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Abstract. Image-based photoplethysmography (IPPG) holds promise for applica-
tions like health surveillance and emotional state analysis. Despite recent progress
in crafting deep learning-centric IPPG methodologies, which predominantly forge a
correlation between spatiotemporal heart rate (HR) feature imagery and correspond-
ing HR readings, these techniques encounter constraints in extended spatiotemporal
comprehension and engagement. In this manuscript, we introduce the BiFormer
architecture, an end-to-end solution integrating temporal difference convolution,
multi-head self-attention transformer modules, and bidirectional long short-term
memory networks to refine signal estimations and bolster the model’s discernment
prowess. Our framework was appraised through intra-database and inter-database
evaluations on three accessible datasets, evidencing superiority over conventional
IPPG strategies in HR accuracy metrics. Notably, assessments on the VIPL-HR
dataset indicated a reduction in the average root mean square error to 7.24 beats per
minute.
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1. Introduction

Heart rate (HR) serves as a crucial physiological indicator of emotional responses and is a
fundamental marker of cardiovascular functions. Conventional approaches to measuring
heart rate employ contact monitoring devices. Nevertheless, these methodologies might
lead to discomfort and inconvenience for individuals.

In recent times, pre-trained models based on Transformer architectures have demon-
strated proficiency in an array of tasks. Nonetheless, these models necessitate substantial
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volumes of high-quality training data to yield precise outcomes in real-world scenarios.
Furthermore, the robustness of the Transformer model is imperative for sustained IPPG
measurement assignments.

To tackle these obstacles, this manuscript introduces a novel framework termed
BiFormer. This framework amalgamates a bidirectional long short-term memory network,
aiming to harness more comprehensive contextual information and thereby enhancing the
efficacy of Transformer-based IPPG estimations. The proposed methodology is assessed
using three openly accessible datasets, revealing that it surpasses most extant techniques
for heart rate estimation, both within individual datasets and in a cross-dataset context.
Our approach demonstrates significant robustness across varied datasets. To validate the
potency of the BiFormer framework, we also conducted a series of ablation experiments.

2. Related Work

In recent times, several contemporary methodologies grounded in deep learning eschew
the need for preprocessing datasets into relatively pristine and stable inputs, opting instead
to leverage noise for achieving more consistent learning[1]. DeepPhys[14] utilized an
end-to-end supervised learning approach executed via feedforward CNN, incorporating
attention mechanisms to discern frame disparities rather than employing long short-term
memory (LSTM) units for time information simulation. PhysNet[34] devised a model
anchored on a 3D CNN and synergistically combined it with a 2D CNN model to glean
spatiotemporal features and evaluate its efficacy.

Nonetheless, as underscored by Lee et al.[9] in their research concerning remote HR
estimation via transductive meta-learner, the tangible efficacy of end-to-end supervised
learning approaches[5][6][7][10] may be detrimentally impacted by alterations in data
distribution between the phases of model training and deployment[3]. In response to
this challenge, we advocate for an end-to-end adaptive Bidirectional LSTM (BiLSTM)
transformer model[ 13], capable of directing global attention towards the amplification of
quasi-periodic IPPG characteristics, culminating in the utilization of BILSTM units for
time-series information prediction.

3. Methodology

This manuscript introduces a novel learning paradigm termed BiFormer, depicted in Fig-
ure 1. Initially, a video sequence is fed into the model, and a region of interest (ROI)[15]
encompassing the face is selected to compute the mean value of the RGB channel pixels
within the designated ROI across all frames. Subsequently, the CNN Stem[16] extracts
rudimentary local spatiotemporal features, facilitating swift convergence. In the subse-
quent step, a Transformer Block equipped with a multi-head self-attention mechanism
processes the RGB facial videos, capturing both global and finely-tuned local features.
Ultimately, a bidirectional long short-term memory network[17] refines and outputs the
processed signal, treating signal estimation as a sequential regression challenge and yield-
ing superior pulse waveforms. A comprehensive exposition of the entire methodology
follows.
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Figure 1. The framework of the BiFormer network is used for joint modeling of BVP prediction and HR
estimation. The BiFormer architecture consists of a convolution stem for extracting local features, a transformer
block containing temporal-difference convolution, multi-head self-attention mechanism, and spatiotemporal
multi-layer perceptron, as well as a bidirectional long short-term memory network for estimating the processed
signals and producing high-quality pulse waveforms to calculate more accurate physiological parameters.
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Figure 2. The basic structure of the BiLSTM unit in the BiFormer network.

3.1. Temporal Difference Convolution

Building upon the spatio-temporal central difference convolution (STCDC) detailed
in [20], we introduce a variant focused solely on temporal central differences, termed
temporal difference convolution (TDC). This design choice stems from the data’s intrinsic
characteristics. TDC is executed in two phases: sampling and aggregation.

3.2. Long Short-Term Memory Networks

Traditional practice involves solving time series problems with only a single layer of
LSTM models[18] or by stacking multiple LSTM layers[19], but these strategies produce
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suboptimal results.Hence, this study incorporates BILSTM, depicted in Figure 2, where
a cell’s output is contingent on both antecedent and subsequent frames. This effectively
melds the forward and backward LSTMs into a unified BiLSTM. Both LSTM and
BiLSTM layers adeptly discern unidirectional and bidirectional long-term dependencies
amid time steps in sequential data. Owing to BILSTM’s ability to simultaneously access
information from both antecedent and subsequent time steps, it outperforms unidirectional
LSTM in prediction accuracy. Post each BiLSTM step, the IPPG signal estimation is
modeled as a multi-task output for ordinal regression. Specifically, as illustrated in Figure
2, given X; as the input and ¥; as the BiLSTM cell output, ¥; denotes the estimated IPPG
signal.

3.3. Dynamic Loss

The loss function for label distribution is defined based on Kullback-Leibler (KL) diver-
gence as the dynamic loss:

Ckr = KL (p, Softmax (p')) (D)

p’ represents the power spectral density (PSD) of the predicted IPPG signal, allowing
for efficient feature learning between adjacent labels with limited training data. p € R is
the trained IPPG signal, and p’ € R is the true signal with accurate pulse peak positions.

In the specific IPPG training task, we define the loss function in the time domain
using negative Pearson correlation. T is the number of frames in the input sequence, the
loss function in the time domain is expressed as follows:

Ty piri— X1 PiXiy P}
V(L= (2L0n)?) (PX 0~ (2L 0))

Similar to signal-to-noise ratio loss [23], we treat HR estimation as a classification task in
the frequency domain and provide the following formula for the classification loss:

r=1- )

Cc =CE (p'(p),HR;) A3)

Here, CE represents the classic cross-entropy loss, and HR; represents the true HR value.
We combine exponential incremental strategy with dynamic supervision to gradually
expand the frequency constraint, which is beneficial for intrinsic feature learning and can
alleviate the overfitting problem. The dynamic loss can be expressed as follows:

Gt =0~ Cr+ B (Go+ Cki) “4)
time frequency
B =P (n(’li*l)/”) (5)

Here, the hyperparameters o, By, and 1 are set to 0.1, 1.0, and 5.0, respectively. n;
represents the current training epoch, and n represents the total number of training epochs.
With the dynamic loss, the training process can better perceive the signal trend at the
beginning, which is beneficial for reinforcement learning in later stages.
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4. Experimental Implementation
4.1. Evaluation Metrics

We used three common public data sets: VIPL-HR[24] dataset, PURE[25] dataset and
UBFC]J26] dataset.To assess the mean heart rate (HR), we adhered to established practices,
employing prevalent evaluation metrics [37] for remote HR measurement: standard
deviation (SD), mean absolute error (MAE), root mean squared error (RMSE), and the
Pearson correlation coefficient (R). These metrics derive from the calculation of HR error,
expressed as Hy (i) = Hyre — Hirue -

4.2. Training Setup

For each video segment, an automatic cropping technique was employed, defaulting to a
sequence of ROI frames. If a face is not detected in a frame, the facial region identified
in the preceding frame is utilized. In the training phase, RGB sequences of dimensions
160 x 128 x 128 (H x W x C) were randomly chosen as input, with a target pipeline size
of Hy x W; x C; = 4 x 4 x 4. Each model was trained on a single NVIDIA GeForce RTX
3080 GPU, utilizing the Adam optimizer with a starting learning rate and weight decay of
le-4 and 5e-5, respectively. The model was trained over 25 epochs, maintaining constant
loss function weights of 8 = 0.7, &« = 0.1, and f € [1,5]. The batch size was fixed at 4.
For linear evaluation and ablation studies, datasets were randomly partitioned into five
subsets, designating one as the test set and the remainder for training. During testing,
the frame-level HR mean for each video was computed as the video-level average HR,
ensuring a balanced evaluation by utilizing distinct samples in the training and test sets to
minimize model dependency on individual samples.

