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Abstract. The mainstream approach to the development of ontologies is merging
ontologies encoding different information, where one of the major difficulties is
that the heterogeneity motivates the ontology merging but also limits high-quality
merging performance. Thus, the entity type (etype) recognition task is proposed
to deal with such heterogeneity, aiming to infer the class of entities and etypes
by exploiting the information encoded in ontologies. In this paper, we introduce a
property-based approach that allows recognizing etypes on the basis of the proper-
ties used to define them. From an epistemological point of view, it is in fact prop-
erties that characterize entities and etypes, and this definition is independent of the
specific labels and hierarchical schemas used to define them. The main contribu-
tion consists of a set of property-based metrics for measuring the contextual simi-
larity between etypes and entities, and a machine learning-based etype recognition
algorithm exploiting the proposed similarity metrics. Compared with the state-of-
the-art, the experimental results show the validity of the similarity metrics and the
superiority of the proposed etype recognition algorithm.

Keywords. Entity type recognition, Knowledge reuse, Property-based similarity
metrics, Machine learning

1. Introduction

The web has enabled the generation and sharability of a virtually unbound quantity of
data, where ontology is by far one of the most widely used representation models [1].
The main motivation is the inherent flexibility of the ontology model, for instance, not
all entities need to have the same properties and an ontology can be evolved whenever
new data become available. This flexibility is key to extending ontologies by merging
diverse ontologies and data resources, thus exploiting the available information about
different entities. However, one of the major difficulties is that the heterogeneity moti-
vates ontology merging but also limits high-quality merging performance. Thus, the en-
tity type (etype) recognition task is proposed to deal with such heterogeneity, aiming to
infer the class of entities and etypes by exploiting the information encoded in ontologies.
According to the application scenarios, we consider two cases, where schema-level etype
recognition [2] aims at aligning a set of candidate etypes to a set of reference etypes, and
instance-level etype recognition [3] aims to predict the etype of given entities.

Existing etype recognition methods mainly exploit lexical-based [4] and structure-
based [5] techniques. Both techniques enforce etype label matching as a prerequisite,
which utilizes diverse lexical similarity metrics and synonym analysis to align etype
labels. Such methods are limited when applied in practice since the same concept can be
labeled differently by ontologies [6], e.g., an eagle can be labeled as Bird in a general-
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purpose ontology and Eagle in a domain-specific ontology. In turn, the same label may
present different concepts in heterogeneous ontologies, which will also lead to wrong
recognition results. Structure-based methods consider the hierarchy as an additional input
to drive the label matching, e.g., matching on super-classes. However, these methods
may also mislead the conclusions as properties assigned to an etype in the hierarchy are
cumulative and do not depend on the order by which they are assigned [7]. In addition,
the difference in taxonomy between ontologies will increase the impact of such issues,
e.g., the super-class of etype Eagle can be Animal in one ontology and Bird in another.

As a solution to the above problems, the key intuition behind our approach, is to
recognize etypes based on the properties which define them. From an epistemological
point of view, it is in fact properties that implicitly define the etype, and this definition is
independent of the specific label used to name a concept, and of the specific hierarchical
schema of the ontology used to define the etype. This allows us to exploit the fact that
etypes are organized in hierarchies, where lower etypes inherit properties from upper
etypes and where the entities populating an etype also populate all the upper etypes.
Thus, based on the above intuitions, we propose a general property-based algorithm for
etype recognition problem. We introduce a formalization strategy where the ontology
and its inner mappings are organized by formal concept analysis (FCA) [8]. We present
three property-based metrics to measure the contextual similarity between etypes and
entities, where the metrics characterize the role that properties have in the definition
of given etypes from different aspects. They capture the main idea that the number of
aligned properties affects the contextual similarity between concepts.

Overall, the main contributions of this paper are as follows:

* We design an ontology formalization strategy and a novel set of metrics for mea-
suring contextual similarity across reference etypes and candidates.

* We propose a machine learning (ML)-based algorithm that implements etype
recognition as a classification task, via the similarity metrics mentioned above.

* We compare our method with state-of-the-art on several benchmarks. The experi-
mental results show the validity of the similarity metrics and the superiority of the
proposed etype recognition algorithm.

The rest of the paper is organized as follows. Section 2 discusses the intuition for ex-
ploiting properties and demonstrates how to formalize an ontology into an FCA context.
Section 3 introduces three specificity measurements and their corresponding property-
based etype similarity metrics. In section 4, we describe the proposed ML-based etype
recognition algorithm, and we present the experimental setups and results in section 5.
Finally, we present the related work in section 6 and conclude the paper in section 7.

