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Abstract. The generalized Kapitsa problem of stabilizing the upper position of a 

deformable pendulum under the action of small vertical oscillations of its base in a 

gravity field is solved. The presence of a small parameter of the problem allows us 

to carry out averaging and obtain approximate equations of motion of the pendulum. 

Two models of a pendulum are considered and compared: a flexible inextensible 

rod and a flexible tensile rod. The influence of each parameter of the problem on 

stability is studied. The limits of applicability of the model of a flexible inextensible 

pendulum are obtained.  
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1. Introduction 

The history of the problem of stabilizing an inverted pendulum in a gravity field under 

the influence of small vertical vibrations of the base dates back to the beginning of the 

20th century, with the work of A. Stephenson [1]. Small deviations of a given pendulum 

from the vertical are described by the Mathieu equation. In 1951 P.L. Kapitsa [2], relying 
on the asymptotic theory of N.N. Bogoliubov for nonlinear systems, published more 

detailed studies of the problem. Currently, the theory and practice of generalizing and 

applying problems of stabilization of inverted pendulums, as well as other nonlinear 

problems of dynamics, is actively developing. New robust models for modeling and 
control are appearing [3]. 

This work continues the tasks considered in [4-5]. The pendulum model is a flexible 

tensile rod, described by the Bernoulli-Euler beam equations. As in the classical 

formulation, we assume that the amplitude of the base oscillations is small relative to the 
length of the pendulum.  

Following the classical solution of P.L. Kapitsa, using the theory of two-scale 

expansions of N.N. Bogoliubov and Y.A. Mitropolski [6], an asymptotically 

approximate system of equations was obtained that describes the averaged movements 
of the pendulum. 
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The averaging carried out in this work differs from that published in the monograph 
by I.I. Blekhman [7], since we take into account the initial phase of oscillations of the 

base of the pendulum, which affects the amplitude of the averaged movements.

The work pays special attention to the issue of the admissibility of adopting a model 

in which the speed of propagation of longitudinal waves is considered equal to infinity.
The conditions for this simplification are considered, as well as the conditions under 

which the presence of longitudinal waves fundamentally changes the dynamics and 

stability of the system. This occurs, in particular, when the vibration frequency of the 

base approaches the resonant frequencies of the longitudinal elastic vibrations of the rod.

2. Equations of dynamics of a tensile deformable rod

Let a pendulum of length L be hinged at the lower end, and let its lower point move 

along the vertical axis according to the law � �sina t� �� �� �t , / 1a L� � 		 . In the 

reference position, the axis of the pendulum is straight and directed vertically (see Figure 

1). Let us denote by � �,u x t �� �,u x t� , �t and � �,w x t �� �,w x t� , �t , � �0,x L
� �0,x L�0, small displacements of the 

pendulum axis points in the longitudinal and transverse directions, respectively. Small 

deviations of the pendulum in dimensionless variables /x x L� /x L/ , t t�� tt and functions 

/u u L� /u L/ , /w w L� /w L/ in the moving coordinate system associated with the anchor point 

are described by the equations (see [4], eqs. (5) and (10); [5], eq. (2.36))

Figure 1. Model of the Kapitsa pendulum.

� �
2 2

2 2 2 2 2

1

sin , (0, ) 0, 0,
x

u g E u ut u t
xt L L x

� �
� � � �

� � �
�  � � � �

�� �
(1)

� �
4 2 2 2 3

4 2 2 2 2 3

0 1 1

, 0, (0, ) 0,D

x x x

Pw w w w w wp x t w t
x xx t x x x

�
�

� � �

� � � � � � �� �� � � � � � �� �� �� � � � �� �
(2)

where � is the frequency of vibrations of the base, g is the acceleration of free fall, �
and � are the small dimensionless amplitude and the initial phase of vibrations of the 

base, respectively, E – Young's modulus, � – volumetric density of the rod, 

dimensionless constants have the form 
2

0 ,D
P L

P
D

�
2 2a
g L
�� � , 0P is the weight of the 

rod, D is the bending rigidity of the rod. Dimensionless force of longitudinal 

compression of the rod axis ( , )p x t must be found from Eq. (1) (see [4], eq. (11))
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where 
L
c
�� �  is the dimensionless oscillation frequency and /c E ��  is the velocity 

of propagation of the longitudinal wave, S  is the cross-sectional area. For an 

incompressible rod we have � � � �
0

cos tan sin 1x x x
�

� � � �
�

 �  . 

To solve problem (2), similar to [5] (eq. (2.39)), an auxiliary boundary value 

problem is introduced, and then solution (2) is sought in the form of a series in the 

eigenfunctions n�  of problem (4) 

4

4
1

( , ) ( ) ( ), (1 ) 0
N

n n
n n n

n

d ddw x t x w t x
dx dxdx

�
�

� �� �� � �  �� �
� �

�  (4) 

1

0

(0) (0) (1) (1) 0, (1 ) 0, .k n
n n n n

d dx dx k n
dx dx
� ��� �� ���� � � � � � � �  � ��  (5) 

Note that the critical values n�  of problem (4) are the Eulerian critical values of the 

problem of static deflection of a rod by a longitudinal force. Integrating equation (4) with 

boundary conditions (5), we arrive at the Airy equation ( , ) (1 ) ( , ) 0V x x V x� � ��� �  � , 

0
( ) ( , )
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k kx V x dx�� � �  and its solution in the form of a series 
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Problem (2) is reduced to the system 
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By introducing the vector � �
1,

T
k k Nw

�
, it is convenient to write system (6) in matrix form 
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where the coefficient matrices have the form 
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which means 11 0P 	 , therefore the second term in the equation (7) will contribute to the 
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destabilizing effect on the movement of the pendulum. The first form of oscillation of a 

pendulum is the movement of the pendulum as a rigid whole, 
1( ) .w x x� The third term 

in system (7), as in the Mathieu equation, will have a stabilizing effect. Let us evaluate 

this influence using the averaging method. 

