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Abstract. We present the Meta-Ontology for Introspection (MOI): Inspired by
fundamental processes of the human mind, cognitive architectures (CAs) explore
ever more methods to leverage metacognition. Still, an ontological model to trace
metacognitive experiences for learning or as input for metacognitive control rou-
tines has yet to be developed. Based on a review of existing standards, we formally
identify the relevant scope in the form of Competency Questions (CQs) and extend
SOMA, a well-established formal ontology initially designed to interpret episodic
memories of a robotic CA. The resulting MOI can model a CA’s software and ca-
pabilities of single components, trace information processing and inter-component
communication, label self-lived mental events, and capture causal relationships. We
evaluate MOI via the CQs and exemplarily demonstrate its reasoning capabilities.
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1. Introduction

Metacognition is fundamental for human cognition, covering “any knowledge or cog-
nitive process that is involved in the interpretation, monitoring or control of cognition”
[1]. This entails two levels of cognition: The meta-level controls the basic object-level
using data gathered from constant monitoring [2]. This includes metacognitive knowl-
edge, which holds facts about one’s own cognition (e.g., “I know how to solve for x.”),
metacognitive control strategies, which are subconscious behaviors to manipulate one’s
own mind (e.g., the habit of inventing mnemonics), and metacognitive experiences, in-
terpretations of one’s own mental state (e.g., experiencing and labeling a déjà vu) [3].

A growing number of computational cognitive architectures (CAs) also employ prin-
ciples inspired by human metacognition [4]. A common technique is to trace employed
(reasoning) algorithms for online evaluation or offline learning. We consider a scenario
where different reasoners cooperate in answering queries hybridly, e.g., to serve a robotic
agent with the necessary information to solve complex tasks. Each system could be tai-
lored to different accuracy, answer speed, or domains of expertise. To evaluate the relia-
bility of conclusions or to trace back an error’s source, it is necessary to track their infor-
mation flow over time, annotated with metadata such as correctness of results. Metaphor-
ically, the CA’s metacognitive experiences have to be modeled and stored.
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Although self-lived experiences are usually associated with episodic memory, no
consensus has been achieved on episodic memory for CAs [5]. Instead, episodic memory
“has been largely ignored by CAs” [6] and “remains relatively neglected in computa-
tional models of cognition” [4]. One exception to this [7] is the Cognitive Robot Abstrac-
tion Machine (CRAM) [8] and its reasoning engine KnowRob [9], which embrace knowl-
edge structures known as narrative-enabled episodic memories (NEEMs) [9]. NEEMs
link sub-symbolic data about the robots’ physical experiences to the robotic agent’s inter-
pretation thereof, which is expressed in a formal ontological model. For example, quan-
titative data on pose transitions relate to motion events that might be classified by the
task of cutting bread. To our knowledge, this feature is unique to CRAM and KnowRob.
As capturing single-purpose training data with robots is time-consuming, NEEMs are
constantly logged. For different learning tasks, selected parts can then later be queried
via the free Open-EASE platform [10]. This has proved useful, e.g., for learning action
parameterization [11,12], learning common-sense knowledge from humans in VR [13],
and transferring experiences between robots and affordances to novel objects [14].

While there are both examples of CAs employing formal ontologies, especially in
the robot domain (see [15,16]), and of CAs that use tracing for metacognition (see [4]),
we are not aware of any ontological model to express such traces. Although NEEMs have
been used to log messages between the CRAM executive and KnowRob in a recent ex-
periment on learning how to self-specialize plans [17], this approach towards ontology-
enabled introspection was unsystematic and only covered specific reasoning events. Oth-
ers have logged perception events using ARBI and ISRO [18]. However, these approaches
do not come close to cognition tracing: Instead, the complete message flow between all
cognitive components has to be tracked – potentially extending even to details of their
internal information processing. This lack of a corresponding domain ontology is sur-
prising, especially given the robot community’s ongoing efforts to make research data
openly accessible, e.g., by standardizing terminology via formal ontologies [19,20,21],
or by hosting them on research platforms such as Open-EASE or RoboEarth [22].