2. Schemas, Etypes and Entities

To clearly present the task we discussed, we define the schema of an ontology and its in-
ner relations as Sch = (C, P,R), where C = {C},...,C,} being etypes, P = {p1,...,pm}
being the set of properties, R = {(C;,T(C;)}|C; € C} being the set of correspondences
between etypes and properties, and function 7' (C;) returns properties associated with C;.
Let us also define I = {I,...,I;} as a set of entities, where each entity I; is associated
with specific etype C;, and #(I;) returns a set of associations between entities and prop-
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Table 1. Shared Properties of etype Person across different ontologies.

Contexts Tot. Shared Properties

OpenCyc & DBpedia 39 birth, education, title, activity, ethnicity, employer, status...
OpenCyc & Schema.org 21 contact, suffix, tax, job, children, works, worth, gender, net...
DBpedia & FreeBase 33 title, number, related, birth, parent, work, name...

DBpedia & Schema.org 22 death, sibling, point, member, nationality, award, parents...

Person  Organization FreeBase  OpenCyc FreeBase  OpenCyc

N s N % /3
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S
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Figure 1. The shareability of properties that occurs within and across ontologies.

erties. We consider that the property p; is used to describe an etype C; or an entity [;
when the property belongs to set T(C;) or ¢(I;), respectively. Thus, given a reference
ontology Ont,.r, the goal of etype recognition is to match the etype Cp.y with Cgng
and predict the etype C. s of entities I.4,4 from the candidate ontology Ont.qnq, Where
Ceand > Icana € Onteana, Cref S Ontref-

The intuition of utilizing properties for etype recognition comes from the prop-
erty being one of the most basic and critical elements for implicitly defining etypes [9].
For each schema, etypes play the role of categorization, and properties aim to draw
sharp lines so that each entity in the domain falls determinedly either in or out of
each etype [10]. Meanwhile, we have following observations when comparing proper-
ties across different ontologies: (1) In a specific ontology, each etype is described by a
set of properties, whereas most of the properties are distinguishable according to the be-
longing etypes and a small number of properties are shared across different etypes; (2)
Same or similar properties are shared across different ontologies for describing the same
concepts. To visually present these observations, we present shared properties of etype
Person across different ontologies in Table 1, e.g., birth and education are applied in
both OpenCyc and DBpedia. All these examples present features of properties, namely,
the unity for describing the same concept and the diversity for distinguishing different
concepts. For instance, a Person can be distinguished from a Place by the property birth,
which is a crucial step to identify the etypes. Meanwhile, we also introduce a special type
of Venn graphs, namely knowledge lotuses, to prove our observations by representing the
shareability of properties that occurs within and across ontologies. Knowledge lotuses
provide a synthetic view of how different ontologies or etypes overlap in properties [7].
Figure 1 shows several examples, where we assume that we have four contexts built from
(parts of) the four biggest knowledge bases, i.e., OpenCyc, DBpedia, Schema.org and
FreeBase. Each value in a lotus refers to the number of shared properties. Thus, we find
that it is important to exploit and measure properties for better etype recognition.

To utilize the property information, we formalize the relation between properties
and etypes/entities as associations. Thus, two cases are considered. At the schema
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Figure 2. An example of formalizing ontology into FCA contexts

level, the ontology schema will be flattened into a set of triples, where each triple en-
codes information about etype-property associations, e.g., triple “organization-domain-
LocatedIn” encodes the “organization-LocatedIn” association. Instance-level cases gen-
erally define triples as “entity-property-entity”’, where two associations are encoded.
For instance, triple “Eiffel Tower-LocatedIn-Paris” encodes “Eiffel Tower-LocatedIn” and
“Paris-LocatedIn”. To generate our FCA contexts, we have the following settings: (1)
Compared to general FCAs, we consider both etypes C and entities /, where we asso-
ciate an entity with its properties ¢(I;), and also an etype with its properties T(C;); (2)
We introduce the notion of undefined to describe an additional relation between etypes
and properties. As an example, we generate an FCA context whose information is ex-
tracted from DBpedia [11], as shown in Figure 2. We adopt the following conventions.
The value box with a cross represents the fact the property is associated with the etype,
e.g., citizenship is associated with Person. The value box with a circle means the property
is unassociated with the etype, e.g., date as for Person. The value “U” (for undefined)
represents the fact that the property is unassociated with the etype but associated with
one of its sub-classes. The intuition is that the property might or might not be used to
describe the current etype, e.g., academy award is used to describe Artist and it might
be used to describe Person. Similar to etypes, we can also find formalized entities and
their properties. Note that these entities are selected from the ontology with a hierarchi-
cal schema, thus, they can inherit the unassociated properties from their etypes, e.g., as
an Athlete, Usain Bolt does not have property duration.