4.3. Test Results

Evaluation on VIPL-HR for HR Estimation: Initially, our dataset was assessed using
VIPL-HR, yielding 108,100 sample frame sequences based on the designated time window
and sliding step configurations. Acknowledging instances of video loss, we arbitrarily
selected 86,400 samples from the initial 80 subjects for training and allocated the residual
21,700 samples from the remaining subjects for testing. The outcomes, delineated in Table
1, reveal suboptimal performance by traditional methods such as SAMC[8], POS[27],
and CHROM][4], sourced from open-source toolboxes[34]. In contrast, non-end-to-end
deep learning approaches like CVD[14], RhythmNet[11], and Dual-GAN[35] showcased
superiority, suggesting that deep learning techniques can efficiently extract information
features for signal prediction and HR estimation[21][22]. Several methods were assessed
end-to-end, with their results sourced directly from respective publications or citations due
to implementation challenges. Some baseline studies did not provide standard deviation
errors, denoted as - in this article. Overall, our BiFormer approach excelled across four
evaluation metrics, evidencing its capacity for training on raw facial videos without dataset
preprocessing, thereby ensuring convenience and continuous adaptation.
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Table 1. The test results of the VIPL-HR dataset are presented herein, with the optimal outcome denoted in
bold and the second-best outcome underlined for clarity.

HR (bpm)

Method

SD, MAE|, RMSE] Rt
SAMCI8] 18.0 159 21.0 0.11
POS[27] 153 11.5 17.2 0.30
CHROM[4] 15.1 11.4 16.9 0.28
13D[28] 15.9 12.0 15.9 0.07
PhysNet[34] 14.9 10.8 14.8 0.20
DeepPhy[12] 13.6 11.0 13.8 0.11
RhythmNet[11]  8.11 5.30 8.14 0.76
CVDI[14] 7.92 5.02 7.97 0.79
Physformer[33]  7.74 4.97 7.79 0.78
Dual-GAN[35] 7.63 4.93 7.68 0.81
BiFormer 7.64 4.48 7.24 0.88

Table 2. The test results of the PURE dataset.

HR (bpm)

Method

SD|l MAE| RMSE] Rt
CHROM[4] - 2.07 9.92 0.97
PulseGAN-DAE[31] - 3.24 5.97 0.97
PulseGAN[31] - 2.09 442 0.97
Tsou[32] - 0.63 2.70 0.83
BiFormer 2.03 1.40 2.61 0.99

Table 3. The cross-dataset testing results of UBFC dataset.

HR (bpm)

Method

SD] MAE| RMSE| R?T
GREEN]2] 20.2 7.50 14.41 0.62
ICA[29] 18.6 5.17 11.76 0.78
POS[27] 10.4 4.05 8.75 0.78
3D CNNJ[30] 8.55 5.45 8.64 -
Meta-rPPG[9] 7.12 5.97 7.42 0.53
CHROM[4] - 2.37 491 0.89
PulseGAN([31] - 1.19 2.10 0.98
BiFormer 2.15 277 3.89 0.98

Evaluation on PURE for HR Estimation: The efficacy of our BiFormer method was
further substantiated through HR estimation on the PURE dataset. Adhering to the
validation protocol from [11], we juxtaposed our approach against four baseline methods
on PURE. As presented in Table 2, our method consistently surpassed most baseline
methods, underscoring the robustness of the IPPG features discerned by our approach,
even under less restrictive conditions.
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Table 4. Ablation experiment results on the VIPL-HR dataset.

Method HR (bpm)
RMSE
BaseLine 21.37
MSA 14.13
MSA+TDC 13.49
MSA+TDC+MLP 7.79
BiFormer 7.24

RMSE(bpm)

1 2 3 4

transformer

Figure 3. Results of ablation study on the number of transformers.

