a traditional sparse signal which has a special distribution of non-zero components,
whose sparsity is dK. Similarly, for Φ ∈ R

M×N we have

Φ = [φ1, · · · ,φd︸ ︷︷ ︸
Φ[1]

,φd+1, · · · ,φ2d︸ ︷︷ ︸
Φ[2]

, · · · ,φN−d+1, · · · ,φN︸ ︷︷ ︸
Φ[D]

], (4)

J. Zhou and P. Zhang / Block Multipath Matching Pursuit630



Multipath matching pursuit (MMP) is an algorithm that performs tree search under
greedy strategy. Compared with OMP, it has better reconstruct performance but higher
computational complexity. We introduce the multipath search idea of MMP algorithm
into the block sparse signal reconstruction algorithm. Then we summarize BMMP algo-
rithm in Algorithm 1.

Algorithm 1 THE BMMP ALGORITHM.

Input: y ∈ R
M , Φ ∈ R

M×N , L, K, D
Output: x̂;
Initialize: S0 := { /0}, k := 0, r0

1 = y;
while k < K do

k := k+1, v := 0, Sk := /0
for j = 1 to |Sk−1| do

π̃ = arg max
1≤i≤D,|π|=L

∥∥∥(Φ′[i]rk−1
j

)
π

∥∥∥2

2
for l = 1 to L do

stemp := sk−1
j ∪ π̃(l)

if stemp /∈ Sk then

v := v+1
sk

v := stemp
Sk := Sk ∪{sk

v}
x̂k

v = Φ†[sk
v]y

rk
v := y−Φ[sk

v]x̂
k
v

end if

end for

end for

end while

i∗ = argmin
∥∥rK

i

∥∥2
2

x̂ =

{
Φ†[sk

i∗ ]y, on the estimated block-support sets sk
i∗ ,

0, otherwise.

4. Perfect reconstruction condition of BMMP

First, we need introduce a natural extension of classic restricted isometry property (RIP),
block-RIP [7]. Φ is said to satisfy the block-RIP

(1−δB)‖x‖2
2 � ‖Φx‖2

2 � (1+δB)‖x‖2
2 (5)

for all block K-sparse signal x ∈R
N , where δB ∈ (0,1) is a constant. Restricted isometry

constant (RIC) δK is the minimum of δB. Then we list several useful lemmas.

Lemma 1 [9] Let Φ satisfy the block-RIP with both order K1 and K2. If K1 ≤ K2, then
δK1 ≤ δK1 .

Lemma 2 [9] Let sets S2,S1 satisfy |S2 \ S1| ≥ 1 and Φ satisfy the block-RIP of order
|S2∪S1|. Then for any x ∈ R

|S2\S1|×d
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(
1−δ|S2∪S1|

)‖x‖2
2 �

∥∥∥P⊥[S1]Φ[S2 \S1]x
∥∥∥2

2
�
(
1+δ|S2∪S1|

)‖x‖2
2. (6)

Next we state our main result.

Theorem 1 Consider the system model in Eq.(1), The BMMP is said to exactly recon-
structs any block K-sparse signal x∈R

N if Φ satisfies the Block-RIP of order K+L with
the RIC

δK+L <

√
L

K +L
, (7)

Proof: Assume these is a candidate sk
i0 that |T ∩ sk

i0 | = |sk
i0 | = k(0 ≤ k < K) at the k-th

iteration. Then we will prove that BMMP can find at least one correct block index at
the (k + 1)-th iteration under Eq.(7). For this purpose, we need to compare the maxi-
mum element β k+1

1 in {
∥∥∥Φ′[ j]rk

i0

∥∥∥
2

: j ∈ T \ sk
i0} with the L-th largest element αk+1

L in

{
∥∥∥Φ′[ j]rk

i0

∥∥∥
2

: j ∈ TC}. If β k+1
1 > αk+1

L , then the index corresponding to β k+1
1 will be

chosen.
Noting that |sk

i0 |= k, then |T \ sk
i0 |= K− k we have

β k+1
1 = max

j∈T\sk
i0

∥∥∥Φ[ j]′rk
i0

∥∥∥
2
=
∥∥∥Φ′[T \ sk

i0 ]r
k
i0

∥∥∥
2,∞

(a)
≥

∥∥∥P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥2

2√
K− k

∥∥∥x[T \ sk
i0
]
∥∥∥

2

, (8)

where (a) follows ‖x‖2,∞ ≥ ‖x‖2√‖x‖1,0
and

∣∣∣T \ sk
i0

∣∣∣= K−k. Then we can need to obtain the

upper bound of αk+1
L :

