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Abstract. Current mainstream visual odometry method often suffers from tracking 

lost in low texture and motion blur scenarios due to fewer effective features and 
difficulty in getting stable matches. And feature matching process affects the overall 

real-time performance. For the fast localization task in low texture environments, 

this paper proposes an efficient self-supervised direct visual odometry framework 
based on keypoint extraction network, HGCN-VO. First we build the half-geometric 

correspondence network, HGCN, for fast extraction of robust keypoints in images. 

During training, we propose training method which uses basic shape elements to 
render generated simulated images with pseudo-labels as well as random 

homography transformations on real images for pre-training and migration learning 

and optimizing the keypoint loss from forward and reverse perspective transformed 
images. Finally we optimize the inter-frame position using a multilayer sparse direct 

method combined with bundle adjustment to improve the robustness of the method 

in low texture environments while increasing the processing speed. We evaluated 
the proposed method in KITTI, TUM, and challenging low-texture real-world 

scenarios and compared it with the current mainstream visual odometry methods, 

and the results show that the algorithm is sufficiently robust and accurate in low-
texture environments and has a fast processing speed. 

Keywords. Visual odometry, feature extraction, pose estimation, self-supervised 

learning, spares direct method 

1. Introduction 

With the popularity of machine vision technology, the use of visual sensors to realize 

mobile robots' localization in three-dimensional space has been widely researched[1]. 

Visual Odomtry (VO) can recover the positional attitude information of the camera from 

the video captured by the vision sensor, which is an important part of visual SLAM and 
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plays a crucial role in the fields of unmanned navigation, autonomous driving, and 

augmented reality[3], etc. 

Traditional sparse feature-based VO methods have limited accuracy and robustness 

in challenging environments (texture loss, motion blur, dynamic scenes) because the fact 

that the algorithm obtains fewer valid, matchable feature points in a given environment, 

and therefore often fails to track[6]. As deep learning gradually domi-nates computer 

vision tasks[7]. In general, deep learning-based VOs have the following drawbacks: 

large-scale neural networks are required to generate accurate image features[10], which 

directly leads to the fact that the deployability and real-time performance of visual 

odometry cannot be guaranteed; The descriptors generated by the neural networks are 

generally poorly matched, which also causes the increase in the feature matching 

time[11]; In addition, the pose solving process of the end-to-end network that obtains the 

camera pose from the input image is also unreliable and difficult to adjust.  

To address these issues, this paper proposes a new visual odometry framework, 

HGCN-VO. our contributions are as follows: 

1. A fast and robust keypoint extraction network HGCN is proposed. The network has a 

shorter inference time than current feature extraction methods since it inducts based on 

a single frame of low-resolution images and is not trained for matching.  

2. A self-supervised transfer learning approach is used to train HGCN networks. The 

network is pre-trained using computer-synthesized rendered geometries with pseudo-

labels and further trained using a combination of homographic adaptation and geometric 

correspondence to reduce the dependence on the dataset and improve the robustness of 

the algorithms in the migration setting. 

3. We combine the keypoint extraction network HGCN with the multilayer sparse direct 

method to form an efficient self-supervised direct visual odometry framework based on 

a feature extraction network, which we call HGCN-VO.We evaluate the method of this 

paper on publicly available datasets as well as realistic and challenging scenarios, and 

demonstrate the effectiveness of the method of this paper. 

The rest of the paper is organized as follows: in Section 2 we introduce the related 

work on feature extraction and visual odometry methods. Section 3 describes the 

construction and training of the feature extraction network and the sparse direct visual 

odometry framework. Section 4 shows comparison results in different scenarios. In 

Section 5 we summarize some conclusions and outlook for future work.  

2. Related work 

A feature represented by the position of a point is one of the simplest image features. For 

feature extraction, even though the traditional geometric model-based sparse feature 

extraction methods[12] are currently the preferred solutions, most of their extracted 

feature points suffer from poor scale invariance or the number of extracted features is 

insufficient in low texture environments[15]. Recent research results[16] show that the 

features generated by convolutional neural networks are more robust than conventional 

features. Mihai et al. [17] used a single convolutional neural network for dense feature 

and descriptor extraction, enabling the odometry to find image correspondences even in 

the presence of motion blur or image degradation. Tang et al.[10] proposed GCN, a 

scheme that combines a convolutional neural network and a recurrent neural network for 

keypoint extraction network and generates the descriptors in a unified architecture. 