Here we propose the formal Meta-Ontology for Introspection (MOI) to model
and trace metacognitive experiences, extending the Socio-Physical Model of Activities
(SOMA) ontology [21,23], which itself builds on the upper-level ontology DOLCE+DnS
Ultralite (DUL) [24,25]. We show that this extension is natural since SOMA is explicitly
designed to capture episodic memory and has been employed for this with great success,
e.g., as the underlying axiomatization of NEEMs. Note that we do not claim MOI to
accurately represent human cognition, as it instead concerns computational processes;
such research would require a detailed analysis of proposals for human CAs as well.

Our methodology roughly follows the SABiO guidelines for ontology development
[26]: We first define the scope via competency questions (CQs) [27] in Section 2. In Sec-
tion 3, we give an overview of relevant existing models, covering introspection, CA expe-
riences, capabilities and software. Section 4 briefly introduces SOMA and then presents
its novel extension MOI. In Section 5, we evaluate our model via the defined CQs.

2. Scope

As per the SABiO guidelines [26], ontology engineers, potential users and domain ex-
perts collaboratively defined MOI’s scope. Due to their unique experience in working
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with ontology-based episodic memories, we selected CRAM, KnowRob, and Open-
EASE developers to constitute both the pertinent domain experts and the future users.
The main purpose of tracing a CA’s metacognitive experiences naturally requires the on-
tology to model the telemetry between all software components. However, component-
specific information is relevant as well: What data do they hold and process, or, more
abstractly, what mental events do they experience? For this, we need taxonomies of com-
munication and mental tasks, together with associated roles, e.g., to label sender and
receiver of a message, or information as premises and conclusions.

Inspired by software tracing tools, we aim for a flexible level of abstraction: It should
be possible to trace abstract communication and mental events of cognitive components
like memory and perception, and of software components like server and clients, as well
as atomic method calls and algorithm steps. For this, our model must both compose com-
plex processes from sub-processes and include basic patterns to represent software. Be-
sides event composition, tracing tools commonly relate events via causality. These prin-
ciples offer rich semantics that typical logging frameworks lack. To see the benefits, con-
sider highly parallelized systems with multiple agents communicating simultaneously.
As multiple messages could have similar time stamps, a server’s log about receiving a
query is hard to associate with a client’s log about sending that query if both were only
to contain uninterpreted text. Ergo, a basic model of causality is in scope as well.

A secondary goal is to provide some metacognitive knowledge in the form of (men-
tal) capabilities, as control routines might require information on a cognitive routine’s
abilities to perform specific actions and its qualities in doing so. For example, as ex-
plained in the introduction, control functions need to know what object-level routines
can reason about what domain and how reliable their inferences are.

Following SABiO, we concretized the scope via narrowed-down competency ques-
tions (CQs) [27,26] that our model should answer, which then drove the development
process iteratively.

CQ1: How do events relate by cause and composition?

CQ2: Via what tasks do agents communicate, and what roles do the participants play?

CQ3: What information does an agent have at what time?

CQ4: Via what tasks do agents process information (“think”), and what roles do the
participants play?

CQ5: How does information flow and transform within a CA?

CQ6: How does “thought” relate to the “physical” actions of an agent?

CQ7: What is software, both during and outside of runtime?

CQ8: How does software relate to employed algorithms and the executing machine(s)?

CQ9: What are the capabilities of an agent, and, in particular, a software controller?

We limit the CQs’ scope to the domain of computational CAs. For example, we refrain
from modeling every speech act of human communication and instead only consider
those necessary to model the telemetry between a CA’s software components. We never-
theless aim for extendability, e.g., for when human-robot cooperation enters the loop.
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3. Related Work

3.1. Ontologies for Introspection

Inspired by the success of bio-medical ontologies, there has been an increasing interest
in developing formal ontologies for psychology [28]. While the Cognitive Atlas [29] as
an extensive knowledge base of cognitive neuroscience is probably the most famous ap-
proach, its organization remains shallow. For example, it defines decision-making, facial
expression, and hedonism all as siblings. Thus, reasoning tasks relevant to our case are
not supported. Others model specific sub-domains of psychology, e.g., mental illness,
EEG, and emotion [30]. Most recently, IM-Onto was developed to homogenize the vo-
cabulary of metacognition across different research fields [31]. As it focuses on meta-
reasoning tasks and only considers a single object-level task (planning), it is of little use
for labeling object-level cognition.