As a result, we encode the above-mentioned three correlations as the parameter
wg(p). Considering the correlation of “associated with” is positive for a property-based
description, the correlation of “unassociated with” is negative and the correlation of “un-
defined” is neutral, we define the parameter as:

1, if p e prop(E)
wg(p)=4 0, ifp¢ prop(E)Ap € prop(E.subclass) (1)
-1, if p ¢ prop(E) A\ p ¢ prop(E .subclass)

where we suppose E is a general concept that unifies the definitions of etypes C and
entities / in an ontology, p is the target property, E.subclass refers to the sub-classes
of the etype E, and prop(E) refers to the properties associated with E. Need to notice
a special case that undefined properties also exists where a specific entity misses the
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inherited property, such as race track is used to describe Sports events but missed for its
entity Snooker Championship, which will also make wg(p) = 0. Thus, the crosses, “U”’s
and circles in Figure 2 are set to 1, 0 and -1, respectively.

3. Property-based Similarity Metrics

The property-based similarity metrics we proposed in this paper are inspired by [12]
which introduces the importance of properties for describing etypes. The key intuition is
that properties at different levels of specificity contribute differently during etype recog-
nition. e.g., a more specific property provides more information that allows identifying
an etype [13]. This results in the definition of horizontal specificity, vertical specificity,
and informational specificity and of their corresponding similarity metrics.

3.1. Horizontal specificity

When measuring the specificity of a property, a possible idea is to horizontally compare
the number of etypes that are described by a specific property, i.e., the shareability of the
property [7]. If a property is used to describe diverse etypes, it means that the property
is not highly characterizing its associated etypes. For instance, the property name is used
to describe Person, Place, and Athlete, where name is a common property that appears
in different contexts. Education is a highly specific property since it is associated only
with the etype Person. Based on this intuition, we consider the specificity of a property
as related to its shareability. Thus, we have horizontal specificity (HS) to measure the
number of etypes that are associated with the target property, as:

HSou(E,p) = wg(p)x 718D e [-1,1] @

where p is the input property, E is the input etype/entity and K, is the set of etypes
described by p in a specific ontology Onr; |K,| is the cardinality of K,, thus |K,| > 1; e
denotes the natural mathematical constant [14]; A represents a constraint factor.

3.2. Vertical specificity

Etypes are organized into classification hierarchies such that the upper-layer etypes rep-
resent more general concepts, whereas the lower-layer etypes represent more concrete
concepts [13]. Thus, properties of lower-layer etypes are more specific since they are
used to describe specific concepts. We assume that lower-layer properties will contribute
more to the etype identification since they are more specific. For instance, as a lower-
layer etype, Artist can be identified by the property academy award but not by the gen-
eral property name. Based on this intuition, we propose VS for capturing the vertical
specificity, where layer(E) refers to the layer of the inheritance hierarchy to define E.

VSou (E,p) =we(p) *gél]? layer(E) € [-1,1] 3)
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3.3. Informational specificity

Based on the observation that the property specificity should also take into account the
effect of the number of entities, we introduce the notion of informational specificity IS
which will change with the number of entities populating it. The intuition is that speci-
ficity will decrease when the entity counting increases. For instance, the IS of academy
award decreases when there are increasing entities of Artist. The definition of informa-
tional specificity is inspired by Kullback—Leibler divergence theory [15], which is intro-
duced to measure the difference between two sample distributions ¥ and ¥. In the def-
inition of informational specificity, we need to exploit some notions from information
theory. We define informational entropy as:

‘Kv . F(Ei)
~ Loy F(E) log T
K|

H(K,) = )

where K, refers to any subset of K in an ontology; H(-) represents the informational
entropy of an etype set; E; is a specific etype in set K,; F(E;) refers to the number of
samples of etype E;. After calculating informational entropy, the informational specificity
IS is defined as:

ISou(E.p) = we(p)# (H(K) = L HK)) € (1.1 ©

where we weight each H(K,) by the proportion of |K,| to |K|. Being subtracted by the
overall informational entropy H(K), IS presents the importance of the property p for
describing the given etype set K.