Although the method has excellent tracking performance, its storage consumption is 
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equally impressive, making the method difficult to deploy. Daniel et al.[18] proposed a 

lightweight feature point extraction network, Superpoint, which extracts features using a 

shallow VGG architecture and generates keypoints and descriptors using a dual-decoder 

structure, which have high real-time performance. Nevertheless, the descriptors 

generated in this way are of poor quality and prone to mismatching. Tang et al.[19], 

inspired by[18], proposed the GCNv2 network, which predicts image features in a single 

low-resolution mapping, and simplifies the structure of the original GCN network with 

a shallow convolutional neural network for feature encoding, and use two decoders to 

decode the keypoints and descriptors, input the keypoints to the descriptor decoder, and 

use billnear sampling to get the binarized descriptors similar to ORB_SLAM2[13] to 

reduce the matching time, and to improve the computing speed while ensuring the 

accuracy and robustness. 

For visual odometers, feature-based methods represented by[13] and direct methods 

represented by [20] have now been widely developed and applied. The expense of 

complex feature extraction matching, low texture environment, etc. have caused great 

obstacles to the development of traditional methods. Therefore reseachers turned to 

introducing deep learning methods[7]. Current visual odometry methods based on 

model-learning fusion have shown advantages over traditional methods[22]. Loo et 

al.[22] used convolutional neural network to predict the average depth of the image, 

improve the depth uncertainty of the pixel points, and used a semi-direct method to 

estimate the camera motion; The method in [25] used ORB features as the extracted 

objects and, in the next step, combined them with neural networks for temporal modeling. 

Yang et al.[26] utilized deep neural networks for estimation at three levels: depth, pose 

and uncertainty to improve depth estimation accuracy. The limitations of such methods 

are also obvious: the inference of the deep learning part is slow, while the fusion of the 

two requires complex parameter settings. 

We found that the keypoints extracted by convolutional neural networks are 

uniformly distributed and robust, while the descriptors may not be as stable[27], so we 

propose the idea of using the keypoints extracted by neural networks for the direct 

method, and propose a self-supervised learning scheme to train feature points that can be 

adapted to visual localization tasks in multiple scenarios. 

3. Methodology 

3.1. Overall architecture of HGCN-VO 

The overall architecture of our HGCN-VO is shown in Figure 1. Specifically, we can 

divide the overall framework into two parts: feature extraction and motion estimation. 

For the feature extraction part, we first preprocess the image obtained from the 

visual sensor. Then we calculate the displacement vectors of the key points by using the 

inter-frame transformation matrix of the previous frame as the initial value, and rely on 

the grayscales of the key points and the surrounding region to guide the optimization and 

achieve the alignment of the key points between frames without relying on descriptor 

matching. These points will be used for motion estimation in the current frame. If the 

keypoints does not reach the specified number after alignment, using HGCN to perform 

feature extraction then using non-maximum suppression to deduplicate keypoints, and if 

the features are still insufficient, then uniform sampling is performed, and in this way the 

number of keypoints used for alignment to the next frame is maintained.  
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Figure 1. The framework of HGCN_VO 

For the motion estimation part, we construct a 4-layer image pyramid for the input 

image, gradually increase the resolution to prevent local minima problems  In the next 

step we follow the idea of the inverse compositional method to minimize the inter-frame 

photometric error by optimizing an inter-frame transformation matrix that maps the 

keypoints of the previous frame and their surrounding blocks to the current frame, which 

in turn enables the camera position estimation. Finally, we perform Bundle Adjustment 

optimization on the iteration results to estimate a camera motion that minimizes the 

overall reprojection error of the keypoints, and input the estimated camera position as 

well as the tracked keypoints to the next frame. We will describe our work in detail in 

the next two subsections. 