Metzler and Shea (2011) surveyed which capabilities researchers in the field of CAs
deem relevant for CAs [18] and developed an informal taxonomy of “mental capabili-
ties.” Although they intended to assist CA development, they also exemplarily classified
the cognitive steps involved in a robot’s route planning. The capabilities considered are
somewhat abstract, e.g., to “know,” “perceive,” and “plan,” and the taxonomy lacks more
concrete mental functions such as physics simulation as a means for planning.

Similarly to how CRAM and KnowRob exploit SOMA, the Artificial robot brain
intelligence (ARBI) employs the Intelligent Service Robot Ontology (ISRO) [32]. ISRO
contains a detailed taxonomy of perception events of a service robot – most other mental
events, such as planning, learning, or forgetting, are not considered. As mentioned in
Section 1, ARBI logs perception events using ISRO, although telemetry, ensuing data
processing and consequences are not logged. Ergo, this can only be viewed as an imma-
ture first step towards tracing mental events using ontologies.

Other ontologies concerning aspects of metacognition are not helpful to us as their
domains do not cover object-level cognition tasks, but, e.g., metacognitive strategies to
automatically replace failing components [33,34] or possible responses of meta-level
functions to certain diagnoses [35,36]. In summary, only the taxonomy by Metzler and
Shea structures general concepts of object-level cognitive tasks, although ISRO and IM-
Onto can be referred to for perception and metacognitive events, respectively.

3.2. Ontological Models of CA Experiences

We focus here solely on ontologies concerning the experiences of robotic CAs. Olivares-
Alarcos et al. (2019) [15] and Manzoor et al. (2021) [16] survey robotic frameworks
employing formal ontologies. None of these support tracing or the collection of telemetry
data, although ISRO logs perception events (see Section 3.1). Furthermore, KnowRob
with SOMA is the only framework that aims to fully support episodic memory. SOMA
describes physical actions in detail but, thus far, lacks mental tasks and communication.

The AWARE ontology [37] describes observations and decisions of a mobile robot,
but as well fails to explain how they relate. The Deontic Cognitive Event Ontology
(DCEO) models the mental states of agents for interaction, e.g., perception, beliefs, de-
sires and intentions [38]. DCEO does not support our use case, however, as it associates
those mental states with the owner in a highly abstract way, neglecting all internal control
systems, which makes it impossible to trace the information flow.

R. Nolte et al. / Towards an Ontology for Robot Introspection and Metacognition 321



3.3. Capabilities

Capabilities are closely related to Dispositions, which portray an object’s proneness to
participate in particular processes [23]. For example, a knife may have the disposition
to cut bread, but not trees. Merrell et al. (2019) define capabilities as benefit-bearing
dispositions and sort them between the Basic Formal Ontology (BFO) [39] classes of
Disposition and Function [40]. In our opinion, this falls short insofar that agents can
also harm themselves and must continually avoid doing so, e.g., by exercising caution.

Capabilities (also skills and functions) are common in robot ontologies, e.g., in ISRO
and TOMASys [34]; for others, see recent surveys [15,16]. ISRO associates capabilities
with robots only, and cannot express, e.g., that a database has the capability to answer
queries. Although not covering capabilities, SOMA includes an elaborate dispositional
model of affordances [23] that describes how dispositions interact. For example, for a
cutting affordance to manifest, the dispositions of something (suitably) sharp and some-
thing (suitably) cuttable must combine. This is encoded by the relations affordsBearer
and affordsTrigger describing what Roles the bearer, i.e., the dispositions’ owner,
and the triggers, i.e., objects with matching dispositions, play in the associated task. In
the cutting example, the disposition of a knife affords the bearer to cut and the trigger
to be cuttable. Another disposition matches this if the roles of bearer and trigger are
switched, and, additionally, both dispositions afford the same task.