3.4. Similarity metrics

We have modeled the specificity of properties, which represent their weights for describ-
ing ontologies from different aspects. Then, we define three property-based similarities
based on the corresponding specificity. Given a reference ontology Onts and a candidate
ontology Ontg, we define a function for calculating different similarities between etypes
and entities from Ont4 and Ontp based on their corresponding specificity:

Iy (SPCA(Eu,pi) SPCB(Eh,p,J) € 0.1]

Sim(Eq4,Ep) = =
(Ea Es) 22 |prop(E,)| |prop(Ey)|

(6)

where we take E,, E, as the etypes/entities from Ont4 and Ontp respectively, thus
E, € Onty and E, € Ontg; prop(E) refers to the properties associated with the spe-
cific etype and |prop(E)| is the number of properties in prop(E); SPCgrg(-) repre-
sents the specificity measurements we defined above, SPC(-) = {HS(-),VS(-),1S(-)},
thus SPCy(E,, p;) and SPCg(E}, p;) refer to the specificity of the aligned property p;
from two ontologies; k is the number of aligned properties which are associated with
both etype E, and Ej,. As a result, we obtain three similarity metrics which are horizon-
tal similarity Simy, vertical similarity Simy, and informational similarity Sim;. Notice
that each similarity metric is symmetric, more specifically, Sim(E,, Ep) = Sim(Ep, E,).
Note also that we apply z-score normalization [16] to similarity metrics at the end of
calculations, which makes the range of Simy, Simy , Sim; between O to 1.
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Figure 3. Overall framework of our etype recognition algorithm
4. Etype Recognition Algorithm

In order to predict the etype of unknown concepts from candidate ontologies, we propose
an etype recognition algorithm that exploits the property-based similarity metrics defined
above where, as Figure 3 shows, different modules are marked in different colours. The
ontology parser aims to parse the input ontology as a structured set of etypes, entities,
and properties. The ontology will be flattened into a set of triples, where properties and
concepts will be extracted from triples and then formalized as an FCA context. These
two modules are marked in blue since they are pre-processing modules. All properties
are collected and sent to the natural language processing (NLP)-based property matcher.
Different labels of properties may express the same meaning since many of them are
minor variations of the same label. Thus, an NLP pipeline is designed to normalize all
input properties, where phrase segmentation, lemmatization and stop-word removal are
introduced for better normalization performance. Then, string-based and language-based
similarity metrics are exploited for matching the properties with normalized labels [17,
18]. Thus, the property matcher will output the list of aligned properties. In the next
phase, we generate the property-based etype similarities Simy, Simy and Sim; by FCA
contexts and aligned properties. According to the Function (6), three similarity values
will be generated for each etype pair, which will then be passed to the etype recognition
module for final results. Note that ML-based modules (matchers) are marked in red.

We develop an ML-based method that implements etype recognition into a binary
classification task. The main idea is to predict if two incoming concepts are aligned
with each other. For applying this method, a list of candidate pairs is prepared by pair-
ing etypes/entities from candidate ontology Ont.,,; With etypes from reference ontology
Ontyy. Etypes Crr € Ont,.r will be outputted as the final recognition results when the
result of classification is “aligned”. For increasing recognition performance, we also ex-
ploit string-based and language-based similarity metrics, along with property-based sim-
ilarity metrics Simpy, Simy, and Sim; for training and predicting. The Property matcher
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aims to align properties between ontologies, using the same prediction strategy as for
etype recognition module. Considering that it is inevitable to have misaligned candidate
pairs, we discuss the following solutions to reduce the effect of misaligned properties for
better applying etype recognition. Firstly, the use of similarity metrics allows recognizing
etypes by soft aligning, even if there are a few properties not aligned. This will increase
the robustness of our etype recognition approach. Secondly, we define a specific category
of properties named “undefined” properties (neutral), which will not affect the model
training and reduce the additional interference since misaligned “undefined” properties
will not be used for similarity calculation. Finally, by learning from the practical data
from different resources, ML models will propose a learnable strategy rather than a fixed
threshold for determining alignments, which will maximize the use of existing aligned
properties and minimize the effect of misaligned properties.

