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Abstract

In many aspects of our society there is growing awareness and consent on the need
for data-driven approaches that are resilient, transparent, and fully accountable. But
in order to fulfil the promises and benefits of a data-driven society, it is necessary
that the data services exposed by the organisations’ information systems are well-
documented, and their semantics is clearly specified. Effectively documenting data
services is indeed a crucial issue for organisations, not only for governing their own
data, but also for interoperation purposes.

In this thesis, we propose a new approach to automatically associate formal
semantic descriptions to data services, thus bringing them into compliance with the
FAIR guiding principles, i.e., make data services automatically Findable, Accessible,
Interoperable, and Reusable (FAIR). We base our proposal on the Ontology-based
Data Management (OBDM) paradigm, where a domain ontology is used to provide
a semantic layer mapped to the data sources of an organisation, thus abstracting
from the technical details of the data layer implementation.

The basic idea is to characterise or explain the semantics of a given data service
expressed as query over the source schema in terms of a query over the ontology.
Thus, the query over the ontology represents an abstraction of the given data
service in terms of the domain ontology through the mapping, and, together with
the elements in the vocabulary of the ontology, such abstraction forms a basis for
annotating the given data service with suitable metadata expressing its semantics.

We illustrate a formal framework for the task of automatically produce a semantic
characterisation of a given data service expressed as a query over the source schema.
The framework is based on three semantically well-founded notions, namely perfect,
sound, and complete source-to-ontology rewriting, and on two associated basic
computational problems, namely verification and computation. The former verifies
whether a given query over the ontology is a perfect (respectively, sound, complete)
source-to-ontology rewriting of a given data service expressed as a query over the
source schema, whereas the latter computes one such rewriting, provided it exists.
We provide an in-depth complexity analysis of these two computational problems in
a very general scenario which uses languages amongst the most popular considered
in the literature of managing data through an ontology. Furthermore, since we
study also cases where the target query language for expressing source-to-ontology
rewritings allows inequality atoms, we also investigate the problem of answering
queries with inequalities over lightweight ontologies, a problem that has been rarely
addressed. In another direction, we study and advocate the use of a non-monotonic
target query language for expressing source-to-ontology rewritings. Last but not
least, we outline a detailed related work, which illustrates how the results achieved
in this thesis notably contributes to new results in the Semantic Web context, in the
relational database theory, and in view-based query processing.
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Chapter 1

Introduction

In many aspects of our society there is growing awareness and consent on the need
for data-driven approaches that are resilient, transparent, and fully accountable. It is
therefore not surprising that the architecture of many modern Information Systems
is based on data services, i.e., services deployed on top of data stores, other services,
and/or applications to encapsulate a wide range of data-centric operations [Carey
et al., 2012]. Data services are also used to handle the programming logic for
data virtualisation in a cloud-hosted data storage infrastructure, so as to delegate
most administrative tasks to the cloud infrastructure, and effectively realising the
idea of data-as-a-service [Machan, 2009]. Furthermore, since data may be obtuse,
disorganised, and may not make much sense to most potential users, in order to get
value from them, it is reasonable to resort to data services built on top of massive
amount of raw data.

However, in order to fulfil the promises and benefits of a data-driven soci-
ety [Pentland, 2013], it is of vital importance to well document and clearly specify
the semantics of data services. Effectively documenting data services is indeed a
crucial issue for organisations, not only for governing their own data, that often
grow rapidly in the current Big Data era [Chen et al., 2014], but also for interop-
eration purposes. Most current techniques manually associate APIs (Application
Programming Interfaces) to data services, and describe their intended meaning with
ad-hoc methods, often using natural language or complex metadata1 [Zheng et al.,
2013]. This is clearly insufficient since such description of data services lack support
for a formal semantics, and ergo, they are limited to human consumption only.
Contrariwise, data service consumers need access to enhanced metadata, which
are both machine-readable and human-readable. These metadata are essential to
integrate entities returned from different data services and/or to understand the
relationships between various data services, so as to be able to formulate queries
and navigate between sets of entities.

In this thesis, we propose a new approach, whose goal is to automatically associate
formal semantic descriptions to data services, thus bringing them into compliance
with the FAIR guiding principles [Wilkinson et al., 2016], i.e., make data services
automatically Findable, Accessible, Interoperable, and Reusable (FAIR).

The proposal of the thesis is based on the Ontology-based Data Management
1As defined in [Duval et al., 2002], metadata are “structured data about data”.



2 1. Introduction

(OBDM2) paradigm [Lenzerini, 2011], which is an advanced approach to semantic
data integration [De Giacomo et al., 2018] experimented and used in the practice in
the last years (see, e.g., [Antonioli et al., 2014; Kharlamov et al., 2017]). OBDM is a
promising attempt to give principles and techniques to effectively govern even modern,
complex information systems by providing a unified access to data. An OBDM
specification consists of a triple Σ = 〈O,S,M〉, where O is an ontology expressed
in a specific Description Logic language, S, called source schema, is the schema
of the data sources forming the data layer of an information system, andM is a
mapping between the source schema and the ontology, i.e., an explicit representation
of the correspondence between the data sources and the elements of the ontology.
The ontology is a formal logic-based representation of the underlying domain that
gives a high-level view of the information contained in the data sources. Thus,
the OBDM paradigm provides a means for managing data through the lens of an
ontology [Lenzerini, 2018], and enables the application of Knowledge Representation
and Reasoning principles and techniques to various data management tasks.

But how can we automatically produce a semantic characterisation of a data
service, having an OBDM specification available? The idea is to exploit a novel
reasoning task over the OBDM specification, which we call abstraction, that works
as follows: given a data service expressed as a query qS over the source schema,
automatically derive a query qO over the ontology that describes “at best” the data
service qS with respect to the underlying OBDM specification Σ = 〈O,S,M〉. Thus,
qO represents an abstraction of the data service represented by qS in terms of the
domain ontology O through the mappingM. In this way, the query expression qO,
together with the elements in the vocabulary of the ontology O, form a basis for
annotating the data service represented by the query qS with suitable metadata
expressing its semantics. The next example illustrates this idea.

Example 1.1. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { IndependentPolitician v Politician,∃HasTutor− v Professor }

• S = { s1, s2, s3 }

• M = { m1,m2,m3,m4 }, where:

m1 : s1(x) → Professor(x),
m2 : s1(x) → Politician(x),
m3 : s2(x1, x2) → HasTutor(x1, x2),
m4 : s3(x) → IndependentPolitician(x).

Let the data service be expressed as the logical query qS = {(x) | (s1(x)) ∨
(∃y.s2(y, x) ∧ s3(x))} over the source schema S. Conceivably, by inspecting the
mapping assertions inM and the ontology assertions in O, one can argue that the
query qO over the ontology O that describes at best the data service qS with respect
to the OBDM specification Σ is qO = {(x) | Professor(x) ∧ Politician(x)}.

2Throughout the thesis, it is preferred the usage of the acronym OBDM rather than its similar
OBDA, which stands for Ontology-based Data Access [Poggi et al., 2008], because data access is just
one aspect, although one of the most important, of the more general notion of data management.



3

As testified by [Poggi et al., 2008; Calvanese et al., 2009; Bienvenu, 2016;
Xiao et al., 2018; Ortiz, 2018] (and references therein), most of, if not all, the
literature about managing data sources through an ontology deals with users’ queries
expressed over the ontology, and studies the problem of finding a so-called ontology-
to-source rewriting, i.e., a query over the source schema that, once executed over
the data, provides the answers to the original query. Here, the problem is reversed,
because we start with a source query qS over the source schema, and we aim at
deriving a corresponding query qO over the ontology O, which we call a source-to
ontology rewriting, that is as much close as possible to qS , taking into account the
ontology and the mapping. Thus, we deal with a sort of reverse engineering problem,
which is novel in the investigation of both OBDM and data integration.

This new notion of source-to-ontology rewriting is also useful in a context strictly
related to data services, namely open data publishing. In recent years, both public
and private organisations have been faced with the issue of publishing open data3,
in particular with the goal of providing data consumers with suitable information to
capture the semantics of their published datasets. Current practices for publishing
open data, however, focus essentially on providing extensional information (often in
very simple forms, such as CSV4 files), and they carry out the task of documenting
data mostly by using metadata expressed in natural languages, or in terms of record
structures. As a consequence, the semantics of datasets is not formally expressed
in a machine-readable form. Only few recent proposals (see, e.g., [Rashid et al.,
2020]) provide methodologies to associate formal semantics to datasets by means of
machine-readable metadata.