3.4. Software Models

While the problem of describing software is relevant for robotics, robotics ontologies
(see Section 3.1) have so far not focused much on this and most consider only single
concepts such as algorithms or software. Exceptionally, ISRO and SOMA’s predecessor,
the Semantic Robot Description Language (SRDL) [41], taxonomize software compo-
nents but without associated tasks or a model of what software is or how it relates to
algorithms. A conceptual model of software is described in [42], which differentiates be-
tween code, programs, software systems, and software products, where each preceding
constitutes the succeeding; this work is however not axiomatized.

Several ontologies specifically target software, such as the Core Software Ontology
(CSO) [43], Core Ontology of Programs and Software (COPS) [44] (both of these use
DOLCE [24] as a foundation), and the Software Ontology (SwO) [45]. They make dis-
tinctions between entities such as algorithms, source code, source code files and run-
ning software instances. Importantly, these models treat running software instances as
perdurants, e.g., as computational activity, (CSO, COPS) or as the computer’s disposi-
tions (SwO). Similarly, de Oliveira views software capabilities as borne by the executing
computer [46], not the running instances.

While the above conceptualizations of software instances are valid, they remain in-
sufficient in our case as features of running software that abstract away from its physi-
cal manifestation are not captured. We must describe properties associated with agents,
e.g., the ability to execute tasks, and to associate running software with the capabilities
to communicate and process information. Further, in our use-case, a running piece of
software must be able to participate in events, but not be an event itself. As such, our
model, especially of running software, must be of a medium level of abstraction that is
not yet found in existing software ontologies, sitting between the low-level ontologies
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CSO and COPS, and the high-level models of SwO and de Oliveira. To our knowledge,
the only considerations of the agentive features of running software so far are a com-
ment contained in the implementation of DUL stating that “a computational agent can be
considered as a PhysicalAgent,” and the SoftwareAgent concept in the upper ontology
YAMATO [47].

4. Model

4.1. Ontological Grounding

We now present the Meta-Ontology for Introspection (MOI) as a model to trace metacog-
nitive experiences of (robotic) CAs. We decided to extend the formal Web Ontology Lan-
guage (OWL) [48] ontology SOMA [21], which is well established and explicitly de-
signed to express and log robot experiences via many patterns.

For example, in the robotic domain, particularly in bridging physical events to con-
cepts thereof, it is imperative to recognise that interpretations take place: Any charac-
terization of an objective occurrence unexceptionally depends on the observers’ subjec-
tive narrative [49]. Such an interpretive view has been employed with great success in
SOMA-flavoured NEEMs [10,11,12,13,14] and has also been argued to be propitious
for classifying mental processes [50]. SOMA enforces this stance by building upon the
foundational ontology DUL, which consistently distinguishes PhysicalEntities from
SocialEntities that exist “for the sake of [. . . ] contextualizing or interpreting existing
entities” [25] such as Description and Concept. Accordingly, a physical Event (an
objective occurrence) executes an EventType (a subclass of Concept and thereby a
subjective interpretation of said event), that isDefinedIn some Description such as
an observer’s Narrative or an emerging Affordance. More concretely, a Communi-
cationAction may execute a Querying or Answering task as depicted in Figure 1,
and a movement may execute a cutting Task.
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Figure 1. ABox of a Querying task that causes an Answering task. Individuals are labeled with extending
concepts and color-coded by association with objective phenomena or “interpretations” thereof.

DUL applies the above principle to other common ontology patterns such as Roles,
which it also views as a subclass of Concept and therefore as defined by some De-
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scription. Any object x that – objectively – isParticipantIn some Event that ex-
ecutes a Task y may be associated with a subjective Role linking to x via hasRole and
to y per hasTask as is standard. This allows for contextualizing entities (see, e.g., [51]
for details), for example, to differentiate a cutting tool from the object being cut, and a
message’s sender from its receiver (see Figure 1). Furthermore, however, linking Roles
to Narratives can capture that agents disagree on who plays which role, e.g., when
detectives argue about the perpetrator’s identity. Figure 2 depicts the general pattern.

has capability

Agent

has 
disposition

has role

Objecthas participantEvent

executes

Task has 
task

Role

defines bearer, 
defines trigger 

defines 
task

describes

defines 
performer

Affordance

affords bearer, 
affords trigger 

Disposition Quality

affects, causes, terminates

has 
part

has 
part

Legend

DUL

SOMA

MOI

is a

affords 
performer

Capability

Performer

Action

Event Type

Figure 2. Basic concepts and their relations of the proposed capa-
bility model (TBox); color-coded by defining ontology.