αk+1
L ≤ 1

L

L

∑
j=1

αk+1
j =

1
L

L

∑
j=1

∥∥∥Φ′[t j]r
k
i0

∥∥∥
2
=

1
L

∥∥∥Φ′[S]rk
i0

∥∥∥
2,1

(a)
=

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1

L
, (9)

where S := {t1, t2, ..., tL} ⊂ TC. Using Eqs.(8) and (9), we have

β k+1
1 −αk+1

L ≥ η
√

K− k
∥∥∥x[T \ sk

i0
]
∥∥∥

2

(10)

where

η =
∥∥∥P⊥[sk

i0 ]Φ[T \ sk
i0 ]x[T \ sk

i0 ]
∥∥∥2

2
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−
√

K− k
∥∥∥x[T \ sk

i0 ]
∥∥∥

2

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1

L
(11)

Thus, to show β k+1
1 > αk+1

L , it suffices to show η > 0. Then we let

θ =
K− k

L
and σ =

1−√θ +1√
θ

. (12)

and

γ[ j] =

{
0 j /∈ S,

σ√
L

∥∥∥x[T \ sk
i0 ]
∥∥∥

2
sgn

(
Φ′[ j]P⊥[sk

i0 ]Φ[T \ sk
i0 ]x[T \ sk

i0 ]
)

j ∈ S, (13)

where sgn(·) is the signum function. For Eq.(12), we have

1+σ 2

1−σ2 =
√

θ +1 and
2σ

1−σ2 =−
√

θ . (14)

Now, we consider the right-hand side of Eq.(11),

∥∥∥P⊥[sk
i0 ]Φ(x+ γ)

∥∥∥2

2
=
∥∥∥P⊥[sk

i0 ]Φ[T \ sk
i0 ]x[T \ sk

i0 ]
∥∥∥2

2
+
∥∥∥P⊥[sk

i0 ]Φγ
∥∥∥2

2

+
2σ

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1

∥∥∥x[T \ sk
i0 ]
∥∥∥

2√
L

, (15)

∥∥∥P⊥[sk
i0 ]Φ

(
σ2x− γ

)∥∥∥2

2
= σ4

∥∥∥P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥2

2
+
∥∥∥P⊥[sk

i0 ]Φγ
∥∥∥2

2

−
2σ3

∥∥∥x[T \ sk
i0 ]
∥∥∥

2

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1√
L

.

(16)

Combining Eqs.(15) and (16) yields

∥∥∥P⊥[sk
i0 ]Φ(x+ γ)

∥∥∥2

2
−
∥∥∥P⊥[sk

i0 ]Φ
(
σ2x− γ

)∥∥∥2

2

Eq.(14)
=

(
1−σ4)(∥∥∥P⊥[sk

i0 ]Φ[T \ sk
i0 ]x[T \ sk

i0 ]
∥∥∥2

2

−
√

θ
L

∥∥∥x[T \ sk
i0 ]
∥∥∥

2

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1

)
. (17)

Now, recalling Eq.(11) where
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η =
∥∥∥rk

i0

∥∥∥2

2
−
√

K− k
∥∥∥x[T \ sk

i0 ]
∥∥∥

2

∥∥∥Φ′[S]rk
i0

∥∥∥
2,1

L

and rk
i0 = P⊥[sk

i0 ]Φ[T \ sk
i0 ]x[T \ sk

i0 ], along with Eq.(17) and Eq.(12)

η =

∥∥∥P⊥[sk
i0 ]Φ(x+ γ)

∥∥∥2

2
−
∥∥∥P⊥[sk

i0 ]Φ
(
σ2x− γ

)∥∥∥2

2
1−σ4 . (18)

Applying Eq.(18) to Eq.(10), we further have

β k+1
1 −αk+1

L ≥

∥∥∥P⊥[sk
i0 ]Φ(x+ γ)

∥∥∥2

2
−
∥∥∥P⊥[sk

i0 ]Φ
(
σ2x− γ

)∥∥∥2

2

(1−σ4)
√

K− k
∥∥∥x[T \ sk

i0
]
∥∥∥

2

Lemma2≥
(1−δK+L)

∥∥∥x[T \ sk
i0 ]+ γ

∥∥∥2

2
− (1+δK+L)

∥∥∥σ2x[T \ sk
i0 ]− γ

∥∥∥2

2

(1−σ4)
√

K− k
∥∥∥x[T \ sk

i0
]
∥∥∥

2

Eq.(14)
=

∥∥∥x[T \ sk
i0 ]
∥∥∥

2√
K− k

(
1−δK+L

√
K +L− k

L

)
(19)

Therefore, β k+1
1 > αk+1

L will be guaranteed when

δK+L <

√
L

K +L− k
. (20)

Eq. 20 holds when Eq.(7) is satisfied for 0≤ k < K. �

Remark 1 When L = 1, Theorem 1 becomes an exact reconstruction condition for the
BOMP algorithm, which is just [9, Corollary 1].

Remark 2 When d = 1, Theorem 1 becomes an exact reconstruction condition for the
MMP algorithm, which is just [10, Theorem 1].

Next consider the noisy scenario y = Φx+e, we present the reconstruction guarantee
of BMMP to get true block support set T .

Theorem 2 For y = Φx+ e, Φ has unit �2-norm columns and and e is an �2-bounded
noise. Let the RIC of Φ satisfy δK+L <

√
L√

K+L
and

min
i∈T
‖x[i]‖2 ≥

√
2L(1+δK+L)√

L−√K +LδK+L
‖e‖2 (21)

BMMP algorithm will identify all correct block support of x.
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Proof: We assume there is a candidate sk
i0 that |T ∩ sk

i0 | = |sk
i0 | = k(0 ≤ k < K) at the

k-th iteration. Then we will prove that BMMP successfully performs the (k+1)-th iter-
ation under Eq.(7) and Eq.(21). Therefore, we compare the maximum element β k+1

1 in

{‖Φ′[ j]rk‖2 : j ∈ T \ sk
i0} with the L-th largest element αk+1

L in {
∥∥∥Φ′[ j]rk

i0

∥∥∥
2

: j ∈ TC}.
If β k+1

1 > αk+1
L , then the index corresponding to β k+1

1 will be chosen.
Noting that |sk

i0 |= k, then |T \ sk
i0 |= K− k we have

β k+1
1 = max

j∈T\sk
i0

∥∥∥Φ′[ j]rk
i

∥∥∥
2
=
∥∥∥Φ′[T \ sk

i0 ]r
k
i

∥∥∥
2,∞

=
∥∥∥Φ′[T \ sk

i0 ]
(

P⊥[sk
i0 ]y+P⊥[sk

i0 ]e
)∥∥∥

2,∞

≥
∥∥∥Φ′[T \ sk

i0 ]P
⊥[sk

i0 ]y
∥∥∥

2,∞
−
∥∥∥Φ′[T \ sk

i0 ]P
⊥[sk

i0 ]e
∥∥∥

2,∞

Eq.(8)
≥

∥∥∥P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥2

2√
K− k

∥∥∥x[T \ sk
i0
]
∥∥∥

2

−
∥∥∥Φ′[T \ sk

i0 ]P
⊥[sk

i0 ]e
∥∥∥

2,∞
(22)

Next, let’s analyze αk+1
L

αk+1
L

(a)
≤ 1

L

∥∥∥Φ′[S]rk
i0

∥∥∥
2,1

=
1
L

∥∥∥Φ′[S]
(

P⊥[sk
i0 ]y+P⊥[sk

i0 ]e
)∥∥∥

2,1

≤1
L

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥

2,1
+

1
L

∥∥∥Φ′[S]P⊥[sk
i0 ]e

∥∥∥
2,1

(23)

where S := {t1, t2, ..., tL} ⊂ TC. By relating Eq.(22) and Eq.(23), it is clear that β k+1
1 >

αk+1
L is guaranteed when

∥∥∥P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥2

2√
K− k

∥∥∥x[T \ sk
i0
]
∥∥∥

2

−
∥∥∥Φ′[T \ sk

i0 ]P
⊥[sk

i0 ]e
∥∥∥

2,∞

≥

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T ]x[T ]

∥∥∥
2,1

+
∥∥∥Φ′[S]P⊥[sk

i0 ]e
∥∥∥

2,1

L
. (24)

For (24), equivalently,

∥∥P⊥[sk
i ]Φ[T \ sk

i ]x[T \ sk
i ]
∥∥2

2√
K− k

∥∥x[T \ sk
i ]
∥∥

2

−
∥∥Φ′[S]P⊥[sk

i ]Φ[T ]x[T ]
∥∥

2,1

L

≥
∥∥Φ′[S]P⊥[sk

i ]e
∥∥

2,1

L
+
∥∥∥Φ′[T \ sk

i ]P
⊥[sk

i ]e
∥∥∥

2,∞
. (25)

First, we simplify the left-hand side of Eq.(25) with the result of Eq.(19).
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∥∥∥P⊥[sk
i0 ]Φ[T \ sk

i0 ]x[T \ sk
i0 ]
∥∥∥2

2√
K− k

∥∥∥x[T \ sk
i0
]
∥∥∥

2

−

∥∥∥Φ′[S]P⊥[sk
i0 ]Φ[T ]x[T ]