3.2. Half Geometric Correspondence Network 

3.2.1 Network Architecture 

The process of constructing the network in this paper is inspired by the GCNv2 network 

that utilizes multi-layer convolution to extract features and train models from warps. We 

abandon the process of descriptor training and feature matching and leave the task of 

pixel tracking to the subsequent sparse direct method, hence our network is named 

HGCN, specifically, our network architecture is shown in Figure 2.  

 
Figure 2. Architecture of HGCN 
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We use a single image as input, and the backbone network takes a VGG-like network 

architecture to encode the image for dimensionality reduction and predict the probability 

map at low resolution. For the simplicity of the network, we use four convolutional layers 

in the backbone to encode the image, to get the number of channels of 256, the size of 

the H/8 * W/8 feature map, followed by the use of two consecutive convolutional layers 

for the decoding of the keypoints, after a nonlinear activation, the use of pixel shuffle on 

the feature map for the up-sampling, and thus get the results of the keypoints of the 

detection

Our network is able to save the spent on descriptor extraction and computation. In 

the end, we able to extract keypoints at 320fps (frames per second) on a device with an 

Intel i7-11800H and a Laptop version of the Nivia GeForce RTX 3070, which leaves a 

lot of time for the subsequent motion estimation part. 

3.2.2 Self-supervised training based on homographic adaptation geometric and 
correspondence 

Producing datasets specifically for keypoint training is difficult, and there is a tendency 

to train networks using artificial keypoints such as generated surf, harris etc. This 

approach ignores the focus on line features and is susceptible to environmental 

disturbances and poor geometric invariance[29]. 

 
Figure 3. Schematic of training based on homographic adaptation and geometric correspondence 
Our training method combines the advantages of both [10] and [18]. Specifically, 

our approach first pre-trains the HGCN using simulated images with pseudo-labels of 

virtual structural corner points randomly generated by rendering basic shape elements to 

obtain a pre-trained model. Next, a real dataset with randomized uni-responsive 

transformations is added to the network input, and the pre-trained detection model is used 

to generate keypoints for the images undergoing homographic transformations. The 

detection results under homograpic transformation under multiple angles are aggregated 

to generate data with detector labels under the real dataset. This enhances the 

generalization ability of the model in different scenarios. The process is shown in Figure 
3. We constructed the keypoint detector F^(·) as in Equation (1). 
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Where fθ(·) is the initial interest point detection function, and we tweak the detector 

on top of it. Assuming I is the input image and H is a random homomorphic 

transformation, we perform an empirical summation based on a sufficiently large number 

of H samples. The detector F^(·) adjusts the coordinates of key points in the new scene 

to make them more accurately represented in the coordinate system of the original scene, 

and we use this detector to automatically generate images with interest point labels. 

Finally, we directly input the self-supervised generated interest points and labels into our 

HGCN network for training. The overall loss function is composed of both: 
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Where H, W are the height and width of the image, η is the feature vector of X on 

the plane position, yhw is the interest point position, the subscript represents the 

corresponding position of the interest point on the plane position, and c is the number of 

channels. sp
2 and sn

2 are the distances between positive and negative samples. m is the 

margin value. λp and λm are the weights of the Feature point loss and geometric 

correspondence loss. 

During the course of our work we found that the network trained using this approach 

has better robustness in extracting binary features in various scenarios, whereas training 

using the original method only yields better results in certain environments. A 

comparison of the binary features extracted using the HGCN trained using the self-

supervised training in this paper and the HGCN trained using the HGCN trained for the 

motion estimation task in the same scenario is shown in Figure 4. In addition, we have 

also included the traditional ORB features in the comparison. 

   
Figure 4. Effectiveness of different methods of feature extraction in low texture environments. HGCN(left), 

SIFT(middle), ORB(right) 

From the results, it is obvious to see that the HGCN utilizing the self-supervised 

training method of this paper extracts richer feature points and has better geometric 

invariance. 