5. Evaluation
5.1. Experimental setup

Dataset selection. We conduct experiments on several real-world datasets used for on-
tology matching and entity typing aiming at comprehensively evaluating our proposed
algorithm. Our approach focuses on ontologies that contain etypes associated with a
fair number of properties. For the evaluation of schema-level recognition cases (etype-
etype alignments), we involve CONF (ConfTrack ral' version) [19] and BIBLIO (Bib-
lioTrack) [20] from Ontology Alignment Evaluation Initiative’ (OAEI) tracks which are
the main references for most of the schema matching methods, where dataset CONF
contains 21 annotated reference ontology pairs, and BIBLIO contains 6 reference ontol-
ogy pairs. For validating our algorithm on instance-level etype recognition cases (entity-
etype alignments), we build two datasets, namely EnTypes,; s and EnTypegex, since there
is no publicly released dataset for such etype recognition tasks that involves more than
one ontology. We exploit the public dataset DBpedia630k [21] and DBpedia infobox>
as the reference ontology for providing reference etypes. Because DBpedia is a general-
purpose ontology that contains common etypes in the real world, where sufficient proper-
ties are applied for describing these etypes. Then we select candidate entities from DBpe-
dia, SUMO* and several domain-specific datasets [22]. The entities we selected mainly
according to common etypes, more specifically, Person, Place, Event, Organization and
their sub-classes. Finally, we obtain 20,000 entity-etype candidate pairs, where 6,000
from DBpedia (EnTypes.; ) and 14,000 from the remaining resources (EnTypeg,,). No-
tice that we randomly select training samples for all datasets we applied in the exper-
iments to keep fair comparisons, where each dataset is divided into a training set with
50%, test set with 30%, and validation set with 20%. Also notice that there are no shared
entities between the train, test, and validation sets for all the datasets.

Feature selection. Our etype recognition algorithm applies a general binary classifica-
tion strategy, which is independent of the specific ML model. Thus, the data label of

Thttps://owl.vse.cz/ontofarm/
Zhttp://oaei.ontologymatching.org/2021/
3http://wikidata.dbpedia.org/services-resources/ontology
“https://www.ontologyportal.org/
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Table 2. Representative samples of property-based similarity Simy, Simy and Sim; between candidate etype-
etype (left) and entity-etype (right) entity pairs.

Ceand Crey Simy Simy Simy M Leana Cref Simy Simy Simy M
Contribution Paper 1 0.853 | 0.730 | x MiltHinton Person 1 0.787 | 0.873 | x
Topic SubjectArea | 0.756 | 0.740 | 0.857 | x Jadakiss Person 1 0.645 | 0305 | x
Topic Author 0.198 | 0.353 | 0.018 Boston Person 0.264 | 0.173 | 0.041
Poster Meta-Review 0 0312 | 0.262 Boston Place 0.720 1 0433 | x
Chair Chairman 1 0.559 | 0.554 | x Jadakiss Place 0.128 | 0.093 | 0.148
Publisher Chairman 0 0.07 | 0.195 MiltHinton | Organization | 0.070 | 0.022 | 0.092

positive and negative samples refers to if the candidate pair is matched. The data consists
of three kinds of features, which are property-based similarity metrics (Simy, Simy and
Simy), string-based similarity metrics (N-gram [23], Longest common sub-sequence [23],
Levenshtein distance [24]) and language-based similarity metrics (Wu and Palmer sim-
ilarity [25] and Word2Vec [26]). Besides property-based similarity metrics, some of the
beneficial string-based and language-based metrics are selected as additional metrics for
achieving better recognition performance. These similarity metrics aim to measure dif-
ferent aspects of the relevance between the reference etypes and candidates. Since all
the above-mentioned similarity metrics are symmetric, the order of etype/entity in the
candidate pair will not affect the final results. Moreover, we apply only property-based
similarity metrics (Simy, Simy and Simy) for instance-level etype recognition. Because
the label of the candidate entity is commonly not relevant to its etype (e.g., entity Bob
and its etype Person).

Evaluation metrics. In our experiment, we exploit widely-used evaluation metrics, in-
cluding Macro-averaged (Ma-F1) and Micro-averaged Fi-measure (Mi-F1), to compare
our algorithm with state-of-the-art methods. We form the etype recognition candidates
as pairs, where each pair consists of a reference etype and a candidate etype/entity. F1
scores Ma-F1 and Mi-F1 are calculated from the basic metrics precision and recall which
are respectively referring to the fraction of correctly identified pairs among all identified
pairs and the fraction of correctly identified pairs among all the ground-truth pairs. We
consider F1 scores to be the most relevant metrics for our evaluation since they reflect
both recall and precision. Notice that Ma-F1 focuses on evaluating the performance of
each class and Mi-F1 evaluates the overall performance of all samples.

5.2. Experimental results

5.2.1. Qualitative analysis

Table 2 provides representative examples to show the etype similarity metrics be-
tween candidate etype-etype pairs from ConfTrack and candidate entity-etype pairs from
EnTypegen, respectively. Value box “M” demonstrates if two etypes are referring to
the same concept, where x refers to a positive answer. We find that the value of our
property-based similarity metrics indeed captures the contextual similarity between rel-
evant etypes, where aligned etypes output higher values (e.g., paper-contribution), in
turn, non-aligned etypes return lower values (e.g., person-document). With a broad ob-
servation of the metric values, we consider that our proposed property-based similarity
metrics Simy, Simy and Sim; are valid for both cases of etype recognition.
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Table 3. Quantitative results for our proposed etype recognition algorithm on different datasets. The best and
second-best results are highlighted in red and blue colors, respectively.

Methods CONF BIBLIO EnTypes,; ¢ EnTypecg.,
Ma-F1 Mi-F1 Ma-F1 Mi-F1  Ma-F1 Mi-F1 Ma-F1 Mi-F1
FCAMap [1] 0.651 0.660 0.824 0.801 - - 0.468 0.478
AML [5] 0.717 0.723 0.845 0.831 - - 0.590 0.584
LogMap [29] 0.680 0.682 0.851 0.848 - - 0.565 0.561
Bento et. al. [30] 0.708 0.714 0.806 0.816 0.479 0.502 0.495 0.491
Nkisi-Orji et. al. [31] 0.643 0.648 0.760 0.775 0.533 0.557 0.544 0.537
ConnectE [32] 0.509 0.517 0.615 0.622 0.849 0.833 0.633 0.627
HMGCN [33] 0.487 0.511 0.590 0.588 0.827 0.830 0.608 0.611
Sleeman et. al. [6] 0.542 0.545 0.718 0.714 0.759 0.770 0.430 0.458
Giunchiglia et. al. [7] 0.580 0.593 0.679 0.683 0.762 0.758 0.610 0.597
ETRxGBoost 0.744 0.743 0.847 0.853 0.839 0.842 0.628 0.629
ETRanN 0.693 0.689 0.828 0.840 0.823 0.836 0.641 0.640

5.2.2. Quantitative evaluation

Our etype recognition method is named ETRxgpo0sr and ETR 4y, where X GBoost and
ANN refer to machine learning models XGBoost classifier [27] and artificial neural net-
work (ANN) classifier [28], respectively. We apply two models in our algorithm as a kind
of ablation study to comprehensively evaluate the validity of our proposed similar metrics
on the etype recognition task. We have compared our work with state-of-the-art match-
ing methods, including previous OAEI evaluation campaigns (FCAMap [1], AML [5],
LogMap [29]), ML-based ontology matching methods (Bento et. al. [30], Nkisi-Orji et.
al. [31]), deep learning-based entity typing methods (ConnectE [32], HMGCN [33]) and
general etype recognition methods (Sleeman et. al. [6], Giunchiglia et. al. [7]).

Table 3 shows the comparison between our approach with state-of-the-art methods.
Firstly, we can find that our methods ETRxgp,0sr and ETR4yy achieve promising results,
each leading performance on several measurements. To be more specific, ETRxGpoost
achieves the best or second-best results of all metrics on datasets CONF and BIBLIO.
AML achieves the second-best performance on CONF; LogMap obtains the best and
the second-best results of two metrics on BIBLIO, respectively. We find that ontology
matching and general etype recognition methods tend to perform better than entity typ-
ing methods on datasets CONF and BIBLIO since ConnectE and HMGCN are not de-
signed for schema-level cases. Notice that we use Ma-F1 and Mi-F1 to reflect the per-
formance of classes and samples. Thus, methods have greater Ma-F1 than Mi-F1 (e.g.,
FCAMap and AML for BIBLIO) means these methods are performing better on few-
sample classes and lose in rich-sample classes, which points to an unbalanced result. As
for instance-level etype recognition datasets EnTypeg,; s and EnTypege,, ETR sy leads
the results on EnTypege,, and ETRxGpooss achieves the best and second-best results of
two metrics on EnTypes,; r, respectively. Ontology matching methods poorly perform in
instance-level cases since most of them rely on label matching, where the label of en-
tity is commonly not relevant to its etype in practice’. Deep learning-based entity typing
methods also achieve promising performance on EnTypeg,; s, where ConnectE leads the

Notice that we remark with ‘-> where the methods are not applicable to the dataset.
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Table 4. Quantitative evaluation of instance-level recognition on different entity resolutions.