Communication Task

D
iscourse

R
eporting

Illocutionary 
Act

Answ
ering

Q
uerying

C
om

m
anding

Asserting

Figure 3. Proposed taxonomy of
communication tasks (TBox).

Besides the patterns inherited from DUL, SOMA comes with a dispositional model
of affordances as described in Section 3.3, an elaborate taxonomy of everyday activities,
and means to describe plans thereof. The latter proves useful as it allows, e.g., to associate
mental planning tasks with the subsequently executed actions.

MOI is bundled in recent SOMA versions and distributed over its sub-ontologies
following SOMA’s modular structure (see [21]). For example, SOMA-ACT contains the
new taxonomies of mental- and communication tasks. SOMA, including MOI, is pub-
lished under the GNU Lesser General Public License Version 3.0 (GPLv3)1. Note that
although their developers helped to formulate the scope, SOMA and MOI as general
schemas are completely agnostic towards CRAM, KnowRob and Open-EASE.

4.2. Telemetry

CQ1 requires a model of causality and composition between events of arbitrary abstrac-
tion. The latter can be represented out-of-the-box via DUL’s hasPart relation as de-
picted in Figure 2, e.g., a complex action might have atomic motion and thinking as parts.
Regarding causality, the temporal relations offered by SOMA such as before and after
are insufficient (see Section 2). To solve this, we say that an Event directlyCauses
(isTerminatedBy) another if the latter would not have occurred (ended) in the absence
of the former. We additionally introduce a more general relationship: an Event affects
another if a variation in the course or outcome of the former would have resulted in a

1SOMA, including MOI, is freely available at: https://github.com/ease-crc/soma
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variation in the latter. For example, a planning task that specifies a target position affects
the subsequent pick-and-place task that uses this parameter.

We argue that causality is transitive, while termination is not. A knocked over
domino causes the fall of each subsequent domino in a chain reaction, but in contrast,
extinguishing a fire does not transitively cancel the concert that the outbreak interrupted
hours ago. Therefore, only for directlyCauses do we introduce a transitive superprop-
erty causes, which we in turn sort beneath SOMA’s before due to the intuition that
a cause has to occur sooner than its effect. Figure 1 above depicts an exemplary causal
relationship between a querying and answering action; Figure 2 shows how the relations
embed into DUL’s Action model.

For CQ2, we add a simple taxonomy of abstract communication tasks (Figure 3) that
is straightforward to extend. These cover illocutionary acts [52] in which an agent orders
another to execute some instructions (Commanding), demands information from another
(Querying) or responds (Answering). Inspired by simple communication models, e.g.,
Shannon-Weaver [53], we associate the tasks with specific roles. The participants of an
Action classified as an IllocutionaryAct play the roles of Sender, Receiver, and
Message, respectively. Furthermore, we model two non-atomic communication tasks
that are constituted of others: Discourse, in which the participants alternate between
the roles of sender and receiver, and Reporting, with stable roles.

To answer CQ3, we need to model the information that an agent has. DUL differen-
tiates between InformationObject, e.g., the text of a shopping list, InformationRe-
alizations, which are embodied copies of InformationOject, e.g., a piece of paper
with the shopping list written down, and the SocialObject expressed by the Infor-
mationObject, e.g., the sorted collection of items to buy. This pattern also shapes the
models of CSO and COPS (see Section 3.4) as DUL is a restriction of DOLCE. CQ3
mainly addresses InformationRealization, as these are physically located (within
an agent’s memory). This can be exploited by SOMA’s containment pattern, originally
developed for physical containers like kitchen cabinets. An agent then knows a piece of
information if it is contained within its memory. In SOMA, this is represented by a Con-
tainmentState with the associated roles of a Container and a ContainedObject.

This allows the system to track changes in an agent’s information using State-
Transitions, which fills the missing piece for answering CQ5. Our only additions are
to make the relation between the initial and the terminal state of a transition explicit by
introducing the property replacedBy and to add super-property chain axioms to auto-
matically infer the new relations replacedBy, terminates, and causes between the
MentalAction that causes the transition and the initial and terminal PhysicalStates.

An exemplary ABox of this pattern is depicted in Figure 4. The mental action
of Memorizing triggers a StateTransition between the “not-knowing” Contain-
mentState, in which the memorized InformationRealization is excluded from the
Memory, to the “knowing” state where it is inserted. For simplicity, Figure 4 does not
depict the memorizing agent, the relation between the action participants (agent, mem-
ory, InformationRealization) or the ownership relation between agent and memory.
The InformationRealization may also have further relations to InformationOb-
jects and SocialObjects that represent its content. Information for which OWL is not
designed to express, such as pictures and sound, can be referred to via database pointers.

Finally, this approach must not be taken as advocating a monistic view of the mind-
body problem in human cognition; recall, instead, that we only consider computational
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CAs, for which the adopted metaphor is appropriate because “cognition” manifests it-
self physically, for example, as files in data storage. Our approach allows for sufficient
abstraction even when dealing with exceptions such as black-box models, e.g., neural
networks, in which realizations of knowledge are untraceable: those can simply play as
a whole the role of the memory in a containment state.
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Figure 4. ABox of a StateTransition between two ContainmentStates (simplified). Individuals are
labeled with extending concepts and color-coded by association with objective phenomena or “interpretation”.

The causality relations introduced so far and the communication taxonomy capture
inter-agent communication telemetry. To model internal information processing in an-
swer to CQ4, i.e., ‘thought’, we added an abstract taxonomy of mental tasks as depicted
by Figure 5. The taxonomy draws from Metzler and Shea [18] and thereby covers es-
sential mental events from the cognitive literature. We introduced additional upper-level
categories based on the roles that participating InformationRealizations play. In-
formationAcquisition covers events that output some Knowledge, e.g., via Infor-
mationRetrieval and DerivingInformation. The former describes recalling infor-
mation from memory (e.g., via Remembering), while the latter strictly derives Conclu-
sions from Premises (e.g., via Reasoning or Interpreting). While Information-
Storage includes processes that save some information with the roles StoredObject
and Knowledge for later use, e.g., Learning or Memorizing, InformationDismissal
in contrast removes some ExcludedObject from memory, e.g., Forgetting. We also
add further detail to model operations that are common in CAs. For example, Retro-
and Prospecting denote attempts to construct representations of past or future states.

Note that for CQ3, Interpreting, by which we mean the task of sense making,
e.g., compiling a written text into a mental representation of its meaning, raises the ques-
tion of whether a difference between having information available and understanding it
should be modeled. However, in the domain of CAs, we argue that it is so far sufficient to
represent a “mental representation of its meaning” as just another InformationObject.

For CQ5, we add the property directlyDerivedFrom and its transitive variant
derivedFrom to model that some InformationObject was developed from others.
We can achieve an automatic deduction of directlyDerivedFrom via a complex chain
of properties as depicted in Figure 6, where isInputRoleOf and isOutputRoleOf are
sub-properties of hasTask and isTaskOf, respectively, denoting task input and output.
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between two InformationObjects via a complex property chain. Individuals are labeled with extending
concepts and color-coded by association with objective phenomena or “interpretations” thereof.

4.3. Action execution

Answering CQ6 proved more complex, involving what some deem “to be the funda-
mental question of philosophy of action” [54]: What is the mental process that brings
about a physical action? Although there is evidence mental states impact movement, it
is unknown how [55]. In strict Enactivism, the question is rejected altogether by the cen-
tral argument that “cognition comes from bodily action and serves bodily action, that is,
cognition is embodied action” [56].