3.3. Motion estimation with muti-layer sparse direct method and bundle adjustment 

Our process is as Figure 5: We use the direct method to solve the inter-frame transform, 

taking the posture and pose of the previous frame as the initial posture of the current 

frame, and taking the result of the upper pyramid as the initial value of the lower layer, 

and solving frame by frame and layer by layer. Taking the position that minimizes the 

error in the optimization process between the two frames as inputs. The transformation 

matrix T between two frames that minimizes the photometric error is optimized by 

applying a perturbation to the previous frame. 

For each layer, assuming that the projection points of the world point P in the 

previous frame of the three-dimensional world in the camera images of the two 
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neighboring frames are pk-1, pk, and that it is necessary to minimize the photometric error 

using the minimizing photometric error to predict an optimal inter-frame transformation 

T that tracks the position of the pixel pk-1 in the previous frame in the current frame image. 

Assuming that Tk-1 is a transformation matrix between k to k-1 frames and Ω is a region 

of the image with known image depth, the minimization photometric error function can 

be constructed as follows: 

, 1
, 1 , 1

1
arg min ( , )

2k k
k k k k iiE

T I T u	
�

� �
�
� �                                                                     (3) 

where the vector I(ui) represents the luminosity of the 4*4 pixel block around the 

key point at position ui, and δI(T,u) is the luminosity residual. 

 
Figure 5. Schematic of the framework of the muti-layer sparse direct method 

In order to avoid solving the Jacobi matrix iteratively, we use the idea of inverse 

compositional method by applying a perturbation ξ to the location of the keypoints, and 

due to the nonlinear nature of Tk,k-1 , the calculation of the residuals is computed using 

the incremental update as follows:  

, 1 1
ˆ( , ) ( ( ) ( ( ( ) )))i k k k i k iI u I T p I T p	 � 
 
 �� �� � � �                                                     (4) 

where δI(ξ,u) is a function of the photometric residuals with respect to the 

perturbations, which we will use as an intermediate quantity for the calculation of the 

Jacobi matrices, after which we base our calculation of the Jacobi matrices on the 

photometric information, according to the chain method as follows: 

1

1

0

( , ) ( ) ( ) ( )i k i i
k

i i

I u I u p TJ p
u p �

� 
 �
� �

�
�

�

� � � �
� � � � �

� � � �
                                                (5) 

We perform a combinatorial operation on each feature point pk-1 on frame k-1, as 

well as on the 4x4-sized pixel block in the upper-left corner of the feature point, and use 

Gaussian-Newton method on the computation of the perturbation ξ that makes the 

gradient of the photometric error function is 0 and iterates it as a new perturbation into 

the process of minimizing the photometric error. After obtaining the optimal ξ, we update 

the optimal interframe transformation by it. Here the iteratively optimized interframe 

transform Tk,(k-1)' is introduced as follows:  
1

,( 1) ' , 1 1,( 1) ' , 1 ( )k k k k k k k kT T T T T � �
� � � � �� �                                                                        (6) 

After iterative updating, the optimal inter-frame transformation matrix Tk,k-1 is 

obtained, and this inter-frame transformation minimizes the photometric error of the 

keypoints and surrounding blocks projected from the reference frame to the current frame. 
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The predicted camera pose is obtained by combining the camera pose Tk-1,w solved from 

the previous frame, where w is the world coordinate system. 

, , 1 1,k w k k k wT T T� ��                                                                                                       (7) 

Finally, we combine the method of Bundle Adjustment to choose an optimal camera 

position to minimize the reprojection error of the key point to its tracking position, kp is 

set to denote the pixel p under the k-system (camera coordinate system), and the camera 

position is calculated as follows. 

,

2

, ,

1
arg min ( )

2k w
k w i k w k iT

T u T p
� ��                                                                     (8) 

In this way we obtain an optimized current frame positional pose Tk,w that enables 

the estimation of the camera motion. 

4. Experiment and Analysis 

We compare our method with GCNv2, DSO and ORB_SLAM2 algorithms in some 

scenes of KITTI and TUM datasets. Finally, we analyze these methods in a practical 

scenario. 

We only compared the predicted trajectory information and inference time of the 

algorithms without the modules of back-end optimization and loopback detection, and 

verified the performance of the visual odometry by the trajectory error as well as the 

operation speed. The performance of the visual odometer is verified by the trajectory 

error and running speed. To ensure fairness, we set the upper limit number of keypoints 

that can be extracted by these methods to 1500. 

4.1. Comparison results on KITTI dataset 

The KITTI dataset is a widely used public dataset for algorithm performance evaluation 
and experimental results validation of visual odometry, among which the large highway 
area in the highway scenario is a typical weakly textured scenario. In this paper, we use 
the KITTI dataset to validate the performance of the algorithm in outdoor environments.  
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Figure 6. The trajectory results of HGCN-VO, GCN-v2, DSO and ORB-SLAM2 under KITTI-00 
sequence. 

The trajectory information of HGCN_VO, GCNv2, DSO, and ORB_SLAM2 under 

KITTI-00 sequence is shown in Figure 6. A comparison of the trajectory errors of each 

algorithm is shown in Figure 7, where err_* represents the trajectory position error of 

each axis and m_err* is the average position error of each axis. The trajectory error of 

the algorithm is gradually increasing because no back-end optimization is set in the 

comparison. With the mean position error we can find that HGCN_VO outperforms the 

other algorithms in terms of front-end position estimation performance. In addition, we 

simultaneously tested the results of these algorithms on other sequences of the kitti 

dataset, listing the visual odometry position root mean square error (RMSE) as well as 

the overall running time in Table 1. In addition, in order to verify the performance of the 

proposed method in avoiding tracking loss, when the algorithm has tracking loss, we 

pause and restart the visual odometry in the lost frame. We also list the tracking loss in 

the table to compare the tracking loss of the algorithm. Where "-" means no tracking lost. 

 

 
Figure 7. Comparison of 3-axis position error and average trajectory error of HGCN-VO, GCN-v2, DSO, 

ORB-SLAM2 under KITTI-00 sequence. 
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Table 1. Root mean square error of position and running time of each algorithm under KITTI dataset 

4.2. Comparison results on TUM dataset 

The TUM dataset contains multi-sensor data collected from mobile devices, and the 

dataset is often accompanied by challenging scenarios such as dramatic viewpoint 

movement and low features. In this paper, we utilize the TUM dataset to study the 

performance of HGCN-VO in indoor environments. Our comparison setup is consistent 

with the section4.1.  

The trajectory information of HGCN_VO with GCNv2, DSO and ORB_SLAM2 on 

fr1_room and the 3-axis atti-tude error information on the fr1_room sequence are shown 

in Figure 8., Figure 9. 

 

 
Figure 8. The trajectory results of HGCN-VO(a), GCN-v2(b), DSO(c) and ORB-SLAM2(d) under TUM 
fr1_room sequence. 

Method Sequence kitti KITTI00 KITTI02 KITTI03 KITTI04 KITTI06 

Ours(HGCN_VO) RMSE 6.901 23.483 2.030 1.561 10.023 

 time 40.869 44.280 6.492 4.650 17.531 

 tracking lost - - - - - 
GCN v2 RMSE 8.234 29.818 2.737 1.961 11.558 

 time 98.197 107.117 11.251 9.335 29.004 
 tracking lost - 1 1 - - 

DSO RMSE 13.292 62.170 5.449 1.675 19.288 
 time 78.918 101.824 9.325 5.691 25.455 
 trackinglost - 2 - - 2 

ORB SLAM2 RMSE 7.846 30.995 2.131 1.642 16.360 
 time 151.539 164.912 16.605 9.756 37.698 
 tracking lost - 5 - - 2 
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Figure 9. Comparison of 3-axis position error and average trajectory error of HGCN-VO, GCN-v2, DSO, 

ORB-SLAM2 under TUM fr1_room sequence 

The fr1_room sequence has typical motion blur and low-feature scenarios, and the 

number of feature points in these scenarios decreases significantly, leading to loss of 

tracking by the feature-point method. the number of features extracted by the HGCN 

network is much larger and stable, and in addition the tracking is not prone to loss of 

matches using the direct method. To further validate the algorithm's localization effect 

in indoor weak texture environment under robot view, we also used the contents of 

fr2_pioneer_360, fr2_pioneer_slam2, and fr2_pioneer_slam3 sequences from TUM data, 

and listed the algorithm's RMSE of position in these sequences as well as the running 

time in Table 2.  
Combining the trajectory images and statistical results, it can be concluded that 

HGCN_VO has an advantage over other visual odometry in terms of localization 

accuracy and stability in weakly textured scenarios in both indoor and outdoor datasets, 

which is partly due to the robust feature extraction and good training method of HGCN. 

In addition, other methods have feature loss in each scenario. Because the proposed 

method has a more stable key point maintenance method, the tracking loss on the data 

set is better than most of the algorithms. The method in this paper also outperforms other 

algorithms in terms of running speed, thanks to the feature extraction by efficient shallow 

neural networks and the camera position solving using the sparse direct method 

framework. 

Table 2. Root mean square error of position and running time of each algorithm under TUM dataset 

Method Sequence TUM fr1_room fr2_pioneer
_360 

fr2_pioneer
_slam2 

fr2_pioneer
_slam3 

Ours(HGCN_VO) RMSE 0.387 0.076 0.181 0.144 

 time 21.465 20.665 35.456 43.121 

 tracking lost 2 - - - 

T. Zhang et al. / Self-Supervised Sparse Direct Visual Odometry 741



4.3. Results on Practical scenarios 

We deploy HGCN_VO on a mobile robot Figure 10.(left) and verify its performance 

with real scenarios. The robot is equipped with the ORBBEC Astra sensor, which can 

directly obtain image depth information.  

 
Figure 10. CV robot(left) and Trajectory results of HGCN-VO, GCNv2, DSO and ORB-SLAM2 

in real scenes (right). actual scene: dim corridor (top), room (middle) and bright elevator room 

(bottom) 

We chose a test environment that contains normally lit room, dimly lit corridor, and 

bright elevator room, with environments that contain variations in lighting conditions 

and weakly textured environments Figure 10.(right) to validate the algorithm's 

performance in challenging environments. Since obtaining real trajectory information in 

the 3D world is difficult, we use the method of setting the start and end points of the 

mobile robot at the same location, while turning off the loopback detection module in 

the comparison algorithms, and comparing the offset position of the end point of the 

trajectory movement with respect to the start point (loopback error), to estimate the 

performance of the odometry. If the loop error is smaller, the visual mileage calculation 

method has less positional error during operation. 

The trajectory information obtained by each algorithm is shown in Figure10, and in 

the results we can find that the GCNv2 algorithm and the ORB-SLAM2 algorithm both 

appear tracking loss to a certain extent, resulting in inaccurate positioning, while the 

proposed algorithm is less prone to tracking loss due to its fast running speed and small 

gray changes in adjacent frames. It is proved that the proposed algorithm has great 

advantages in the actual scene positioning. 

GCN v2 RMSE 0.892 0.093 0.169 0.912 
 time 20.665 33.209 28.726 44.112 
 tracking lost 2 1 1 2 

DSO RMSE 0.595 0.089 0.160 0.179 
 time 31.189 28.726 50.690 57.647 
 trackinglost 4 2 - - 

ORB SLAM2 RMSE 0.572 0.080 0.178 0.183 
 time 44.360 44.112 83.165 89.040 
 tracking lost 10 5 7 1 

T. Zhang et al. / Self-Supervised Sparse Direct Visual Odometry742



5. Conclusion 

We propose a new keypoint extraction network and design an efficient learn-ing-model 

fusion visual odometry framework, HGCN-VO, which extracts robust key-points by a 

self-supervised convolutional neural network and uses the keypoints for solving the 

camera position by direct method. It is shown experimentally that HGCN-VO has higher 

accuracy and speed in both outdoor and indoor complex envi-ronments. Our odometry 

framework only contains front-end pose solving. Alhough it has been able to show 

excellent performance in localization, the use of the di-rect method makes it difficult to 

implement descriptor-based relocation and loopback detection, and it does not have map 

building capabilities. In the future, we will seek to implement back-end optimizations to 

reduce cumulative drift while constructing a complete SLAM framework. This process 

may incorporate other sensors. 
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