Methods Person Organization
MilitaryPerson ~ Athlete  Artist ~Comedian  MilitaryOrg.  Company  SportsClub  ReligiousOrg.

ConnectE [32] 0.501 0.756 0.679 0.640 0.627 0.658 0.605 0.525
HMGCN [33] 0.464 0.592 0.660 0.598 0.643 0.507 0.680 0.531
Sleeman et. al. [6] 0.472 0.639 0.690 0.597 0.479 0.463 0.637 0.510
Giunchiglia et. al. [7] 0.429 0.658 0.636 0.522 0.512 0.487 0.624 0.482
ETRxGBoost 0.507 0.722 0.683 0.659 0.655 0.528 0.689 0.491
ETRann 0.508 0.712 0.677 0.581 0.627 0.487 0.663 0.550

Ma-F1 score. However, their performance decreases on EnTypeg,, since they are de-
signed for knowledge completion which utilizes self-information rather than additional
ontology information. Thus, datasets using over one ontology are challenging for such
methods. Etype recognition methods by Sleeman et. al. [6] and Giunchiglia et. al. [7]
only achieve limited results on all four datasets, since they do not distinguish the prop-
erty information when recognizing the etypes. Considering the average results of our
approach with different models are performing better or close to the state-of-the-art, we
can say that our approach surpasses the state-of-the-art competitors on etype recognition
tasks®. Meanwhile, although ETRyGpo0sr and ETR vy produce slightly different results
within different ML models, the stable overall performance produced by two different
models indicates that our proposed similarity metrics and etype recognition algorithm
are valid and adaptive.

Considering that etype recognition performance is affected by entity resolutions, we
implement an additional experiment based on more specific etypes. We select four sub-
classes of etype person and organization and their corresponding entities as candidate
pairs, respectively. We exploit the same ML models as we used in Table 3 to compare
with existing methods in this experiment. Table 4 presents the Mi-F1 score of the recogni-
tion results. We still find our methods achieve better recognition performance than state-
of-the-art methods in most cases. ETRygpoosr Obtains promising overall performance on
specific etype recognition, where entities of artist and comedian obtain better results in
the person group and entities of military unit and sports club perform better in the orga-
nization group. The experimental results show that our metrics and approach can also be
applied for specific instance-level etype recognition.

5.3. Ablation study

Effect of similarity metrics. The first ablation study is to evaluate if each of the proposed
property-based similarity metrics is effective. In this experiment, we test the backbones’
(B) which were used in the etype recognition tasks. Based on the backbones, we also
design a controlled group that includes models trained without one of the property-based
similarity metrics (i.e. B-Simy, B-Simy and B-Sim;) and models trained without all met-
rics (i.e. B-L). If the backbones perform better than the corresponding models in the con-
trolled group, we can quantitatively conclude that each of the property-based similarity
metrics (Simy ,Simg,Simy) contributes to the etype alignment and recognition tasks. Ta-
ble 5 demonstrates the Mi-F1 score of each group, where we apply dataset CONF and

6 All methods do not have significant differences in running times.
7trained by all three metrics (Simy , Simpy, Simy)
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EnTypeg.,. Note that we select two models for both cases as Table 5 shows. We find
that backbones perform better than models in the controlled group, especially for mod-
els trained without all metrics. Thus, we consider all property-based similarity metrics
contribute to better recognition performance. Particularly, Simy and Simg significantly
affect the performance of schema-level cases, and Sim; affects instance-level cases more.

Table 5. Ablation study on property-based similarity metrics.

Dataset Model Backbone B-Simy  B-Simy  B-Simy B-L
ETA, 0.713 0.635 0.639 0.660 0.618
ConfTrack ANN
ETAxGBoost 0.740 0.648 0.655 0.694 0.632
ETRann 0.537 0.327 0.391 0.309 -
EnT}'peGen
ETRxGBoost 0.559 0.413 0.402 0.385 -

Effect of constraint factor. In section 3.1, we defined a constraint factor A for calculat-
ing the metric Simy. This study aims to statistically identify the value of A. We apply
the dataset CONF and its two best-performed models. The value of A is set evenly from
0.1 to 1 by discrete points. We evaluate if this pre-set factor affects the final recogni-
tion performance and obtain the best value of A for generic etype recognition. Table 6
demonstrates the results, where we highlight both the best and second-best results. We
can find that different values of A do affect the final etype recognition performance. And
two models show a similar trend that the best value of A is close to 0.5. As a result, we
assign A = 0.5 to calculate metric Simy in our experiments.

Table 6. Ablation study on the constraint factor A.The best and second-best results are highlighted in red and
blue, respectively.

Factor Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ETAsnN 0.613 0.638 0.670 0.678 0.712 0.685 0.679 0.653 0.630

ETAxGaoow 0.662 0677 0714 0727 0729 0716 0654 0711  0.705

6. Related Work
6.1. Ontology and schema alignment

In the early phases, this research focused on string-based methods, including string-based
metrics (N-gram, Levenshtein, etc.), syntactic operations (lemmatization, stop word re-
moval, etc.), and semantic analysis (synonyms, antonyms, etc.) [34]. Sun et al, [4] review
a wide range of string similarity metrics and propose the ontology alignment method by
selecting similarity metrics in different scales. Although string-based methods can lead
to effective performance in some cases, selecting the right metric for matching specific
datasets is the most challenging part. The structure of an ontology has also been con-
sidered important information for identifying etypes [35]. Such studies suppose that two
etypes are more likely to be aligned if they have the same super-class or sub-class. The



D. Shi and F. Giunchiglia / Recognizing Entity Types via Properties 207

LogMap system [29] uses a two-step matching strategy, that is, matches two etypes E,
and E, by a lexical matcher, and then considers the etypes that are semantically close
to E, are more likely to be semantically close to E,. AML [5] introduces an ontology
matching system that consists of a string-based matcher and a structure-based matcher,
building internal correspondences by exploiting is-a and part-of relationships. Machine
learning techniques are also applied to this topic. Some studies model the etype match-
ing task as a classification task, trying to encode the information like string and struc-
ture similarities as features for model training. Amrouch et al, [36] develop a decision
tree model by exploiting lexical and semantic similarities of the etype labels to match
schemas.

6.2. Entity type recognition

According to the different usage and motivation, studies on entity type recognition (also
called entity typing) focus on three main directions: (1) recognizing the type of entity
from text; (2) recognizing the type of entities from the single ontology for knowledge
completion; (3) recognizing the type of entities from different ontologies for ontology
merging. Recent studies focus more on the first two tasks, e.g., [33] introduce a hierar-
chical multi-graph convolutional network for fine-grained entity typing and [32] propose
a deep learning-based entity typing method ConnectE which exploits knowledge em-
bedding features for knowledge completion. Large language models are also introduced
for similar tasks, e.g., some Bert-based methods. For instance, [37] exploit BERT-based
language models to predict the entity type of words in sentences by inputting prompts.
Different from the former two tasks, we focus on recognizing the type of etypes/entities
from other ontologies for extending the reference ontology automatically. Rather than
using label-based methods, some previous studies also consider properties as a possible
solution, [6] propose an etype recognition method by modeling etype recognition as a
multi-class classification task. However, a pre-filtering step is needed since only proper-
ties shared across all candidates are counted for training and testing, which means there
will be a few properties remaining after such filtering and a large amount of critical in-
formation will be discarded. Thus, the adaptation of such methods will be limited when
applied in practice. Giunchiglia and Fumagalli [7] propose a set of metrics for selecting
the reference ontology to improve the above method, which achieves improved perfor-
mance with the support of a large number of ontologies. However, there are still limi-
tations since these studies consider all properties with the same weight and neglect to
distinguish properties that will contribute differently during etype recognition.

7. Conclusions

In this paper, we have proposed a generic etype recognition algorithm via a set of novel
property-based similarity metrics. Firstly, we discuss that the corresponding properties
are used to implicitly describe etypes, which provides us with a novel insight for iden-
tifying etypes. Then we propose three metrics for measuring the contextual similarity
between reference etypes and candidate etypes/entities, namely the horizontal similarity
Simy, the vertical similarity Simy, and the informational similarity Sim;. Based on our
proposed metrics, we develop an ML-based algorithm for etype recognition. Thus, we
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validate our algorithm for the corresponding data level. Compared with the state-of-the-
art methods, the experimental results show the validity of the similarity metrics and the
superiority of the proposed etype recognition algorithm, both quantitatively and qualita-
tively. Our future work will continually focus on fine-tuning the property-based similar-
ity metrics, trying to apply our etype recognition method to more specific ontologies.
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