As a pragmatic solution, we do not introduce some execution task, but instead model
the relation between a Planning task and the planned tasks’ execution. A Planning task
constructs an InformationObject that expresses some Workflow, i.e., a structured
Plan. The Workflow defines Tasks and Roles, which can classify (later) actions
and their participants. Performing the defined Tasks represents the execution of the plan.

4.4. Software Agents

For CQ7 and CQ8, we model software components and their embodiment during run-
time based on our survey from Section 3.4; the result is depicted in Figure 7. Recall that
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Figure 7. The proposed software model (TBox); color-coded by defining ontology.

DUL is a restriction of DOLCE, which is why we follow the form of CSO in defining
algorithms, implementing source code, and containing files. Concretely, we, too, distin-
guish between information content, structure, and physical manifestation as Algorithm
(a DUL Plan), ComputerProgram (a StructuredText), and ComputerFile (a DUL
InformationRealization). We also describe which language gives meaning to a text;
in the case of a ComputerProgram, this is a FormalLanguage, but other pairs are pos-
sible, e.g., a poem written in a natural language or a picture encoded in some file format.

As explained in Section 3.4, however, we need to deviate from common definitions
of software and running software instances. Software is for us a twofold Design. First,
it describes some SoftwareConfiguration, a structured collection of source code and
data. Second, it describes the structure, behavior, and function of any execution of itself.
Abstracting to an intentional stance [57], we see the running instance of software as
an Agent. This view enables us to describe the interactions of SoftwareAgents via
SOMA’s action-centric approach and the new taxonomies of communication and mental
tasks, setting MOI apart from existing software ontologies (cf. Section 3.4).

A common requirement for agency is intentionality [58], which DUL also demands.
However, in DUL, an agent may bestow intentionality upon others, e.g., in the case of an
organization, it stems from its members, whom the organization actsThrough. In our
case, some agent (a user, method caller, etc.) actsThrough the SoftwareAgent. We
can further exploit this to model that some software agent depends on other software or
on hardware. For example, a script that actsThrough some interpreter or a bytecode
that actsThrough the computer processor represents the former’s reliance on the latter.

Software categories are abundant. Instead of associating software with specific
types, we argue that software agents can play different roles in different scenarios. A
server is sometimes a client; a database can be used for arithmetic. MOI is meant to
describe software via the ability to perform tasks, i.e., capabilities, and via played roles.

4.5. Capabilities

For CQ9, the term Capability typically describes what actions are expected of an
agent. We follow Smith’s view that a Capability is a Disposition [59,60]. As ex-
plained in Section 3.3, we disagree with defining it as yielding benefits to its bearer.
Rather, we see it as the tendency of its bearer to actively participate in the associated
Task as a Performer, and introduce the relation affordsPerformer. A Capability’s
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bearer is always a performer. This generalizes SOMA’s dispositional model to agents and
allows us to develop taxonomies of mental tasks linked to complementary capabilities.
The pattern was depicted in Figure 2. As an example, consider Figure 1: the roles Sender
and Receiver are subclasses of Performer; the respective SoftwareInstances can
be associated with matching Capabilities CanSend and CanReceive.

We further extend this by introducing part-hood for dispositions and capabilities.
Utilizing DUL’s hasPart, we decompose complex capabilities into simpler ones, e.g.,
the capability to answer a query has parts comprehending the query, selecting, encoding,
and sending an answer. Since a Disposition is a Quality of an object in SOMA, we
can concretize these further – e.g., the capability to reason is composed of qualities such
as reasoning speed or soundness and completeness of the underlying logical formalism.
Such information is essential to dynamically plan reasoning flows.

We can also model patterns from software engineering with capabilities: e.g., the re-
quirement that plugins for a host software must implement its interface means they must
have matching capabilities and dispositions. Sender and receiver must have the capabil-
ity to understand the same language; code with the disposition to be interpreted needs an
executor with a matching capability to understand the used programming language.

5. Evaluation

We briefly discuss MOI’s reasoning properties. Using Konclude [61] in a virtual ma-
chine supported by a i7-1065G7 CPU, 32GB RAM, and a GTX 1660 Ti graphics card,
initial classification of the current SOMA version, including MOI, takes about 3s, and
subsequent DL queries about 60ms each. Since most axioms of MOI fall under the OWL
QL profile, we believe that reasoning over large databases is tractable, as is already the
case with non-MOI NEEMs in KnowRob. Note, however, that SOMA fully exploits the
expressivity of OWL DL, e.g., for reasoning about capabilities. Tools like module ex-
traction [62] help in selecting task appropriate subsets.

We hybridly evaluate MOI by using the CQs raised in Section 2 and by giving rea-
soning and querying examples. Following the SABiO guidelines [26], we constructed
test-cases as formal queries associated with CQs, and executed these over example
ABox-data with MOI as the reasoning schema. Since recalling metacognitive experi-
ences means querying potentially massive amounts of data with complex constraints, DL
queries or conjunctive queries might not be sufficient; instead, we chose SPARQL [63].

SELECT ?x ?y WHERE {?x causes ?y}

Figure 8. Query A, associated with CQ1

Figure 8 depicts the simple query A constructed from CQ1 to transitively return all
pairs of causally related actions (due to space constraints, we drop namespaces). Scenar-
ios include hunting error causes or reflecting on the consequences of past actions, e.g.,
when planning what to do next. Figure 9 contains a more complex example, in which we
query for all actions that transitively contain (at least) two causally independent actions.

Query C (Figure 10) returns all IllocutionaryTasks together with their classified
actions, roles played, and action participants. Subsequent queries might return the most
specific concepts an individual satisfies, e.g., that a returned role is a Sender. SPARQL-
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SELECT ?x WHERE {
?x hasPart ?y;

hasPart ?z.
MINUS {?y causes |

isReactionTo ?z}
FILTER (?y != ?z) }

Figure 9. Query B, associated with CQ1

SELECT ?act ?task ?part ?role WHERE {
?task a IllocutionaryTask;

isTaskOf ?role;
classifies ?act.

?part isParticipantIn ?act;
hasRole ?role}

Figure 10. Query C, associated with CQ2

queries associated with CQ4 might be similar. Due to space constraints, we do not show
queries for CQ3, CQ7, and CQ8, whose patterns are already depicted in Figures 4 and 7.

The property chain reasoning for CQ5 can be exploited by query D from Figure 11.
One use case for this is in finding errors/potential problems in inference sequences when
a used premise is retrospectively found to be incorrect. Figure 12 shows query E asso-
ciated with CQ6 that returns pairs of planning and execution tasks. MOI’s capabilities
are a simple extension of SOMA’s dispositions, for which an algorithm to check matches
has already been given [23]. The algorithm can be directly transferred to answer CQ9.

SELECT ?x ?y WHERE {
?x derivedFrom ?y}

Figure 11. Query D, associated with CQ4

SELECT ?task ?pTask WHERE {
?action executesTask ?task.
?plan definesTask ?task.
?infObj expresses ?plan.
?infRea realizes ?infObj;

hasRole ?role.
?role isCreatedOutputOf ?pTask}

Figure 12. Query E, associated with CQ6

6. Conclusion and Future Work

We have proposed the Meta-Ontology for Introspection (MOI), a novel, formal model
to capture the metacognitive experiences of (robotic) CAs that integrates well into the
established SOMA ontology. Following a formal ontology development and evaluation
protocol, and building upon an elaborate survey of existing models, MOI is based on
state-of-the-art research. We have shown that the model can trace telemetry between
(software) agents and component-internal information processing, classify mental tasks,
and model capabilities.

Note that since MOI’s scope is limited to computational CAs, it may not be straight-
forward to transfer MOI to human cognition or human-CA interaction. Moreover, as is
typical of early, exploratory work, further evaluation in application is necessary.

In the future, we aim to implement the model in CRAM and KnowRob as a frame-
work for metacognitive monitoring, which any metacognitive control routines can then
use. Further extensions should cover the properties of information objects, e.g., correct-
ness, and the state of an agent’s beliefs, desires, and intentions. When modeling concrete
CAs, additional detail might be introduced to model mental and communication tasks.
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