Cross-dataset HR Estimation Results using UBFC:  Assessing model generalization in
cross-dataset scenarios is pivotal for remote physiological parameter extraction. Conse-
quently, we appraised our model’s cross-database adaptability on the UBFC dataset. Utiliz-
ing VIPL-HR for training and UBFC for testing, the HR estimation outcomes, depicted in
Table 3, indicate that our model surpassed the majority of baseline methods, showcasing
commendable generalization capabilities in unfamiliar noise scenarios. This highlights
the efficacy and resilience of our method, incorporating spatiotemporal attention and
BiLSTM prediction.

4.4. Ablation Experiments

To scrutinize the impact of various elements on the efficacy of our approach, we conducted
ablation studies using the VIPL-HR database, exclusively employing this dataset for the
sake of brevity. As delineated in Table 4, we explicated the repercussions of modifying
individual modules on the overall performance. Our findings indicate that the integration
of the multi-head self-attention mechanism was most efficacious in diminishing RMSE.
Likewise, the incorporation of the bidirectional BiLSTM module contributed to a no-
table reduction in RMSE. Each module was instrumental in augmenting the model’s
performance, underscoring their indispensability.

The impact of varying the quantity of transformers is illustrated in Figure 3. The
performance was suboptimal with four transformers, while it improved with the use of
either two or three transformers. Notably, employing three transformers led to a substantial
reduction in RMSE. Analogous to ResNet [36], wherein distinct features are gleaned for
efficacious representation learning via CNN layers, our model discerns diverse spatio-
temporal representations by tokenizing with distinct kernel sizes for each transformer.
Hence, the findings imply that the amalgamation of features across multiple scales through
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Table 5. Results of LSTM ablation experiments on the VIPL-HR dataset.

LSTM category RMSE
LSTM unidirectional single layer 8.29
LSTM unidirectional multilayer 8.12
BiLSTM 7.24

HRye

Figure 4. Scatter plot of correlation between ground truth HR and predicted HR in the VIPL database.

Bland-altman plot

Figure 5. The Bland-Altman plot between ground truth HR and predicted HR in the VIPL database.

fusion can effectively facilitate the computation of reliable waveform-associated attributes.
To validate the aptness of the BiLSTM approach for this framework, we conducted
an analytical experiment contrasting it with traditional LSTM. Table 5 elucidates that
our BiLSTM model surpasses other LSTM configurations in performance. This can
be attributed to BiILSTM’s proficiency in recognizing bidirectional patterns in IPPG
signals, which correspond to certain nonlinear heartbeat characteristics (e.g., arrthythmia,
frequency variability). The bidirectional context provided by BiLSTM potentially aids in
mitigating external disturbances, thereby enhancing the model’s robustness.

Furthermore, we evaluated the correlation between the predicted and actual HR as
depicted in Figure 4. The results affirm that our proposed BiFormer method, grounded in
end-to-end learning, is adept at yielding precise outcomes in video-based measurements,
even in environments with constrained resources.

To further evaluate the proposed method, we used Bland-Altman analysis [38] to
visualize the specific results, as shown in Figure 5. The positive and negative 1.96 SD
represents the range of differences between the two measurement methods within a 95%
confidence interval. Here, SD is the standard deviation of the differences, and 1.96 is a
constant in statistics that represents the 95% confidence interval. If the difference between
two values falls within this range, it can be considered that they have a certain consistency.
The mean represents the average difference between the two values. In the figure, most of
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the difference points are distributed on both sides of the mean line, and the mean line is
close to the zero line, indicating that our BiFormer method has better consistency with the
reference true heart rate.

5. Summary

The heart rate signal serves as a pivotal metric in evaluating human health, yet remote
measurement of the BVP signal through IPPG is fraught with difficulties due to its feeble
signal amplitude and susceptibility to noise. In this research, we employed a comprehen-
sive BiFormer network architecture designed end-to-end, capable of assimilating extensive
contextual information, thereby enhancing the efficacy of IPPG for procuring high-fidelity
pulse waveforms. We substantiated our approach through experiments on three distinct
datasets: VIPL, PURE, and UBFC. The outcomes revealed that the BiFormer network
demonstrated commendable proficiency in both isolated and cross-database contexts,
thereby augmenting the precision of camera-centric remote physiological assessments.
While this research is nascent, these endeavors hold significant potential for broadening
the scope of IPPG technology applications.
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