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Abstract. Upper limb moto disorders are the main symptoms of stroke patients. 

Based on deep learning algorithms and object detection technology, we developed 

a brain-controlled supernumerary robotic limb system for upper-limb motion 

assistance. The system makes use of the motor imagery electroencephalogram (MI 

EEG) recognition model with graph convolutional network (GCN) and gated 

recurrent unit network (GRU) to obtain the patient’s motion intentions and control 

the supernumerary robotic limb to move. The object detection technology can 

compensate for the disadvantages when using MI EEG alone like fewer control 

instructions and lower control efficiency. We also validated the feasibility and 

effectiveness of the system by designing model training experiment and target object 

grasping experiment. The results showed that the highest EEG classification 

accuracy using GCN+GRU algorithm achieved 92.32%, and the average success 

rate of grasping tasks achieved 88.67±3.77%.  

Keywords. Stroke patients, Supernumerary robotic limb, Motor imagery, Object 

detection 

1. Introduction 

While the aging population continues to increase, the incidence rate of stroke and related 

diseases is also rising [1]. Patients with upper limb motor disorder caused by diseases 

such as amyotrophic lateral sclerosis (ALS), Parkinson's disease, progressive muscular 

atrophy (PMA), stroke, and spinal cord injury generally have limited mobility and daily 

activities [2]. These issues have already affected their daily activities, reduced the 

happiness of patients' lives, and brought enormous mental pressure to patients [3]. 

Supernumerary robotic limb, as wearable robot devices, can assist patients with 

motor disorder in various daily tasks [4]. Currently, the design and research of 

Supernumerary robotic limb remains an important challenge [5]. Most existing control 

methods use healthy limb to control the movement of the supernumerary robotic limb, 

which has problems such as high training time cost, high operational difficulty, and low 

overall coordination [6]. Therefore, many scholars have conducted in-depth application 

research on supernumerary robotic limb based on different physiological structures and 

application functions. Ciullo [7] propose a robotic supernumerary limb, the Soft-Hand X 
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(SHX) to re-enable hand use, and providing a degree of functionality and motivating 

against learned non-use. Charles[6] designed a robotic leg for assisting patients in 

walking with supernumerary limb assistance. Its more comfortable human-computer 

interaction mode makes it easier for patients to adapt to the inertial impact caused by the 

movement of supernumerary limb mechanical legs. Federico[8] designed a wearable 

supernumerary robotic limb that can provide support for the wearer with fixed objects 

around it, enabling it to complete corresponding tasks safely and stably. 

Brain Computer Interface (BCI) as a system for human brain intention to interact 

with external devices [9] it can be used to identify the limb motion intentions of 

patients with upper-limb motor disorder, quickly transmit control commands, and 

manipulate external devices to complete daily life tasks [10]. Patients with upper limb 

motor disorder can use the motor imagination paradigm to imagine their own limb 

movements and output EEG signals to control external devices [11]. This approach 

allows patients to interact more naturally with external devices, enhancing or replacing 

the damaged physical functions of disabled individuals[12]. However, due to the low 

signal-to-noise ratio of EEG signals during motor imagery MI , the decoding 

accuracy of EEG is low [13]. Some recent studies have used some feature selection 

related algorithms [14] , such as the Common Space Pattern (CSP) based on L1 Norm 

and Dempster Shafer theory [15], to find reliable features and improve the motor imagery 

classification performance [16]. Other studies have obtained deep features that can 

describe different MI classification  through deep learning methods such as Deep Belief 

Networks (DBN)[17], and Long Short Term Memory (LSTM) networks[18]. 

Convolutional Neural Networks (CNN) [19] can be directly used for feature automatic 

extraction of raw input signals, and can obtain deeper and more differentiated feature 

information for EEG signal recognition [20,21]. However, traditional CNN methods do 

not consider the topological relationship and structural information of EEG electrodes, 

so they cannot grasp the topology relationship and structural information of EEG 

electrodes. Graph Convolutional Network (GCN) provides an effective way to describe 

the internal relationships between different nodes in a graph [22].  It is suitable for 

topological feature extraction of discrete spatial EEG signals, and combined with the 

temporal feature grasp by Gated Recurrent Unit network, it can fully extract the temporal 

and spatial feature information of EEG. However, due to the limitations of EEG decoding 

performance, it is still difficult to control external devices with multiple degrees of 

freedom to accurately reach and grasp the desired target in complex three-dimensional 

(3D) space through methods such as MI classification. Target detection as an auxiliary 

control method can solve the problem of insufficient control dimensions caused by brain 

computer interface control of supernumerary robotic limb. 

Object detection technology can extract D or 3D information from images or 

videos, and use this information to recognize and locate target objects, thereby achieving 

auxiliary control for robots to grasp specific objects [23]. In this study, when the robotic 

arm enters an unfamiliar environment, the camera detects the measurement data of the 

target, obtains the corresponding environmental information and target features, guiding 

the robotic arm to carry out targeted movements, and helping the robotic arm determine 

and move its own position. 

In this paper, we designed and developed a brain controlled supernumerary robotic 

limb system that meets the needs of patients with upper limb motor disorder. The system 

obtains the patient's motion intention through MI EEG signal recognition model based 

on graph convolutional neural network and gate loop unit network, achieving left and 
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right motion control of the supernumerary robotic limb, and combines object detection 

technology to quickly grasp the target object, compensate for the limited control 

dimensions of MI control strategy while improving the control accuracy of the robotic 

arm.

2. External robot arm syste

2.1. System framework

The supernumerary robotic limb system we have designed and developed is divided into 

software and hardware parts. Among them, the software part has two modules, including 

an MI recognition module and an object detection module. The MI recognition module 

is mainly used for obtaining EEG data and identifying motion intentions during patients

engage in MI, then converting it into control signal and output. The object detection 

module is used to find, mark target objects, and calculate the grasping path. Combined 

with the control program, achieve the grasping and releasing function of the robotic limb. 

The hardware part includes a functional clothing, a robotic limb module, and a drive 

control module. The functional clothing is used to carry the robotic arm and related 

hardware, and the robotic arm module serves as a moving component to achieve grasping 

action. The workflow of the entire supernumerary robotic limb system is shown in Figure 

1.

Figure 1. System framework diagram.

2.2. Hardware system

The hardware part of the supernumerary robotic limb we designed and developed is 

shown in Figure 2. The entire hardware system consists of a biomimetic robotic limb, a 

bionic hand, a camera, a functional clothing, a fixed base, a control backpack, and an 

EEG cap. The control backpack is embedded with hardware modules such as an electric 
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motor drive board, a lithium battery, and a Raspberry Pi microcomputer. The entire 

robotic limb is fixed to the right shoulder of the functional clothing through a base, the 

control backpack is fixed to the back of the functional clothing, and the hardware part of 

the entire supernumerary robotic limb is fixed to the patient's upper torso through two

elastic bands of the functional clothing. Both the robotic limb and the robotic finger 

control the servo motor drive through the drive board, and the camera is located at the 

end of the robotic limb to detect the target object in real-time, and cooperate with the 

robotic finger to achieve grasping action.

Figure 2. Hardware system.

2.3. Software System

The supernumerary robotic limb software we have developed and designed includes two 

parts: an MI recognition module and an object detection module, which are used to obtain 

and recognize the patient's motion intention and convert it into a robotic limb control 

signal. Combined with the object detection module, the supernumerary robotic limb

grasping action is achieved.

2.3.1. MI recognition module

The MI recognition model we have developed and designed includes a feature extraction 

section and a classification section, specific framework as shown in Figure 3. Firstly, the 

collected EEG data is filtered across 11 frequency bands, and the EEG data from each 

frequency band is separately input into the MI recognition model. The data is divided 

into several time periods using the overlapping window method, and then reconstructed 

into graph data to extract spatial topology features into the GCN model. In the GCN 

model, each EEG channel corresponds to a node in the graph data, and the connection 

between two different nodes corresponds to the edges of the graph. Among them, the 

operation of graph convolution can be represented as
( ) = ( )                                                                                    (2-1)

where and ( ) are the l th graph convolutional layer and the l+1 th graph 

convolutional layer, is the weight matrix of the 

lth graph convolutional layer, and is the symmetric normalized Laplace matrix.

The time series data learned from the GCN model is then input into the GRU model 

for temporal feature extraction. There are update gates in the GRU model and reset 

door . There are two types of gates, whose operations can be represented as

= ( + + ) (2-2)
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= ( + + )                                                                       (2-3)

Where represents the sigmoid function, W is the weight matrix and b is the deviation.

The Y value output by the GRU model will be sequentially transmitted to the fully 

connected layer, SoftMax layer, and classification output layer to generate category 

labels (left or right) for predicting MI motion intention. Finally, the best MI recognition 

model for the affected patient will be selected by comparing the best classification results 

of different EEG frequency bands.

Figure 3. Framework diagram of MI recognition model.

2.3.2. Object detection and control module

Figure 4. Framework diagram of the YOLO model.

The object detection module we have developed and designed is used to identify different 

target objects within the target area and provide position information of the object to 

further accurately control the motion of the robotic limb. Among them, we chose the 

more concise and faster YOLO [24] framework as the algorithm for the object detection 

module. The basic process includes two processes: pre-setting anchor boxes to locate the 

target and identifying the located target. The framework of the YOLO model is shown 

in Figure 4.
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3. Experiment 

3.1. Experimental Procedure  

For our designed supernumerary robotic limb system, we conducted validation 

experiments on the MI recognition model and overall functionality, to evaluate the 

accuracy of the model and the grasping and collaboration capabilities of the 

supernumerary robotic limb. Firstly, we selected 10 subjects and trained them with MI 

models, obtaining MI models for each subject in different EEG frequency bands. Based 

on the model training results, we selected the model with the highest recognition 

accuracy in different frequency bands as the final model for this subject. Afterwards, the 

subject wears a 64 channel EEG cap and fixed the robotic limb to the right shoulder using 

two elastic bands. Each subject is required to conduct 25 grasping experiments on each 

target object, totaling 75 grasping experiments. They grasped different objects (paper 

cups, cloth bags, or plates), and the experimental scene is shown in Figure 5. The success 

rate of grasping is defined as the percentage of times the subject successfully grasp the 

target object. 

 

Figure 5. Experimental Scenarios for Grasping Three Types of Objects. 

3.2. Results of Experiment 

In the MI model training experiment, we obtained MI recognition models of different 

subjects in different EEG frequency bands, and the model recognition accuracy is shown 

in Table 1. We found that the accuracy of the models trained by the same subject in 

different frequency bands was different. For example, subject 1 had the lowest MI 

classification accuracy (78.19%) in the 26-28Hz frequency band, and the highest MI 

classification accuracy (91.28%) in the 18-20Hz frequency band. The highest MI 

classification accuracy corresponding to each subject is shown in Figure 6. We selected 

MI recognition models from different subjects within the frequency band with the highest 

MI classification accuracy as the optimal model for each subject in the grasping 

experiment. To ensure the optimal results can be obtained in the grasping experiment. In 

the grasping experiment, the subject controlled the supernumerary robotic limb to 

perform grasping tests on three types of objects, achieving high target object recognition 

accuracy. The success rate of identifying and grasping three types of items by each 

subject is shown in Table 2. The results showed that the average success rate of grasping 

the cloth bag task was the highest, at 87.2 ± 3.60%. The average success rates of grasping 

the paper cup task and the plate task were 80.4 ± 3.67% and 81.6 ± 2.15%, respectively. 

Figure 7 shows the average success rate of each subject in three types of grasping tasks. 

The results showed that subject 10 had the highest average grasp success rate, which was 

88.67 ± 3.77%, while subject 5 had the lowest average grasp success rate, which was 

78.00 ± 3.27%. 
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Table 1. MI classification accuracy across EEG frequency bands for all subjects

Brands
Subject

1

Subject

2

Subject

3

Subject

4

Subject

5

Subject

6

Subject

7

Subject

8

Subject

9

Subject

10

8-10 Hz 0.8836 0.7847 0.9005 0.8108 0.8937 0.8747 0.8864 0.7765 0.7894 0.7861

10-12 Hz 0.7891 0.7409 0.9011 0.8306 0.8463 0.8629 0.8672 0.7895 0.8037 0.7971

12-14 Hz 0.8906 0.7761 0.9164 0.8557 0.871 0.8341 0.8903 0.8147 0.7686 0.9232

14-16 Hz 0.9122 0.7849 0.8896 0.8893 0.8977 0.8334 0.9011 0.8904 0.8064 0.9011

16-18 Hz 0.8902 0.8428 0.8548 0.8766 0.9026 0.8016 0.9047 0.8874 0.8791 0.8962

18-20 Hz 0.9128 0.8133 0.8247 0.8679 0.9032 0.7983 0.8945 0.8659 0.8447 0.8871

20-22 Hz 0.8439 0.8569 0.9017 0.7908 0.8907 0.7769 0.7839 0.8744 0.8806 0.7891

22-24 Hz 0.8017 0.8667 0.8948 0.7984 0.8528 0.6981 0.8896 0.8537 0.9148 0.8833

24-26 Hz 0.8022 0.8436 0.8961 0.8458 0.7837 0.7832 0.8738 0.8647 0.8904 0.7886

26-28 Hz 0.7819 0.8111 0.9018 0.8573 0.7739 0.7468 0.8457 0.8328 0.8746 0.775

28-30 Hz 0.7871 0.8005 0.8761 0.8366 0.7814 0.7233 0.8168 0.7906 0.8622 0.7351

Table 2 The success rate of each subject’s three types of the grasping experiment

subject paper cup cloth bag Ceramic plates
1 82.00% 90.00% 82.00%

2 78.00% 86.00% 78.00%

3 86.00% 90.00% 82.00%

4 82.00% 86.00% 82.00%

5 78.00% 90.00% 82.00%

6 74.00% 82.00% 78.00%

7 78.00% 86.00% 82.00%

8 78.00% 82.00% 82.00%

9 82.00% 86.00% 82.00%

10 86.00% 94.00% 86.00%

Average±std 80.4±3.67% 87.2±3.60% 81.6±2.15%

Figure 6. Maximum MI classification accuracy for 

each subject

Figure 7. The average success rate of each subject in 

three types of crawling tasks.
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4. Conclusion and future wor

This article designs a supernumerary robotic limb system based on BCI and object 

detection technology to assist patients with upper-limb motor disorder in completing 

daily grasping tasks. The MI recognition model and overall functional feasibility of the 

system are experimentally verified, providing a reference for solving the problems of 

high training cost and high operational difficulty of supernumerary robotic limb. Among 

them, the hybrid control strategy designed based on GCN+GRU network model and 

combined with object detection technology has made some preliminary theoretical 

contributions to improving the overall coordination and accurate recognition and 

transformation of motion intentions of Supernumerary robotic limb.  
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