∥∥∥
2,1

L

≥
(

1−δK+L

√
K +L− k

L

) ∥∥x[T \ sk
i ]
∥∥

2√
K− k

≥
(

1−δK+L

√
K− k+L

L

)
min
i∈T
‖x[i]‖2 . (26)

Let j1 := argmax
j∈S

∥∥∥P⊥[sk
i0 ]Φ

′[T \ sk
i0 ]e

∥∥∥
2

and j2 := argmax
j∈T

∥∥∥P⊥[sk
i0 ]Φ

′[T \ sk
i0 ]e

∥∥∥
2
, the

right-hand side of Eq.(25) can be simplified as∥∥∥Φ′[S]P⊥[sk
i0 ]e

∥∥∥
2,1

L
+
∥∥∥Φ′[T \ sk

i0 ]P
⊥[sk

i0 ]e
∥∥∥

2,∞

≤
∥∥∥Φ′[ j1]P⊥[sk

i0 ]e
∥∥∥

2,1
+
∥∥∥Φ′[ j2]P⊥[sk

i0 ]e
∥∥∥

2,1

(a)
≤
√

2
∥∥∥Φ′[ j1∪ j2]P⊥[sk

i0 ]e
∥∥∥

2

(b)
≤

√
2(1+δK+L)‖e‖2 (27)

where (a) because Φ′[ j1∪ j2]P⊥[sk
i0 ]e ∈ R

2 , (b) is due to Lemma 2 and Lemma 1. Com-
bining Eq.(26) and Eq.(27), we have

min
i∈T
‖x[i]‖2 ≥

√
2L(1+δK+L)√

L−√K +L− kδK+L
‖e‖2 (28)

which is just Eq.(21). Thus Theorem 2 is proved. �

5. Numerical experiments

In this section, we evaluate the reconstruction performance of BMMP through numer-
ical experiments. In our numerical experiments, we use a random measurement matrix
Φ of size 150× 300, whose entries are selected independently of the Gaussian distri-
bution N(0,1/M). Then we generate a block K-sparse signal signal x, whose non-zero
block indices are randomly selected, and all nonzero elements are taken from N(0,1).
We conducted 1000 independent experiments to observe the reconstruction performance
of BMMP algorithm.

In Figure.1 (a), we observe the relationship between probability of exact reconstruct-
ing block K-sparse signal and the number of measurement M. It can be seen that no
matter what value L takes, the reconstruction probability increases with the increase of
M. The reconstruction probability becomes better with the increase of L from 1 to 3,
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(a) The exact reconstruction probability (b) Average Running time

Figure 1. The performance of BMMP for different L.

while the increase of L hardly improves the reconstruction performance for L≥ 3. Then
Figure.1 (b) shows that the average running time grows equally as L varies from 1 to 6.
Thus, we choose L = 3 in the later experiments.

Then the exact reconstruction probability and running time of several reconstruction
algorithms are compared, which including (1)OMP algorithm [3], gOMP algorithm [11]
with S = 3, MMP-BF algorithm [4] with L = 3, BOMP algorithm [5], BgOMP algorithm
[12] with S = 3 and BMMP algorithm with L = 3.

(a) Sparsity K (b) The number of measurement M

Figure 2. The performance of several reconstruction algorithms with different K.

In Figure 2 (a), we show a function of the exact reconstruction probability and block
sparsity level K for several reconstruction algorithms. We can see that the reconstruction
performance of BMMP algorithm is significantly better than other algorithms, and the
critical block sparsity of signals that cannot be exactly reconstructed is larger. Figure.2
(b) describes the effect of measurement M on reconstruction probability, where the block
sparsity K is fixed to 15. As can be seen, with the increase of measurement M, the re-
construction probability of all algorithms is significantly improved. The critical number
of measurement M that enables BMMP to exactly reconstruct the block sparse signal is
significantly smaller than other algorithms.
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6. Conclusion

The block sparse signal reconstruction algorithm we describe in this paper, BMMP, can
be considered as an extension of the MMP algorithm for block sparse systems. Be-
cause there are more than one candidate can be kept each time, the BMMP algorith-
m has better reconstruction performance. Numerical experiments show that BMMP al-
gorithm has excellent performance in terms of exact reconstruction probability com-
pared with many existing algorithms. In addition, we use block-RIP to study the re-
construction condition of BMMP algorithm. In noise-free case, BMMP algorithm ac-
curately reconstructs K-block sparse signal x within K iterations under δK+L <

√
L√

K+L
.

Finally, in the noisy scenario y = Φx+ e, if the RIC of Φ satisfy δK+L <
√

L√
K+L

and

mini∈T ‖x[i]‖2 ≥
√

2L(1+δK+L)√
L−√K+LδK+L

‖e‖2, BMMP algorithm can reconstruct true supports T .
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