3. Averaged equations of motion of a pendulum 

Let us set the initial conditions of system (7) in the following form 

� �
000 , 0

t
d dt

�
� �WW W , that is, the rod is deflected without an initial velocity. 

System (7) has a small parameter; let us introduce slow time t! ��  and present the 

solution in the form of an asymptotic expansion [6] in a series in powers of a small 

parameter � , where ( )m !U  are slowly changing functions of time, ( , )m t !V  are rapidly 

changing functions that have a zero average value for the period 
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Substituting series (8) into system (7) and successively equating terms at equal 
powers of the small parameter ,�  taking into account 
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The condition for the stability of the solution of the averaged system will be the 
condition of positive definiteness of the matrix .D  The matrix A  is positive definite. 

4. Examples. The discussion of the results 

Let's consider an example of a steel pendulum with Young's modulus equal to 
112.04 10E �  N/m2 and density 7850� � kg/m3 in a gravity field with acceleration 

9.81g � m/c2. Let the pendulum have length L  and a square cross-section with 

thickness h , / 0.1h L # . We will calculate the stability condition for various amplitudes 

of vibrations of the base a  depending on the angular velocity � . To check the 

correctness of the result, we will compare the solution to the problem with the known 

solution for a non-deformable rod. 
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The expression for the matrix C includes terms containing tan ,� which, in the 

absence of friction, will grow unlimitedly at � �0.5 , 0,1,k k� "� � � and these 

frequencies are resonant. Note that for the model of an inextensible rod, the longitudinal 

force, instead of formula (3), will be calculated by the formula 

� � � � � �� �( , ) 1 1 sinDp x t P x t� � ��   � (11)

and taking into account the orthogonality (5) in the formula for C only diagonal terms 

will remain, independent of the frequency � , and �C B at 0� � .

For a given pendulum length L and amplitude a for a model of a non-deformable 

pendulum, we can calculate the critical value *� – the minimum frequency of base 

oscillations that ensures the stability of the Kapitsa pendulum in the upper position, 

2

4
* .

3

gL
a

� � We can compare *� with the first resonant value of the base oscillation 

frequency 1
1 .

2

c c
L L

� "� � �

In the numerical solution, the first three natural modes of vibration were taken into 

account.

In Table 1 shows the critical values of oscillation frequencies *� and 

* *L E� � �� , as well as limiting maximum frequency values ,up up� � at which it is 

still possible to use the model of an inextensible rod. The estimation was carried out 

using the first minor of the matrix D , calculated for two models of the rod. We will 

require that the inequality 0.05ex non non
I I ID D D$ �  	 , where non

ID and ex
ID are the 

values of the first minor, calculated using the models of an inextensible and tensile rod, 

respectively. Table 1 shows that for short pendulums the range of applicability of the 
inextensible rod model is very wide, but for sufficiently long pendulums this range 

completely disappears.

Table 1. Values of the stability boundaries *� , *� of the tensile rod problem and values of upper limits of 

applicability of the inextensible rod model up� , up� at 0.01 , 0.01 .h L a L� �

L *� up� *� up�
0.1 0.002 0.25 102 12700

0.32 0.0115 0.25 183 4000

1. 0.0635 0.25 324 1270

1.5 0.116 0.22 394 750

2.5 0.25 0.20 510 410

Graphs of the value $ for the first three minors of the matrix D for different 

pendulum lengths are shown in Figure 2. Graphs of the functions of the first three minors 

of the matrix D , calculated using the models of an inextensible and tensile rod, are 

shown in Figure 3, where the growth pattern of the values of , ,I II IIID D D at resonances 

is visible. Thus, for an extensible pendulum, in contrast to an inextensible one, at 

resonances the frequency of stable oscillations near the upper equilibrium position 

increases, and between resonances, on the contrary, it decreases, as can be seen in Figure 

3.
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Figure 2. Graphs of $ for different pendulum lengths at 0.01 , 0.01 .h L a L� �

Figure 3. First minors of the matrix D for 1L � m, 0.001h a L� � .

5. Conclusion

The problem of the dynamics of a flexible tensile rod with a hinged lower end and a free 

upper end under the action of a given vibration of the lower fixing point in a gravity field 
has been solved analytically and numerically. The boundary value problem is reduced to 

a system of ordinary differential equations, where, as in the case of the classical Mathieu 

equation, there is a term that rapidly changes in time and is associated with vibrations of 
the support. An averaged approximate system of equations is obtained. The conditions 

for the stability of the averaged system are found. The limits of applicability of the model 

of an inextensible flexible pendulum are obtained. 
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