When an OBDM specification is available in an organisation there is an obvious
method, called top-down, to publish high-quality, semantically annotated open data
that are compliant with the W3C5 Linked Open Data (LOD) principles [Bizer
et al., 2009]: (i) express the dataset to be published in terms of a SPARQL query
over the ontology, (ii) compute the certain answers to the query, and (iii) publish
the result of the certain answer computation, using the query expression and the
elements in the vocabulary of the ontology as a basis for annotating the dataset with
suitable metadata expressing its semantics. Unfortunately, in many organisations
(for instance, in Public Administration) IT employees are not yet ready to formulate
SPARQL queries, rather they may be tempted to directly publish a dataset as the
result of the evaluation of a query qS (over the source schema) over the data of
the information system, in any structured form representing it. In order to publish
publish both the content and the semantics of the dataset, it is possible to follow a
method, called bottom-up, that first derive a source-to-ontology rewriting qO of qS ,
and then, using qO, continues with the steps (ii) and (iii) of the top-down approach.

Besides semantic characterisations of data services and open data publishing,
we point out that the reasoning task of abstraction is relevant in other plethora of
application scenarios, as for example:

3According to the Organisation for Economic Co-operation and Development (OECD), open data
are “data that can be used by anyone without technical or legal restrictions. The use encompasses
both access and reuse” [OECD, 2015].

4Comma-Separated Values: https://tools.ietf.org/html/rfc4180
5World Wide Web Consortium: https://www.w3.org/

https://tools.ietf.org/html/rfc4180
https://www.w3.org/
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• Source profiling: Source profiling [Abedjan et al., 2017; Abedjan et al., 2018] is
a very general term that has to do with the analysis of raw data for the purpose
of understanding the source contents. The task of abstraction arguably provides
a semantic-based approach to source profiling, in particular for describing the
structure and the content of a data source in terms of the business vocabulary.

• Updating: As noted in [Lutz et al., 2018], the concept of realization of source
queries, similar to one of the notions studied here, can be used to check
whether the mapping provides the right coverage for expressing the relevant
data services at the ontology level. If this is not the case, then, probably, the
existing data sources and/or the ontology need to be updated [Lembo et al.,
2017].

• Explanation of classifiers: Understanding and explaining the decisions made
by machine learning algorithms is widely recognized as a very important task
for wide and safe adoption of machine learning and data mining technologies
(see, e.g., [European Union, Parliament and Council, 2016; Goodman and
Flaxman, 2017]), especially in high-risk domains, and in dealing with bias.
The task of abstraction also moves towards this direction. As an example of
its potential usefulness in the explainable machine learning field, suppose to
acquire the outcome of a binary classifier over tuples of data sources in the
information system, and that an OBDM specification is also available. Then,
it is possible to semantically describe the choices taken by such a classifier
by means of a query over the domain ontology, and therefore in terms of the
elements in the vocabulary of this latter. For instance, as a naive criteria for
the semantic description of the classifier, one may require that the answers
to the query include all the tuples classified positively, and none of the tuples
classified negatively. For a more detailed discussion on this topic, the reader is
referred to [Croce et al., 2020].

1.1 Contributions of the Thesis
This thesis mainly addresses the topic of abstraction in OBDM. The principal
contributions can be summarised as follows:

I. We present a formal framework for the reasoning task of abstraction in OBDM.
In particular, three semantically well-founded notions are introduced, namely
perfect, sound, and complete source-to-ontology rewriting, and two basic com-
putational problems are defined, namely verification and computation. The
former verifies whether a given query qO over the ontology is a perfect (re-
spectively, sound, complete) source-to-ontology rewriting of a data service
expressed as a query qS over the source schema, whereas the latter computes
one such source-to-ontology rewriting, provided it exists.

II. Although the ideal notion is the one of perfect source-to-ontology rewriting, we
show that there are cases where, with the current OBDM specification, no query
over the ontology can precisely characterise the data service at hand. Thus,
two further notions are introduced, namely maximally sound and minimally
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complete source-to-ontology rewriting, which intuitively aim at approximating
the perfect source-to-ontology rewriting of a data service at best, with the goal
of either precision (sound rewriting), or recall (complete rewriting).

III. Before of delving into the computational problems introduced in the frame-
work, we provide a thorough analysis of the implications that the presence of
inequalities in queries has in the context of lightweight ontologies, which is a
problem that has been rarely addressed. This is necessary because we do study
also cases where the target query language for expressing source-to-ontology
rewritings allows inequality atoms. In particular, we concentrate on the prob-
lem of answering conjunctive queries with inequalities (CQ6=s) and unions
thereof (UCQ 6=s) over DL-LiteR knowledge bases (i.e., pairs of ontology and
ABox assertions), both with and without the unique name assumption (UNA).
Since it is known that the problem is in general undecidable, we explore two
alternative strategies for recovering decidability, and especially tractability:

• The first strategy is to weaken the query language by restricting the ap-
plication of the inequality predicate to either individuals or distinguished
variables (variables representing output values) only. The resulting query
language is called “UCQs with bounded inequalities” (UCQ 6=,bs).

• The second strategy is to weaken the ontology language, so as to eliminate
all the constructs introducing incomplete information resulting from
existentially quantified assertions in the ontology. The outcome is a
sublanguage of DL-LiteR, called DL-Lite¬RDFS.

When the UNA is adopted, we prove that both the problems of answer-
ing UCQ6=,bs over DL-LiteR knowledge bases and answering UCQ6=s over
DL-Lite¬RDFS knowledge bases are a straightforward generalisation of the
well-known problem of answering union of conjunctive queries (UCQs) over
DL-LiteR knowledge bases, i.e., the problems are still in AC0 in data complexity
(i.e., with respect to the size of the ABox only) and NP-complete in combined
complexity (i.e., with respect to the size of the whole input, including the
query). Afterwards, we concentrate on the case when the UNA is not adopted.

For the case of (U)CQ6=,bs, we show that answering CQ6=,bs over DL-Lite6=R
knowledge bases has the same computational complexity of the UCQ case,
i.e., it is in AC0 in data complexity and NP-complete in combined complexity.
However, perhaps surprisingly, answering UCQ6=,bs over DL-LiteR knowledge
bases is Πp

2-complete in combined complexity. Thus, unless NP = coNP, the
presence of union makes the problem of answering queries with inequalities
over DL-LiteR knowledge bases significantly different from the UCQ case.
For the case of DL-Lite¬RDFS, we show that answering UCQ 6=s is decidable, and
in particular coNP-complete in data complexity, and Πp

2-complete in combined
complexity. We also investigate if the number of inequalities in each disjunct
plays a role in falling into intractability. We answer positively to this question,
by showing that if the query has at most one inequality per disjunct, answering
UCQ 6=s is PTime-complete in data complexity, and NP-complete in combined
complexity, while it is coNP-hard in data complexity if the query is conjunctive
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and has at most two inequalities. We also show that going from one to two
inequalities causes the jump from NP-hardness to Πp

2-hardness in combined
complexity for UCQ6=s, and we conjecture that this holds already for CQ 6=s.
We argue that the above results considerably improve our understanding of
the implication that the presence of inequalities in queries has in the context
of lightweight ontologies. In particular, to the best of our knowledge, our
investigation on DL-Lite¬RDFS provides the first results on reasoning with
inequalities when querying DL-LiteRDFS knowledge bases.

IV. The mentioned results on answering CQ 6=,bs over DL-LiteR knowledge bases
allows us to improve the current state-of-the-art on the problem of answering
UCQ 6=s posed over OWL 2 QL knowledge bases interpreted under the Direct
Semantics Entailment Regime (DSER), i.e., the regime usually adopted in the
Semantic Web scenarios that slightly differs from the classical First Order
Logic (FOL) semantics. In particular, we prove that answering UCQ6=s over
OWL 2 QL knowledge bases interpreted under DSER has the same computational
complexity of the UCQ case under FOL, i.e., the problem is in AC0 in data
complexity and NP-complete in combined complexity.

V. The results on reasoning with inequalities over DL-Lite¬RDFS knowledge bases
implies new results on containment of queries with inequalities in the database
theory setting. Specifically, we prove that the containment problem for UCQ6=s
is still Πp

2-hard in general (and therefore Πp
2-complete) and coNP-hard (and

therefore coNP-complete) when the containing query is assumed to be fixed,
even if the contained query is a CQ and the containing query is a UCQ 6= with
at most two inequality atoms. Furthermore, we prove that by allowing at
most one inequality to occur in UCQ 6=s makes the computational complexity
of the containment problem for UCQ6=s falling from Πp

2-complete down to
NP-complete and, when the containing query is assumed to be fixed, from
coNP-complete down to PTime-complete. To the best of our knowledge, this
is the first investigation on how the number of inequality atoms affects the
computational complexity of the containment problem for UCQ6=s.

VI. We study both the verification, and the computation problem for complete,
sound, and perfect source-to-ontology rewritings in a very general scenario
which uses languages amongst the most popular considered in the literature:
(i) the setting for OBDM specifications is such that the ontology language
is DL-LiteR, the source schemas do not have integrity constraints, and each
mapping assertion maps a conjunctive query (CQ) over the source to a CQ
over the ontology (GLAV assertion), and (ii) the query language for expressing
both the data service and the source-to-ontology rewriting is the one of UCQs.
We show that the verification problem for complete source-to-ontology rewrit-
ings is NP-complete, whereas it is Πp

2-complete for both sound and perfect
source-to-ontology rewritings.
As for the computation problem, we illustrate an algorithm to compute mini-
mally complete source-to-ontology rewritings of given queries over the source
schema (thus proving that they always exist), and an algorithm that, given
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a query over the source schema, it computes a perfect source-to-ontology
rewriting if it exists and can be expressed as a UCQ, otherwise it reports that
no such UCQ-perfect source-to-ontology rewriting exists. For the case of sound
source-to-ontology rewritings, instead, we precisely determine the cases where
a maximally sound source-to-ontology rewriting is not guaranteed to exists.

VII. For the case of complete source-to-ontology rewritings, we extend the general
scenario by allowing inequalities to occur in the target query language for
expressing source-to-ontology rewritings. We first show that UCQ 6=s pro-
vide better approximated complete source-to-ontology rewritings compared to
UCQs, and then we present an algorithm to compute UCQ6=-minimally com-
plete source-to-ontology rewritings of given UCQs over the source schema, thus
proving that they always exist. In this extended scenario, we also study both
the verification, and the computation problem for complete source-to-ontology
rewritings when the UNA is dropped.

VIII. We single out two restricted scenarios that are still meaningful from the point
of view of expressive power, and guarantees the existence of maximally sound
source-to-ontology rewritings. In both such restrained scenarios, we consider
the setting for OBDM specifications obtained from the general one by limiting
the ontology language to DL-LiteRDFS rather than DL-LiteR, and limiting
the mapping language to GAV assertions rather than GLAV assertions. The
difference between the two restricted scenarios is in the query language allowed
for expressing data services, where in the first one, called restricted scenario for
CQJFEs, is the class of conjunctive queries with join-free existential variables
(CQJFEs), whereas in the second one, called restricted scenario for UCQJFEs,
is the class of unions of CQJFEs (UCQJFEs). For both the restricted scenarios,
we study both the verification, and the computation problem for sound source-
to-ontology rewritings.

As for the verification problem, we show that it falls from Πp
2-complete down

to coNP-complete in the restricted scenario for UCQJFEs, and even further
down to tractability (i.e., in PTime) in the restricted scenario for CQJFEs.

As for the computation problem, we first provide an algorithm to compute
maximally sound source-to-ontology rewritings of given UCQJFEs over the
source schema (thus proving that they are guaranteed to exists in these
restricted scenarios), and then we specialise it for the case of CQJFEs.

IX. We provide a detailed relationship between the notions introduced in this
thesis and the usual notions of ontology-to-source rewriting and view-based
query rewriting (i.e., rewriting given queries using view definitions). For this
latter long-established notion, we also present new interesting results when
dealing with UCQ views, also referred as disjunctive views. Specifically, we
delineate the precise dividing line between the existence and the non-existence
cases of UCQ-maximally sound rewritings of UCQs with respect to disjunctive
views, along the dimension of join existential variables occurring in the bodies
of the various disjuncts of the given UCQ to be rewritten.
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X. Finally, we carry out an investigation of source-to-ontology rewritings expressed
in a non-monotonic query language. In this endeavour, the choice of the non-
monotonic query language is the class of EQL-Lite(UCQ) queries, a particularly
well-behaved fragment of EQL queries. Such a language incorporates a single
modal knowledge operator K, which is used to formalise the epistemic state
of the OBDM system. As a first contribution, we show how queries of such a
non-monotone query language can be rewritten as FOL queries over the source
schema to compute certain answers. We then show that EQL-Lite(UCQ)
queries provides a better means to compute abstractions of data services
compared to the language of UCQs. In particular, there are cases where
the perfect source-to-ontology rewriting of a query over the source schema
is expressible as a EQL-Lite(UCQ) query, but not as a UCQ. Also, there
are cases where a maximally sound source-to-ontology rewriting exists in
the class of EQL-Lite(UCQ) queries, but not in the class of UCQs, and cases
where a maximally sound (respectively, minimally complete) source-to-ontology
rewriting of a query over the source schema is a better approximation than
the analogous in the class of UCQs.
On the other hand, similarly to UCQs, we prove that there are cases
where no maximally sound source-to-ontology rewriting exists in the class
of EQL-Lite(UCQ) queries. Quite surprisingly, we prove that the same holds
for minimally complete source-to-ontology rewritings. In order to address the
issue of non-expressibility, we explore two special scenarios. In the first one,
we limit the query language, and consider a fragment, still non-monotonic, of
EQL-Lite(UCQ) queries, called EQL-Lite−(UCQ) queries, where both nested
negation and union are not allowed. In the second one, we limit the map-
ping language, and consider the so-called One-To-One mapping, where each
mapping assertion links one source relation to one ontology element. For
both scenarios, we address the problem of computing minimally complete, and
maximally sound source-to-ontology rewritings of source queries, presenting
algorithms whenever possible.

1.2 Structure of the Thesis

The thesis is organised in ten chapters, whose content is briefly summarised below:

• Chapter 1 is the current introduction.

• Chapter 2 introduces the relevant theoretical background needed to understand
the thesis.

• Chapter 3 illustrates a formal framework for the task of abstraction in OBDM.
Here, the various notions of source-to-ontology rewritings are introduced, some
associated computational problems are defined, and a detailed comparison
with related work is outlined.

• Chapter 4 deals with the problem of answering queries with inequalities over
lightweight ontologies. In addition, it presents some interesting implications
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that our technical results have on the problem of answering queries with
inequalities in the Semantic Web context, and on the containment problem for
queries with inequalities in the relational database theory.

• Chapter 5 studies both the verification, and the computation problem for
complete source-to-ontology rewritings by providing algorithms and charac-
terising the complexity of both tasks. For this notion, it further studies the
computation problem when the target query language allows inequality atoms.

• Chapter 6 studies both the verification, and the computation problem for sound
source-to-ontology rewritings. It first analyses the computational complexity
of the verification problem, and then precisely determine the cases where a
maximally sound source-to-ontology rewriting is not guaranteed to exists.

• Chapter 7 studies both the verification, and the computation problem for perfect
source-to-ontology rewritings by providing algorithms and characterising the
complexity of both tasks.

• Chapter 8 studies both the verification, and the computation problem for sound
source-to-ontology rewritings in two restricted scenarios. For both scenarios, it
provides algorithms and complexity results for both the verification, and the
computation problem for sound source-to-ontology rewritings. Furthermore, it
illustrates new interesting results on view-based query processing, particularly
on the problem of rewriting queries using disjunctive views.

• Chapter 9 carries out an investigation of source-to-ontology rewritings when the
target query language is non-monotonic. It first argues that non-monotonicity
is an important feature when providing abstractions of data services. Then, it
determines cases where both maximally sound, and minimally complete source-
to-ontology rewritings are not guaranteed to exist in the chosen non-monotonic
query language. Lastly, the chapter studies the computation problem for both
maximally sound, and minimally complete source-to-ontology rewritings in
two special scenarios.

• Finally, Chapter 10 concludes the thesis with a brief discussion and possible
directions for future work.
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Chapter 2

Theoretical Background

In this chapter, we recall some basic theoretical notions and related results which
will be used in following discussions.

2.1 Relational Databases

A relational database schema (or simply schema) S is a finite set of predicate symbols,
each with a specific arity, and a set of integrity constraints. Given a schema S,
an S-database D is a finite set of facts s(~c) satisfying all integrity constraints in
S, where s is an n-ary predicate symbol of S, and ~c = (c1, . . . , cn) is an n-tuple of
constants, each taken from a countable infinite set of symbols denoted by Const.

An incomplete S-database W is like an S-database, but where also variables are
allowed as terms. Formally, it is a finite set of atoms s(~t) over S, where s is an n-ary
predicate symbol of S, and ~t = (t1, . . . , tn) is a n-tuple of terms in which ti is either
a constant or a variable, for each i ∈ [1, n]. As usual, each variable is taken from a
countable infinite set of symbols denoted by Var, where Const∩Var = ∅. We will use
variables to represent unknown values [Imielinski and Lipski Jr., 1984], rather than
non-existent values [Zaniolo, 1982]. For an incomplete S-database W, we denote by
dom(W) the set of all terms (i.e., constants and variables) occurring in W.

2.2 Query Languages and Homomorphism

In its general form, an LS query q over a schema S is a function in a certain query
language LS that can be evaluated over an S-database D to return a set of answers
qD, each answer being a tuple of constants.

We assume to deal with databases supporting queries in First-Order Logic (FOL).
An FOL query q over a schema S is a query of the form q = {~t | φ(~x)}, also denoted
q(~t), where ~t, called the target list of q, is an n-tuple of terms (ar(q) = n, where
ar(q) denotes the arity of q), and φ(~x), called the body of q, is an FOL formula over
the predicates of S in which all the free variables (i.e., the variables in the tuple ~x),
called the distinguished variables of q, occur in ~t. As usual, we impose that each
variable x occurring in ~t must also appear in some atom of φ(~x). When ar(q) = 0,
the query is called boolean. Given an FOL query q = {(t1, . . . , tn) | φ(~x)} of arity n
and an n-tuple of constants ~c = (c1, . . . , cn) such that cj = tj for each j ∈ [1, n] in
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which tj is a constant, we denote by q(~c) = {() | φ(~x/~c)} the boolean FOL query
without free variables, in which φ(~x/~c) is the FOL sentence obtained from φ(~x) by
replacing all the occurrences of the term ti with the constant ci, for each i ∈ [1, n].

A conjunctive query (CQ) q over a schema S is an FOL query of the form
q = {~t | ∃~y.φ(~x, ~y)}, where ~y is the tuple of existential variables of q, each variable
occurring in ~y appears in φ(~x, ~y), ~x is the tuple of distinguished variables of q, and
φ(~x, ~y) is either ⊥(~x, ~y), or a finite conjunction of atoms of the form s(t′1, . . . , t′n),
where s is an n-ary predicate of S, and term t′i is either a constant or a variable
occurring in ~x or ~y, for each i = [1, n]. Given a CQ q = {~t | ∃~y.φ(~x, ~y)}, we say that
an existential variable y occurring in ~y is a join existential variable of q if it occurs
more than once in the atoms of φ(~x, ~y). In what follows, we also consider a subclass
of CQs, namely conjunctive queries with join-free existential variables (CQJFEs). A
CQ q is also a CQJFE if there is no join existential variable occurring in q.

A conjunctive query with inequalities (CQ 6=) over a schema S is an expression of
the form q = {~t | ∃~y.φ(~x, ~y)} similar to a CQ, but where φ(~x, ~y) may additionally
contains inequality atoms, i.e., atoms of the form 6= (z1, zk), also denoted by zi 6= zk,
where both zi and zk are either constants or variables in ~x or ~y. As usual, we impose
safeness [Abiteboul et al., 1995], i.e., each variable z occurring in an inequality atom
also occurs in an atom that is not an inequality atom.

When convenient, we treat tuples as sets, in those cases we implicitly refer to the
set of all the terms occurring in the tuple. For a CQ 6= q = {~t | ∃~y.φ(~x, ~y)}, notice
that ~x ⊆ ~t and ~t ∩ ~y = ∅. Furthermore, when convenient, we treat CQ 6=s q and their
bodies φ(~x, ~y) as a set of atoms, in those cases we implicitly refer to the set of all
the atoms occurring in φ(~x, ~y) that are not inequality atoms. In particular, for a
CQ6= q = {~t | ∃~y.φ(~x, ~y)} over a schema S, we denote (i) by Wq the incomplete
S-database associated to q, i.e., the set of all atoms over S occurring in φ(~x, ~y) that
are not inequality atoms, and (ii) by Dq (called the freezing of q) the S-database
associated to q, i.e., the set of facts over S obtained from Wq by replacing each
variable v occurring in Wq with a different fresh constant denoted by cv.

A class of queries laying between CQs and CQ 6=s is the class of conjunctive
queries with bound inequalities (CQ 6=,bs). A CQ6=,b q = {~t | ∃~y.φ(~x, ~y)} is a CQ6=
whose inequality atoms involve only constants or distinguished variables, i.e., for
each inequality atom zi 6= zk appearing in φ(~x, ~y), we have both zi 6∈ ~y and zk 6∈ ~y.

Another class between CQs and CQ6=s is the class of conjunctive queries with at
most k inequalities (CQk,6=). A CQk,6= is a CQ 6= having at most k inequality atoms.

Finally, a UCQ 6= (respectively, UCQ 6=,b, UCQk,6=, UCQ, UCQJFE) is a union of
a finite set of CQ 6=s (respectively, CQ 6=,bs, CQk,6=s, CQs, CQJFEs) with same arity,
called its disjuncts.

To define the evaluation of UCQ6=s over S-databases, we resort to the notion of
homomorphism. Given two (possibly infinite) sets of atoms W and W ′, a homomor-
phism from W to W ′ is a function h : dom(W)→ dom(W ′) for which:

• h(c) = c for each constant c ∈ Const ∩ dom(W); and

• h(W) ⊆ W ′,

where h(W) is the image of W under h, i.e., h(W) = {h(α) | α ∈ W} and
h(s(t1, . . . , tn)) = s(h(t1), . . . , h(tn)) for each atom α = s(t1, . . . , tn).
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Given a CQ 6= q = {~t | ∃~y.φ(~x, ~y)}, the evaluation of q over a (possibly infinite) set
of atomsW is the set qW of tuples of terms ~c such that there exists a homomorphism
h from Wq (i.e., the set of all atoms occurring in φ(~x, ~y) that are not inequality
atoms) to W for which (i) h(zi) 6= h(zk) for each inequality atom zi 6= zk occurring
in φ(~x, ~y), and (ii) h(~t) = ~c, where h(~t) = (h(t1), . . . , h(tn)) for a tuple of terms
~t = (t1, . . . , tn). In what follows, we also say that this is a homomorphism from q
to W (or also a homomorphism from φ(~x, ~y) to W) with h(~t) = ~c, and write h(q)
(or also h(φ(~x, ~y))), to actually denote h(Wq). Finally, the evaluation of a UCQ6=s
over a set of atoms W is simply the union of the evaluation of its disjuncts over
W. As an usual convention, for a boolean CQ 6= q, the evaluation of q over a set of
atoms W amounts to qW = {()} (also denoted by W |= q) if and only if there is a
homomorphism from Wq to W.

Furthermore, given two CQ6=s q1 = {~t1 | ∃~y1.φ1( ~x1, ~y1)} and q2 = {~t2 |
∃~y2.φ2( ~x2, ~y2)}, we say that h is a homomorphism from q2 to q1 if h is a ho-
momorphism from Wq2 to Wq1 for which (i) h(zi) 6= h(zk) for each inequality atom
occurring in φ2(~x, ~y), and (ii) h(~t2) = ~t1.

Given a schema S and two queries of the same arity q1 and q2 over S, we write
q1 vS q2 (or simply q1 v q2 when S is clear from the context) if qD1 ⊆ qD2 for every
S-database D. Furthermore, we write q1 ≡S q2 (or simply q1 ≡ q2 when S is clear
from the context) if both q1 v q2 and q2 v q1 hold, that is, if qD1 = qD2 for every
S-database D. When S is a database schema without integrity constraints, it is
well-known that, if both q1 = {~t1 | ∃~y1.φ1( ~x1, ~y1)} and q2 = {~t2 | ∃~y2.φ2( ~x2, ~y2)}
are CQs over S, then q1 v q2 if and only if ~t1 ∈ q

Wq1
2 , i.e., if and only if there is a

homomorphism h from q2 to Wq1 with h(~t2) = ~t1 [Chandra and Merlin, 1977], and
if both q1 and q2 are UCQs over S, then q1 v q2 if and only if for each disjunct q of
q1 there is a disjunct q′ of q2 such that q v q′ [Sagiv and Yannakakis, 1980].

Given a CQ 6= q = {(t1, . . . , tn) | ∃~y.φ(~x, ~y)} of arity n and an n-tuple of constants
~c = (c1, . . . , cn), we denote by q(~c) = {() | ∃~y.φ(~x/~c, ~y)} the boolean CQ in which
the formula φ(~x/~c, ~y) corresponds to ⊥(~y) in the case that there is some i ∈ [1, n]
for which ti 6= ci and ti is a constant, otherwise φ(~x/~c, ~y) is obtained from φ(~x, ~y) by
replacing all the occurrences of the term ti with the constant ci, for each i ∈ [1, n].

Given a UCQ 6= q = q1 ∪ . . . ∪ qm of arity n and an n-tuple of constants ~c =
(c1, . . . , cn), we denote by q(~c) = q1(~c) ∪ . . . ∪ qm(~c) the boolean UCQ6= obtained
from q by replacing the disjunct qi with qi(~c), for each i ∈ [1, n].

2.3 Computational Complexity
We assume familiarity with basic notions about computational complexity, as defined
in standard textbooks [Garey and Johnson, 1979; Papadimitriou, 1994; Arora and
Barak, 2009]. In particular, we consider the following complexity classes:

AC0 ( LogSpace ⊆ NLogSpace ⊆ PTime ⊆[
NP
coNP

]
⊆ DP ⊆ PTimeNP ⊆

[
Σp

2

Πp
2

]
⊆ ExpTime ⊆

[
NExpTime

coNExpTime

]
It is known that AC0 ( LogSpace, for example the undirected graph reachability

problem is in LogSpace [Reingold, 2008] but not in AC0. The strictness of all the
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other inclusions, as well as whether complexity classes in square brackets coincide, are
still open problems. By the time hierarchy theorems [Hartmanis and Stearns, 1965;
Cook, 1973], however, it is known that PTime ( ExpTime and NP ( NExpTime
(respectively, coNP ( coNExpTime).

Since readers might be less familiar with the complexity class AC0, we briefly
provide a basic intuition about it, and refer to [Vollmer, 1999] for its formal definition
which is based on the circuit model. Intuitively, a decision problem belongs to AC0 if
it can be decided in constant time using a number of processors that is polynomial in
the size of the input. A typical decision problem belonging to AC0 is the evaluation
of FOL queries over relational databases, where only the database is regarded as the
input, and the query is assumed to be fixed [Abiteboul et al., 1995].

A decision problem P is said to be C-hard for a complexity class C, if any decision
problem P ′ ∈ C can be reduced to P, and it is said to be C-complete if in addition
P ∈ C. Most of the reductions presented in this thesis are LogSpace reductions.

A LogSpace reduction is a reduction computable by a three-tape Turing ma-
chine [Turing, 1937] that, with an input written on the read-only input tape, writes
its output on the write-only output tape using a number of cells of the (initially-blank)
read/write work tape that is logarithmic in the size of the input.

2.4 View-based Query Processing
View-based query processing is a general term denoting several tasks related to
the presence of views in database systems. In particular, two notions have been
subject to extensive investigations in literature, namely view-based query answering
and view-based query rewriting, whose relationship, although widely discussed (see,
e.g., [Calvanese et al., 2000; Calvanese et al., 2007c]), seems to be often ignored.

In view-based query answering, a notion originated with [Duschka and Genesereth,
1997], we are given a query, a set of view definitions, and a set of view extensions, and
the goal is to compute the so-called certain answers, i.e., the set of tuples satisfying
the query in all databases consistent with the views.

In view-based query rewriting, a notion originated with [Levy et al., 1995],we
are given a query and a set of view definitions, and the goal is to reformulate the
query into an expression over the alphabet of the view names that satisfies certain
conditions. In this thesis, we are mainly interested to view-based query rewriting.

We denote by V = {V1, . . . , Vn} and E = {E1, . . . , En} a set of view definitions
and view extensions over a schema S, respectively, where, for each i ∈ [1, n], to the
symbol Vi it is implicitly associated a query over a schema S, and Ei is the view
extension of Vi (i.e., a set of facts having Vi as a predicate with arity the one of the
corresponding query). When dealing with (U)CQ view definitions V = {V1, . . . , Vn},
we implicitly assume that the target list (of each disjunct) of the (U)CQ associated
to Vi does not have repeated variables or constants, for each i ∈ [1, n].

2.4.1 Exact View Assumption

Given a schema S, a set of view definitions V = {V1, . . . , Vn} over S, and a query qS
over S, the goal is to reformulate qS into an expression over the view alphabet (called
rewriting) that, when evaluated over the set of view extensions V(D) = {V D

1 , . . . , V D
n }
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(for a view symbol Vi, V D
i denotes the evaluation of the query associated to Vi over

D), coincide with the evaluation of qS over D (i.e., qDS ), for each S-database D.
Formally, for a set of view definitions V and a query qS over a schema S, we say

that a query qV is an exact rewriting of qS with respect to V , if qDS = q
V(D)
V for each

S-database D. The underlying decision problem associated to exact rewritings is the
expressibility problem: given a set of view definitions V and a query qS over a schema
S, does there exist an exact rewriting of qS with respect to V?1 This happens to
be a difficult problem, it is indeed in general undecidable already when both view
definitions in V and queries qS are CQs [Gogacz and Marcinkowski, 2016].

Obviously, one might be interested not in arbitrary exact rewritings, but in those
belonging to a certain query language L. Formally, we say that qV is an L-exact
rewriting of a query qS with respect to a set of view definitions V, if qV is an exact
rewriting of qS with respect to V and qV ∈ L. When view definitions in V are
CQs and queries qS are (U)CQs, the problem of deciding whether there exists a
(U)CQ-exact rewriting is NP-complete [Levy et al., 1995].

2.4.2 Sound View Assumption

The setup we have considered so far is that of exact views, in the sense that
the extension of each view is precisely the result of evaluating the corresponding
view expression over the database. There is, however, at least one other notion
of a database being coherent with the view extensions,2 namely that of sound
views. Specifically, an S-database D is consistent with the set of view extensions
E = {E1, . . . , En} with respect to the set of view definitions V = {V1, . . . , Vn} under
the sound view assumption, if E ⊆ V(D), i.e., if Ei ⊆ V D

i for each i ∈ [1, n].
Given a set of view definitions V over a schema S, a set of view extensions E ,

and a query qS over S, we denote by certEqS ,V the certain answers of qS with respect
to V and E , i.e., the set of tuples of constants that are in all the evaluations of qS
over S-databases D consistent with E with respect to V. Formally:

certEqS ,V :=
⋂

D: E⊆V(D)
qDS

Given a set of view definitions V over a schema S and a query qS over S, following
the literature terminology, we say that a query qV over the view alphabet V is a
perfect rewriting of qS with respect to V, if qEV = certEqS ,V for each view extension E .

Furthermore, we say that a query qV over the view alphabet V is a sound rewriting
of qS with respect to V, if qEV ⊆ qDS for each view extension E and S-database D
such that E ⊆ V(D). Obviously, the interest is in computing sound rewritings that
capture the original query at best. This is formalized by the following notion, where
L is a query language. A query qV ∈ L over the view alphabet V is an L-maximally
sound rewriting of qS with respect to V , if qV is a sound rewriting of qS with respect
to V and there exists no query q′V ∈ L such that (i) q′V is a sound rewriting of qS with

1In literature, this problem is also referred as determinacy [Nash et al., 2010] and losslessness
under the exact view assumption [Calvanese et al., 2007c].

2In fact, a third notion considered in literature is that of complete views, which, however, we do
not consider it here.



16 2. Theoretical Background

respect to V , (ii) qEV ⊆ q′V
E for each set of view extensions E , and (iii) qE ′V ( q′V

E ′ for
a set of view extensions E ′.

We conclude this section with the following renowned positive result for CQ view
definitions and UCQ queries.

Theorem 2.1. [Levy et al., 1995] Let V be a set of CQ view definitions over a
schema S. For a UCQ qS over S, it is always possible to compute the UCQ qV which
is the union of all CQ-maximally sound rewritings of qS with respect to V. Moreover:

• qV is a UCQ-maximally sound rewriting of qS with respect to V;

• qV is a perfect rewriting of qS with respect to V;

• qV is a UCQ-exact rewriting of qS wih respect to V, if this latter exists.

Notice, however, that the above theorem is no longer true when view definitions
V are expressed as UCQs rather than CQs [Duschka and Genesereth, 1998; Afrati
and Chirkova, 2019]. Specifically, there are cases where a UCQ-maximally sound
rewriting of a CQ qS with respect to a set of UCQ view definitions V does not exist.

2.5 Description Logic Ontologies and Knowledge Bases
Description Logics (DLs) are fragments of FOL languages using only unary and binary
predicates, called atomic concepts and atomic roles, respectively [Baader et al., 2003;
Baader et al., 2017]. According to [Gruber, 1993; Gruber, 2018], an ontology is a
formal explicit specification of a shared conceptualisation of a domain of interest.
Since DLs are logics specifically designed to represent structure knowledge and to
reason about it, they are arguably well-suited to represent ontologies.

In this thesis, a DL ontology (or simply ontology) O is a TBox (“Terminological
Box”) expressed in a specific DL, that is, a set of assertions stating general properties
of concepts and roles (built according to the syntax of the specific DL) which
represents the intensional knowledge of a modeled domain.

Sometimes, we also need to view an ontology O as a schema. In such cases, we
implicitly refer to the finite set of unary and binary predicates corresponding to
atomic concepts and atomic roles, respectively, which constitute the alphabet of O.

2.5.1 DL-LiteR Ontologies: Syntax

We are interested in DL ontologies expressed in DL-LiteR, a member of the DL-Lite
family3 [Calvanese et al., 2004a; Calvanese et al., 2005; Calvanese et al., 2007b]
of DLs. Notably, DL-LiteR is the logic underpinning OWL 2 QL4, i.e., one of the
three OWL 25 profiles [Cuenca Grau et al., 2008; Motik et al., 2012], specifically the
one especially designed for efficient query answering. Notice that, in the Semantic
Web [Berners-Lee et al., 2001] context, OWL 2 is the current W3C recommended
standard ontology language.

3Not to be confused with the DL-Litebool family studied in [Artale et al., 2009], a supremum of
the DL-Lite family in the lattice of DLs.

4OWL 2 Query Language: https://www.w3.org/TR/owl2-profiles/#OWL_2_QL
5OWL 2 Web Ontology Language: https://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
http://www.w3.org/TR/owl2-profiles/
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In DL-LiteR, concepts and roles obey to the following syntax:

B −→ A | ∃R R −→ P | P−

where A, P , and P− denote an atomic concept (atomic concepts include the universal
concept > and the bottom concept ⊥), an atomic role, and the inverse of an atomic
role, respectively. R denotes a basic role, i.e., a role that is either an atomic role or
its inverse. B denotes a basic concept, i.e., a concept that is either an atomic concept
or ∃R, where this latter is the standard DL construct of unqualified existential
quantification on basic roles.

A DL-LiteR ontology O is a finite set of assertions of the form:

B1 v B2 R1 v R2 (concept/role inclusion assertion)
B1 v ¬B2 R1 v ¬R2 (concept/role disjointness assertion)

Without loss of generality, we assume that each DL-LiteR ontology O contains
an inclusion assertion of the form A v > (respectively, ∃P v > and ∃P− v >), for
each possible atomic concept A (respectively, atomic role P ) in the alphabet of O.

Let C (respectively, E) denote a general concept (respectively, general role),
i.e., a concept (respectively, role) that is either a basic concept (respectively, basic
role) or its negation. In principle, one might also include B1 t B2 and R1 t R2
(respectively, C1uC2 and E1uE2) in the constructs for the left-hand side (respectively,
right-hand side) of assertions, where t (respectively, u) denotes union (respectively,
intersection). Notice, however, that the expressive capabilities of the language
would remain the same, since in fact assertions of the form B1 t B2 v C and
R1 tR2 v E (respectively, B v C1 uC2 and R v E1 uE2) are equivalent to the pair
of assertions B1 v C,B2 v C and R1 v E,R2 v E (respectively, B v C1, B v C2
and R v E1, R v E2).

Similar arguments hold for the additional assertions included in OWL 2 QL, namely
symmetry, asymmetry, qualified existential quantification, reflexivity, and irreflexivity.
It is immediate to see that symmetry (respectively, asymmetry) of an atomic role
P can be expressed by means of the inclusion assertion P v P− (respectively,
P v ¬P−). Likewise, a qualified existential quantification of the form B1 v ∃R.B2 is
equivalent to the assertions B1 v ∃Pnew, Pnew v R, and ∃P−new v B2, where Pnew is a
fresh atomic role. Furthermore, the addition of reflexivity and irreflexivity assertions
(which include a form of second-order constructs) does not affect the computational
complexity of the basic inference problems (including query answering) [Corona et
al., 2009; Artale et al., 2009], and such constructs could be easily included with only
minor changes in reasoning algorithms.

Observe that DL-LiteR is an extension of (the DL-like part of) the ontology
language RDFS6 [Cuenca Grau, 2004], the schema language for RDF7. We will refer
to this latter DL ontology language as DL-LiteRDFS. Specifically, a DL-LiteRDFS is a
finite set of assertions of the form:

B v A R1 v R2

6Resource Description Framework Schema [Brickley and Guha, 2014].
7Resource Description Framework: https://www.w3.org/RDF/

https://www.w3.org/RDF/
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We will also consider a slight extension of the DL ontology language DL-LiteRDFS,
namely DL-Lite¬RDFS, which also allows for the concept/role disjointness assertions
expressible in DL-LiteR.

We further note that DL-LiteR is an extension of DL-Litecore i.e., the basic logic
of the DL-Lite family. A DL-Litecore ontology is a finite set of assertions of the form:

B1 v B2 B1 v ¬B2

Observe that DL-Litecore and DL-LiteRDFS (respectively, DL-Lite¬RDFS) are incom-
parable fragments of DL-LiteR.

2.5.2 DL-LiteR Ontologies: Semantics

The semantics of DL ontologies is specified through the notion of interpretation:
an FOL interpretation I for an ontology O is a pair I = 〈∆I , ·I〉, where the
interpretation domain ∆I ⊆ Const is a non-empty, possibly infinite set of objects,
and the interpretation function ·I assigns to each atomic concept A a set of domain
objects AI ⊆ ∆I , and to each atomic role P a set of pairs of domain objects
P I ⊆ ∆I ×∆I . For the constructs of DL-LiteR, the interpretation function extends
to other basic concepts, basic roles, and the additional binary predicate 6= as follows:

• >I = ∆I

• ⊥I = ∅

• 6=I= {(o, o′) | o, o′ ∈ ∆I ∧ o 6= o′}. We often write (o, o′) ∈6=I as o 6=I o′.

• (∃P )I = {o | ∃o′. (o, o′) ∈ P I}

• (P−)I = {(o, o′) | (o′, o) ∈ P I}

When convenient, we treat interpretations I = 〈∆I , ·I〉 for O as a (possibly
infinite) set of facts over O, in those cases we implicitly refer to the set of facts
including: for each unary predicate U and for each e ∈ ∆I (respectively, for each
binary predicate B and for each pair e1, e2 ∈ ∆I), the fact U(e) (respectively,
B(e1, e2)) if and only if e ∈ UI (respectively, (e1, e2) ∈ BI).

We say that an interpretation I for an ontology O satisfies a concept inclusion
assertion B1 v B2 (respectively, role inclusion assertion R1 v R2) if BI1 ⊆ BI2
(respectively, RI1 ⊆ RI2 ), and it satisfies a concept disjointness assertion B1 v ¬B2
(respectively, role disjointness assertion R1 v ¬R2) if BI1 ∩ BI2 = ∅ (respectively,
RI1 ∩RI2 = ∅). Finally, we say that an interpretation I for an ontology O satisfies
O, denoted by I |= O, if I satisfies every assertion in O.

2.5.3 DL-LiteR Knowledge Bases

An L knowledge base K is a pair K = 〈O,A〉, where O is a DL ontology expressed
in L, and A is an ABox (“Assertional Box”) for O, i.e., a finite set of membership
assertions (or equivalently, a finite set of facts) of the form:

A(a) P (a, b)



2.5 Description Logic Ontologies and Knowledge Bases 19

where a, b are constants (also known as individuals) in Const, and A and P is an
atomic concept and an atomic role, respectively, in the alphabet of O.

The semantics of an L knowledge base K = 〈O,A〉 is given in terms of in-
terpretations for K, i.e., FOL interpretations I = 〈∆I , ·I〉 for O such that the
interpretation function ·I further assigns to each individual a occurring in A a
domain object aI ∈ ∆I . Unless otherwise stated, we adopt the so-called unique
name assumption (UNA), i.e., we consider only those interpretations I for which
aI 6= bI for each pair of individuals a, b occurring in A with a 6= b

An interpretation I for an L knowledge base K = 〈O,A〉 is a model of K, denoted
by I |= K, if I |= O and I |= A, where I |= A if, for each membership assertion A(a)
(respectively, P (a, b)) in A, we have that aI ∈ AI (respectively, (aI , bI) ∈ P I).

The set of models of an L knowledge base K = 〈O,A〉, denoted by ModA(O), is
the set of interpretations I for K such that I |= K. An L knowledge base K = 〈O,A〉
is said to be satisfiable if ModA(O) 6= ∅, unsatisfiable otherwise.

For an L knowledge base K = 〈O,A〉, an interpretation I = 〈∆I , ·I〉 for K, and
a UCQ 6= query qO over O, with a slight abuse of notation, we denote by qIO the
evaluation of the query q′O over I, where q′O is obtained from qO by replacing each
individual c occurring in qO with the domain object cI ∈ ∆I (if defined, i.e., if c
occurs in A). Furthermore, for a CQ6= qO and an interpretation I, we say that h is
a homomorphism from qO to I, if h is a homomorphism from Wq′O

(i.e., the set of
all atoms occurring in the body of q′O that are not inequality atoms) to I.

Finally, given an L knowledge base K = 〈O,A〉 and a UCQ6= qO over O, we
denote by certAqO,O the set of certain answers of qO with respect to O and A,
i.e., the set of tuples of constants (c1, . . . , cn) such that (cI1 , . . . , cIn) ∈ qIO for each
I ∈ ModA(O). For a boolean FOL query qO over O, we denote by I |= qO (also by
qIO = {()}) the fact that the body of qO, which is a FOL sentence, is true in I, and
by K |= qO (also by certAqO,O = {()}) the fact that I |= qO for each model I of K.

Observe that, if K = 〈O,A〉 is unsatisfiable, then the set of certain answers of
any query qO (over O) with respect to O and A is trivially the set of all possible
tuples of constants occurring in A whose arity is the one of the query (ex falso
sequitur quodlibet), i.e., certAqO,O = {(x1, . . . , xar(qO)) | >(x1, . . . , xar(qO))}IA , where
>(x1, . . . , xar(qO)) (similarly, ⊥(x1, . . . , xar(qO))) is a shortcut denoting the conjunc-
tion of atoms >(x1) ∧ . . . ∧ >(xar(qO)) (similarly, ⊥(x1) ∧ . . . ∧ ⊥(xar(qO))), and IA
is the interpretation for K obtained as follows:

• ∆IA is composed of all individuals occurring in A;

• aIA = a, for each individual a occurring in A;

• AIA = {a | A(a) ∈ A} for each atomic concept A;

• P IA = {(a, b) | P (a, b) ∈ A} for each atomic role P .

When we talk about the problem of answering queries belonging to a query
language Q over L knowledge bases, we implicitly refer to the following decision
problem: Given a query q ∈ Q, an L knowledge base K = 〈O,A〉, and a tuple of
constants ~c, check whether ~c ∈ certAqO,O.

From [Calvanese et al., 2007b], it is well-known that answering UCQs over
DL-LiteR knowledge bases is FOL-rewritable, i.e., for every UCQ q and every
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DL-LiteR knowledge base K = 〈O,A〉, it is possible to compute the set of certain
answers certAqO,O by first reformulating qO with respect to O (obtaining a FOL query
over O), and then by evaluating the reformulated query over IA.

Algorithm 2.1 PerfectRef
Input:

DL-LiteR ontology O;
UCQ qO = q1

O ∪ . . . ∪ qnO over O
Output:

UCQ qr over O

1: qr := ∅
2: for i← 1 to n do
3: PR := {τ(qiO)}
4: repeat
5: PR′ := PR
6: for each q ∈ PR′ do
7: for each atom g in q do
8: for each inclusion assertion I in O that is applicable to g do
9: PR := PR ∪ {q[g/gr(g, I)]}

10: end for
11: for each pair of atoms g1, g2 in q do
12: if g1 and g2 may unify then
13: PR := PR ∪ {τ(reduce(q, g1, g2))}
14: end if
15: end for
16: end for
17: end for
18: until PR′ = PR
19: qr := qr ∪ {q | q ∈ PR}
20: end for
21: return qr

More specifically, for satisfiable DL-LiteR knowledge bases K = 〈O,A〉 we
have that, if qO is a UCQ over O, then PerfectRef(O, qO)IA = certAqO,O, where
PerfectRef(O, qO) is the UCQ obtained by executing the algorithm PerfectRef de-
scribed in [Calvanese et al., 2007b] and reported above on O and qO. Note that
PerfectRef ignores the disjointness assertions of the input DL-LiteR ontology. Let
“_ ” represents an existential variable that is not a join existential variable. In the
algorithm, τ is a function that, given a CQ q, it returns a CQ obtained by replacing
each existential variable that is not a join existential variable with the symbol _ .
The algorithm uses the notion of applicability of an inclusion assertion to an atom.
Specifically, an inclusion assertion I is applicable to an atom A(x) (respectively,
P (x1, x2)), if the right-hand side of I is A (respectively, if (i) x2 = _ and the
right-hand side of I is ∃P ; or (ii) x1 = _ and the right-hand side of I is ∃P−; or
(iii) the right-hand side of I is either P or P−). Furthermore, q[g/gr(g, I)] denotes
the CQ obtained from q by replacing the atom g with a new atom gr(g, I), where,
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for an inclusion assertion I applicable to g, gr(g, I) is the atom defined as follows:
• if g = A(x) and I = A1 v A, then gr(g, I) = A1(x);

• if g = A(x) and I = ∃P v A, then gr(g, I) = P (x, _ );

• if g = A(x) and I = ∃P− v A, then gr(g, I) = P (_ , x);

• if g = P (x, _ ) and I = A v ∃P , then gr(g, I) = A(x);

• if g = P (x, _ ) and I = ∃P1 v ∃P , then gr(g, I) = P1(x, _ );

• if g = P (x, _ ) and I = ∃P−1 v ∃P , then gr(g, I) = P1(_ , x);

• if g = P (_ , x) and I = A v ∃P−, then gr(g, I) = A(x);

• if g = P (_ , x) and I = ∃P1 v ∃P−, then gr(g, I) = P1(x, _ );

• if g = P (_ , x) and I = ∃P−1 v ∃P−, then gr(g, I) = P1(_ , x);

• if g = P (x1, x2) and either I = P1 v P or I = P−1 v P−, then gr(g, I) =
P1(x1, x2);

• if g = P (x1, x2) and either I = P1 v P− or P−1 v P , then gr(g, I) = P1(x2, x1).
Finally, reduce is a function that, given a CQ q and two atoms g1 and g2, it

returns a new CQ obtained by applying the most general unifier between g1 and
g2. In unifying g1 and g2, each occurrence of the symbol _ is considered a different
existential variable. The most general unifier substitutes each symbol in g1 with the
corresponding argument in g2, and vice versa (obviously, if both arguments are _ ,
the resulting argument is still _ ).

Furthermore, a DL-LiteR knowledge base K = 〈O,A〉 is satisfiable if and only
if certAVO,Op = ∅, where again certAVO,Op = PerfectRef(O,VO)IA . Here, Op is the
DL-LiteR ontology obtained from O by removing the disjointness assertions in O, and
VO is the violation query for O, i.e., the boolean UCQ obtained by including a disjunct
of the form {() | ∃y.A1(y) ∧ A2(y)} (respectively, {() | ∃y1, y2.A1(y1) ∧ R(y1, y2)},
{() | ∃y1, y2, y3.R1(y1, y2) ∧ R2(y1, y3)}, and {() | ∃y1, y2.R1(y1, y2) ∧ R2(y1, y2)})
for each disjointness assertion A1 v ¬A2 (respectively, A1 v ¬∃R or ∃R v ¬A1,
∃R1 v ¬∃R2, and R1 v ¬R2), where an atom of the form R(y, y′) stands for either
P (y, y′) if R denotes an atomic role P , or P (y′, y) if R denotes the inverse of an
atomic role, i.e., R = P−. Furthermore, we denote by VnO the UCQ over O of arity
n obtained by adding the target list (x1, . . . , xn) and >(x1, . . . , xn) in the body to
each disjunct of VO, where xi is a fresh distinguished variable for each i ∈ [1, n].

Observe that DL-LiteR is insensitive to the adoption of the UNA for UCQ
answering [Artale et al., 2009]. Specifically, a DL-LiteR knowledge base K = 〈O,A〉
is satisfiable if and only if it is so without the UNA, and the set of certain answers of
an UCQ q with respect to O and A does not depend on the adoption of the UNA.

We conclude this subsection with a consideration on the computational complexity
of the query answering problem. Both with and without the UNA, the problem of
answering UCQs over DL-LiteR knowledge bases is FOL-rewritable (and therefore
in AC0 in data complexity, i.e., the complexity where only the ABox is considered
to be the input [Vardi, 1982]), and NP-complete in combined complexity, i.e., the
complexity with respect to all inputs of the problem [Calvanese et al., 2007b].
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2.6 Ontology-based Data Management
According to [Lenzerini, 2018], Ontology-based Data Management (OBDM) can be
seen as a sophisticated form of Information Integration [Lenzerini, 2002; Calvanese
and De Giacomo, 2005; Doan et al., 2012], where the usual global schema is replaced
by the conceptual model of an application domain, formulated as an ontology.

The OBDM paradigm resorts to a three-level architecture, consisting of the
ontology, some existing data sources relevant for an organization, and the mapping
between the two. In all this thesis, we assume that data sources are expressed as a
unique relational database schema. Note that this is a realistic assumption, since
many, nowadays available, off-the-shelf Data Federation/Virtualisation tools can be
used to wrap multiple, possibly non-relational, sources, and present them as they
were structured according to a single schema.

Figure 2.1. OBDM Specification and System

We distinguish between the specification of an OBDM system, and the OBDM
system itself (cf. Figure 2.1). From a more formal perspective, an OBDM specification
Σ determines the intensional level of the system, and it is expressed as a triple
Σ = 〈O,S,M〉, where:

• O is a DL ontology;
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• S is a relational database schema, also called source schema;

• M is a mapping, i.e., a finite set of mapping assertions relating S to O.

An OBDM system is a pair 〈Σ, D〉, where Σ = 〈O,S,M〉 is an OBDM specifica-
tion, and D is an S-database, also called source database for Σ.

2.6.1 Mapping Specifications

When mapping data sources to ontologies, one should take into account that sources
store values (data), whereas instances of atomic concepts (respectively, atomic roles)
are objects (respectively, pair of objects), where each object should be denoted
by an ad-hoc identifier (a semantical object), not to be confused with any data
item. Dealing with this problem, however, would uselessly complicate our technical
treatment. Therefore, for ease of exposition, we ignore this problem (known as the
impedance mismatch problem [Meseguer and Qian, 1993]), and refer to [Poggi et al.,
2008] for technical details on how to solve it. We notice, however, that all our results
can easily carry over in a setting that take into account also such issue.

Commonly, mapping assertions are assumed to be sound, which means that
certain patterns over the source schema implies certain patterns at the ontology level.
Typically, from a logical point of view, sound mapping assertions constituting a
mappingM relating a schema S to an ontology O are of the form ∀~x.(∃~y.φS(~x, ~y)→
∃~z.ϕO(~x, ~z)), where φS(~x, ~y) and ϕO(~x, ~z) are body of CQs, i.e., finite conjunction
of atoms over S and O, respectively [Lenzerini, 2002; Doan et al., 2012]. Mapping
assertions of the above form are also called GLAV (Global-and-Local-as-View)
mapping assertions. Special cases of GLAV mapping assertions are GAV (Global-as-
View) and LAV (Local-as-View) mapping assertions.

A GAV mapping assertion is a GLAV mapping assertion in which the right-hand
side of the implication does not make use of existential variables, i.e., it is an assertion
of the form ∀~x.(∃~y.φS(~x, ~y)→ ϕO(~x)). Furthermore, a GAV mapping assertion is
called pure if ϕO(~x) is a conjunction of atoms without constants or variables that
are repeated more than once in the body of ϕO(~x).

A LAV mapping assertion is a GLAV mapping assertion in which the left-hand
side of the implication is simply an atom without constants or repeated variables, and
all universally quantified variables appear in the right-hand side of the implication,
i.e., it is an assertion of the form ∀~x.(φS(~x)→ ∃~z.ϕO(~x, ~z)), where φS(~x) corresponds
to s(x1, . . . , xn) with s being an n-ary predicate symbol of S, and x1, . . . , xn being
pairwise different variables.

For readability purposes, from now on we will drop universal quantifiers in front
of mapping assertions. Finally, we say that a mappingM is a GLAV (respectively,
LAV, GAV, pure GAV) mapping if it consists of a finite set of GLAV (respectively,
LAV, GAV, pure GAV) mapping assertions.

Due to the assumption that ontologies contain the atomic concept > in their
alphabet (with its obvious semantics), in each mappingM relating a source schema
S to an ontology O, we tacitly assume that, for each n-ary predicate s ∈ S, the
mappingM contains the following both LAV and pure GAV mapping assertion:

s(x1, x2, . . . , xn)→ >(x1) ∧ >(x2) ∧ . . . ∧ >(xn).
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2.6.2 The Chase

The chase is a fixpoint algorithm typically used to reason about data dependen-
cies [Beeri and Vardi, 1984]. It has been introduced in [Maier et al., 1979], and now it
plays a central role in various contexts, e.g., database schema design [Bernstein, 1976;
Fagin, 1977], query containment [Kolaitis and Vardi, 2000], data exchange [Fagin et
al., 2005a; Fagin et al., 2005b; Arenas et al., 2014], etc.

Here, with chase we implicitly refer to the so-called oblivious chase [Calì et al.,
2013] (also known as the naive chase [ten Cate et al., 2009]) rather than to the
standard chase [Fagin et al., 2005a]. Formally, given a set of atoms W over a schema
S and a mappingM relating S to an ontology O, the chase of W with respect to
M, denoted byM(W), is computed as follows: (i) we start with an empty set of
atoms J := ∅ over O, then (ii) for every GLAV assertion ∃~y.φS(~x, ~y)→ ∃~z.ϕO(~x, ~z)
inM and for every homomorphism h from the set of all atoms occurring in φS(~x, ~y)
to W, we add to J the image of the set of all atoms occurring in ϕO(~x, ~z) under
h′, that is, J := J ∪ h′(ϕO(~x, ~z)), where h′ extends h by assigning to each variable
z ∈ ~z a different fresh variable in Var still not present in J .

With a slight abuse of notation, given a CQ 6= q over a schema S and a mapping
M relating schema S to an ontology O, we denote byM(q) the conjunction of all
the atoms inM(Wq), i.e., the conjunction of all the atoms obtained by chasing the
incomplete S-database associated to q with respect toM.

2.6.3 Semantics and Query Answering

The semantics of an OBDM system 〈Σ, D〉, with Σ = 〈O,S,M〉 an OBDM specifi-
cation and D an S-database, is given in terms of interpretations I for 〈Σ, D〉, i.e.,
interpretations I = 〈∆I , ·I〉 for O in which the interpretation function ·I further
assigns to each constant a ∈ dom(D)∪ conM a domain object aI ∈ ∆I , where conM
denotes the set of all constants occurring inM. Unless otherwise stated, we adopt
the UNA, i.e., we consider only those interpretations I for which aI 6= bI for each
pair of constants a, b ∈ dom(D) ