Fuzzy Systems and Data Mining IX A.J. Tallón-Ballesteros and R. Beltrán-Barba (Eds.) © 2023 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). doi:10.3233/FAIA231077

Generalized Countable Fuzzy Semi-Compactness in L-Topological Spaces

Qiaoqiao LI, Xiaoxia WANG¹ and Jiaxin GAO College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China

Abstract. In this paper, the generalized countable fuzzy semi-compactness is defined in LTS, and its weak topological invariance and topological generation are proved. When L is complete Heyting algebra, the union of two generalized countable fuzzy semi-compactness L-set is generalized countable fuzzy semi-compactness; the intersection of a generalized countable fuzzy semi-compactness L-set and a generalized semi-closed countable L-set is generalized countable fuzzy semi-compactness.

Keywords. L-topological space; generalized countable fuzzy semi-compactness; generalized semi-open countable; generalized semi-closed countable

1. Introduction

In 1976, the concept of fuzzy compactness is introduced in [0,1]-TPS([0,1]-topological Spaces) by reference[1]. In 1988, [2] extended it to LTS, where L is a completely allocated DeMorgan algebra. [3] proposed a new definition of fuzzy compactness in LTS. [4] studies the countably compactness of L-set.[5]gives the Generalized semi-open L-sets and generalized semi-closed L-sets. [6]gives the concept of generalized fuzzy semi-compactness, properties of generalized fuzzy semi-compactness and some equivalent characterizations.[7]-[14]many experts have studied the related properties of compactness in L-topological Spaces.[15]-[19]experts have studied some properties of compactness by means of operators. This paper gives the definition of generalized countable fuzzy semi-compactness, Some of its properties are studied. The remaining concepts and notations not described in the text can be found in [2]. For convenience, we will hereafter refer to L – topological space as LTS for short.

2. Related works

In this paper, the compactness of LTS is extended on the basis of [6], and some related properties of [6] are studied. On this basis, the weak topological invariance and topological generatability of generalized countable fuzzy semi-compactness are also studied.

¹ Corresponding author, Xiaoxia WANG, Yan'an University , Yan'an 716000, China; E-mail: yd-wxx@163.com.

3. Preliminary Knowledge

In this part, we will review some primary concepts of generalized fuzzy semicompactness.

Definition 3.1[5]Hypothesis (L^X, δ) is an LTS, $B \in L^X$. Then *B* is the generalized semiclosed *L* – set, if the semi-open countable *L* – set *U* satisfying $B \le U$ there is $cl(B) \le U$. *B* is called generalized semi-open if *B'* is generalized semi-closed.

GSO(X) is denoted as the sets of the all generalized semi-open L – sets on X and GSC(X) is denoted as the sets of the all generalized semi-closed L – sets on X.

Definition 3.2[6]Hypothesis (L^X, δ) is an LTS, $M \in L^X$. If for each family $P \subset GSO(X)$ there is

$$\bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in P} D(x) \right) \leq \bigcup_{V\in 2^{(P)}} \bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in V} D(x) \right).$$

Then M is called generalized fuzzy semi-compact.

Definition 3.3[7]Hypothesis (L^{X}, α) and (L^{Y}, β) are *LF* topological space, $f: (L^{X}, \alpha) \rightarrow (L^{Y}, \beta)$ is *L* – value Zadeh- type function, if $\forall H \in \beta$ have $f^{-1}(H) \in \alpha$, *f* is called continuous.

Lemma3.1[8] Hypothesis $(L^X, \omega_L(F))$ is an LTS induced by the distinct topological space (X, F). Hypothesis U is the semi-open set in (X, F), then χ_U is the semi-open set in $(L^X, \omega_L(F))$. If R is the semi-open set in $(L^X, \omega_L(F))$, then for $b \in L$, R(b) is the semi-open set in (X, F).

For the subset $P \subset L^X$, $2^{(P)}$ is denoted as the set of all finite subfamilies of P.

4. Generalized countable fuzzy semi-compactness

Definition 4.1 Hypothesis (L^X, δ) is an LTS, $M \in L^X$. Hypothesis for every countably family $P \subset GSO(X)$ there is

$$\bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in P} D(x) \right) \leq \bigcup_{V\in 2^{(P)}} \bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in V} D(x) \right).$$

Then M is denoted generalized countable fuzzy semi-compact.

Definition 4.2 Hypothesis (L^X, δ) is an LTS, $c \in L - \{1\}$, $M \in L^X$. A countable family $P \subset GSO(X)$ is called generalized semi-open countable c-shading of M, hypothesis for every $x \in X$ there is $(M'(x) \cup \bigcup_{D \in P} D(x)) \leq c$. P is called generalized semi-open

countable strong c-shading of M hypothesis for any $x \in X$ there is $\bigcap_{x \in X} \left(M'(x) \cup \bigcup_{D \in P} D(x) \right) \le c.$

The generalized semi-open countable strong c-shading of M is the generalized semi-open countable c-shading of M.

Definition 4.3. Hypothesis (L^x, δ) is an LTS, $c \in L - \{1\}$, $M \in L^x$. A countable family $Q \in GSC(X)$ is called generalized semi-closed countable c-remote family of M, hypothesis for every $x \in X$ there is $(M(x) \cap \bigcap_{B \in Q} B(x)) \ge c \cdot Q$ is called generalized

semi-closed countably strong c – remote family of M, if $\bigcup_{x \in X} \left(M(x) \cap \bigcap_{B \in Q} B(x) \right) \ge c$.

The generalized semi-closed countably strong c – *remote* family of M is the generalized semi-closed countably c – *remote* family of M.

By Definition 4.1 and order inversing involution ,we will introduce theorem4.1.

Theorem 4.1. Hypothesis (L^X, δ) is an LTS, $M \in L^X$. Then *M* is generalized countably

fuzzy semi-compact if and only if for any countably family
$$Q \in GSC(X)$$
, there is

$$\bigcup_{x\in X} \left(M(x) \cap \bigcap_{B\in \mathcal{Q}} B(x) \right) \geq \bigcap_{F\in 2^{(\mathcal{Q})} x\in X} \left(M(x) \cap \bigcap_{B\in F} B(x) \right).$$

Theorem 4.2. Hypothesis M is generalized fuzzy semi-compact, then it is generalized countable fuzzy semi-compact.

Proof. If *M* is generalized fuzzy semi-compact, by definition 3.2, for every family $P \subset GSO(X)$, there is

$$\bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in P} D(x) \right) \leq \bigcup_{V\in 2^{(P)}} \bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in V} D(x) \right).$$

There is certainly $P \subset GSO(X)$ countable subset $V \subset GSO(X)$ meet

$$\bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in V} D(x) \right) \leq \bigcup_{C\in 2^{(V)}} \bigcap_{x\in X} \left(M'(x) \cup \bigcup_{D\in C} D(x) \right).$$

Prove that M is generalized countably fuzzy semi-compact.

By Definitions 4.1 and 4.2 we will introduce theorem 4.3.

Theorem 4.3 Hypothesis (L^X, α) is an LTS, $M \in L^X$. Then M is generalized countably fuzzy semi-compact if and only if for every $c \in L - \{1\}$, every generalized semi-open countably strong c-shading P of M has finite subfamily D is generalized semi-open countably strong c-shading of M.

By Definitions 4.1 and 4.3 we will introduce theorem 4.4.

Theorem 4.4 Hypothesis (L^X, α) is an LTS, $M \in L^X$. Then M is generalized countably fuzzy semi-compact if and only if for every $c \in L - \{0\}$, every generalized semi-closed countably strong c – *remote* family K of M has finite subfamilies C is generalized semi-closed countably a – *remote* family of M.

5. Properties of generalized countable fuzzy semi-compactness

Definition 5.1 Hypothesis (L^x, δ) and (L^y, μ) are LTS, $f: (L^x, \delta) \to (L^y, \mu)$ is an homomorphism said to be a continuous order homomorphism if for any countably closed set H in (L^y, μ) , $f^{-1}(H)$ is countably closed set in (L^x, δ) . If $L_1 = L_2 = L$, f is a *Zadeh*- type mapping, f is said to be the L – continuum mapping from (L^x, δ) to (L^y, μ) .

Definition 5.2 Hypothesis $(L^x, \delta), (L^y, \mu)$ is an LTS, $f: (L^x, \delta) \to (L^y, \mu)$ as the oneto-one mapping, f and f^{-1} are L - continuous , says f is L - homeomorphism mapping. The property that remains invariant under L - homeomorphism mapping is called weak topological invariance.

Definition 5.3 Hypothesis $(L^X, \omega_L(T))$ is an LTS induced by the distinct topological spaces (X,T). Hypothesis U is the generalized semi-open countable set in, then χ_U is the generalized semi-open countable set of $(L^X, \omega_L(F))$. If A is the generalized semi-open countable set of $(L^X, \omega_L(F))$, then for $a \in L$, A(a) is the generalized semi-open countable set in (X,T).

Theorem 5.1 Hypothesis (L^{X}, δ) and (L^{Y}, μ) are LTS, $f: (L^{X}, \delta) \rightarrow (L^{Y}, \mu)$ is continuous L – value Zadeh- type function and $M \in L^{X}$. Then f(M) is generalized countably fuzzy semi-compact set in (L^{Y}, μ) when M is the generalized countably fuzzy semi-compact set in (L^{X}, δ) .

Proof. Let *P* be countable family of f(M), then $f^{-1}(P)$ is a countable family of *M*. Is defined by Definition 4.1 has

$$\bigcap_{y \in Y} \left(f\left(M\right)'\left(y\right) \cup \bigcup_{D \in P} D\left(y\right) \right) = \bigcap_{x \in X} \left(M'(x) \cup \bigcup_{D \in P} f^{-1}\left(D\right)(x) \right)$$

$$\leq \bigcup_{Y \in 2^{(P)}} \bigcap_{x \in X} \left(M'(x) \cup \bigcup_{A \in Y} f^{-1}(D)(x) \right) = \bigcup_{Y \in 2^{(P)}} \bigcap_{y \in Y} \left(f\left(M\right)'(y) \cup \bigcup_{D \in Y} D(y) \right).$$

That is f(M) is the generalized countably fuzzy semi-compact set in (L^{Y}, μ) .

Corollary 1 Generalized countable fuzzy semi-compact in L – topological spaces is weakly topologically invariant.

Theorem 5.2 Makes *L* is a complete Heyting algebra. Hypothesis both *M* and *N* are generalized countably fuzzy semi-compact, then $M \lor N$ is generalized countably fuzzy semi-compact.

Proof. For every countable family $U \in GSC(X)$, given by theorem 4.1 have

$$\bigcup_{x\in X} \left((M\cup N)(x) \cap \bigcap_{B\in U} B(x) \right)$$

$$= \left\{ \bigcup_{x \in X} M(x) \cap \bigcap_{B \in U} B(x) \right\} \cup \left\{ \bigcup_{x \in X} \left(N(x) \cap \bigcap_{B \in U} B(x) \right) \right\}$$

$$\geq \left\{ \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left(M(x) \cap \bigcap_{B \in F} B(x) \right) \right\} \cup \left\{ \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left(N(x) \cap \bigcap_{B \in F} B(x) \right) \right\}$$

$$= \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left((M \cup N)(x) \cap \bigcap_{B \in F} B(x) \right).$$

Therefore $M \lor N$ is generalized countably fuzzy semi-compact.

Theorem 5.3 Hypothesis *M* is the generalized countably fuzzy semi-compact L – set, $N \in GSC(X)$, then $M \wedge N$ is the generalized countably fuzzy semi-compact L – set.

Proof. Since *M* is the generalized countably fuzzy semi-compact L – set, for every countably family $U \in GSC(X)$, given by theorem 4.1 have

$$\bigcup_{x \in X} \left((M \cap N)(x) \cap \bigcap_{B \in U} B(x) \right) = \bigcup_{x \in X} \left(M(x) \cap \bigcap_{B \in U \cup \{N\}} B(x) \right)$$

$$\ge \bigcap_{F \in 2^{(U \cup \{N\})}} \bigcup_{x \in X} \left(M(x) \cap \bigcap_{B \in F} B(x) \right)$$

$$= \left\{ \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left(M(x) \cap \bigcap_{B \in F} B(x) \right) \right\} \cap \left\{ \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left(M(x) \cap \left(N(x) \cap \bigcap_{B \in F} B(x) \right) \right) \right\}$$

$$= \bigcap_{F \in 2^{(U)}} \bigcup_{x \in X} \left((M \cap N)(x) \cap \bigcap_{B \in F} B(x) \right).$$

Therefore $M \wedge N$ is the generalized countably fuzzy semi-compact L – set.

Theorem 5.4 Hypothesis $(L^{\chi}, \omega_L(F))$ is an LTS induced by the distinct topological spaces (X, F), $T \subset X$, then T is generalized countably fuzzy semi-compact in (X, F) if and only if χ_T is generalized countably fuzzy semi-compact in $(L^{\chi}, \omega_L(F))$.

Proof. \leftarrow . Hypothesis Γ is generalized semi-open countable family of $(L^{X}, \omega_{L}(F))$,

let
$$\bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \bigcup_{B \in \Gamma} B(x) \right) = a$$

When a = 0, There is obviously

$$\bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \bigcup_{B \in \Gamma} B\left(x \right) \right) \leq \bigcup_{Y \in 2^{(\Gamma)}} \bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \bigcup_{B \in Y} B\left(x \right) \right).$$

Let $a \neq 0$, then for b < a have $b < \bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \bigcup_{B \in \Gamma} B(x) \right)$.

Thus $\{B_{(b)} | B \in \Gamma\}$ is generalized semi-open countable covering of T. By T is generalized countable fuzzy semi-compact of (X, F), exist $\Upsilon \in 2^{(\Gamma)}$ make $\{B_{(b)} | B \in \Upsilon\}$ is generalized half-open countable covering of T. Then $b \leq \bigcap (\bigcup B | T(x))$. Thus

Then
$$b \leq \bigcap_{x \in T} \left(\bigcup_{B \in \Upsilon} B \mid T(x) \right)$$
. Thus

$$b \leq \bigcap_{x \in T} \left(\bigcup_{B \in \Upsilon} (B \mid T) \right) (x) = \bigcap_{x \in X} \left((\chi_T)' (x) \cup \left(\bigcup_{B \in \Upsilon} B(x) \right) \right)$$
$$\leq \bigcup_{\Upsilon \in 2^{(\Gamma)}} \bigcap_{x \in X} \left((\chi_T)' (x) \cup \left(\bigcup_{B \in \Upsilon} B(x) \right) \right), \text{ Thus have}$$
$$\bigcap_{x \in X} \left((\chi_T)' (x) \cup \bigcup_{B \in \Gamma} B(x) \right) = a = \cup \{ b \mid b < a \} \leq \bigcup_{T \in 2^{(\Gamma)}} \bigcap_{x \in X} \left((\chi_T)' (x) \cup \left(\bigcup_{B \in \Upsilon} B(x) \right) \right)$$

Therefore χ_T generalized countable fuzzy semi-compact of $(L^X, \omega_L(F))$.

⇒ .Hypothesis *B* be any generalized semi-open countable covering of *T* ,then $\{\chi_J | J \in B\}$ is the generalized semi-open countable sets in $(L^{\chi}, \omega_L(F))$ and

$$\bigcap_{x\in X}\left(\left(\chi_{T}\right)'(x)\cup\bigcup_{J\in B}\chi_{J}(x)\right)=1.$$

By χ_T is the generalized countably fuzzy semi-compact in $(L^X, \omega_L(F))$ known,

$$\bigcup_{\Upsilon \in 2^{(B)}} \bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \left(\bigcup_{J \in \Upsilon} \chi_J \left(x \right) \right) \right) = 1.$$

There are $\Upsilon \in 2^{(B)}$ make $\bigcap_{x \in X} \left(\left(\chi_T \right)' \left(x \right) \cup \bigcup_{J \in \Upsilon} \chi_J \left(x \right) \right) = 1$.

So $\bigcap_{x \in T} \left(\bigcup_{J \in \Upsilon} (\chi_J | T)(x) \right) = 1$, thus $\{J | T | J \in \Upsilon\}$ is generalized semi-open countable covering of T, namely Υ is generalized semi-open countable covering of T.

6. Conclusion

In this paper, the generalized countable fuzzy semi-compactness is defined in LTS. This definition does not depend on the structure of L and does not require distributivity. As a generalization of the compactness of L-topological Spaces, some good properties of the generalized countably fuzzy semi-compactness are proved. In the future, can continue to study some properties such as equivalent characterization and good generalization.

Reference

- [1] Lowen R. Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl., 56(1976)621-633.
- [2] Wang GJ. L-Fuzzy Topological Space Theory [M] Xi'an: Shaanxi Normal University Press, 1988.
- [3] Shi FG. Fuzzy compactness in L-topological spaces[J]. Fuzzy Sets and Systems, 2007, 58:1486-1495.
- Shi FG. Countable compactness and the Lindelof property of L-fuzzy sets [J].Iranian Journal of Fuzzy Systems, 2004,1:79-88.
- [5] Yang GQ, Li HY, Xu ZG. Generalized semi-open L-sets and generalized semi-closed L-sets[J]. Journal of Liaoning Normal University(Natural Science Edition), 2006, 29(4):194-196.
- [6] Xu ZG, Liu MG. Generalized fuzzy semi-compactness in L-topological spaces[J]. Journal of Liaoning Normal University(Natural Science Edition), 20 21, 44(4):450-453.
- [7] Jiang JP. The countably pairwise ultra-compactness in L-bitopological spaces[J].Fuzzy Systems and

Mathematics, 2015, 29(3):75-78.

- [8] Shi FG. Semi-compactness in L-topological spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2005, 12: 1869-1878.
- [9] Pan W, Xu ZG, Zhao Y. Countable semi-compactness L-fuzzy topological spaces[J]. Fuzzy Systems and Mathematics, 2015, 29(4):71-75.
- [10] Han HX, Meng GW. Local semi-compactness of L-topological spaces[J]. College Mathematics, 2010, 26(4): 76-79.
- [11] Shi FG, Li RX. Compactness in L-fuzzy topological spaces[J]. Hacettepe journal of Mathematics and Statistics, 2011,40 (6):767-774.
- [12] Shi FG. A new definition of fuzzy compactness[J]. Fuzzy Sets and Systems, 2007,158:1486-1495.
- [13] Zhang J, Shi FG, Zheng CY. On L-fuzzy topological spaces[J]. Fuzzy Sets and Systems, 2005,149:473-484.
- [14] Shi FG, Li RX. Semi-compactness in L-fuzzy topological spaces[J]. Annals of Fuzzy Mathematics and Informatics, 2011, 2:163-169.
- [15] Benkhaled H, Elleuch A, Jeribi A.Demicompactness Properties for Uniformly Continuous Cosine Families[J].Mediterranean Journal of Mathematics, 2022, 156-169.
- [16] Slim C, Aref J, Bilel K. Demicompactness perturbation in Banach algebras and some stability results[J].Georgian Math, 2023, 30(1):53-63.
- [17] Hedi B,Elleuch A,Jeribi A.Relative Demicompactness Properties for Exponentially Bounded C 0-Semigroups[J].Russian Mathematics, 2023, 1-7.
- [18] Krichen B, Trabelsi B.B-Weyl and Drazin invertible operators linked by weak pseudo \(S₀\)demicompactness [J] Ricerche di Matematica, 2021, 1-18.
- [19] Wasi HA, Rajihy Y.On various properties of (;m, n;)-semi-compactness in bitopological spaces [J].Journal of Interdisciplinary Mathematics, 2021, 1119-1122.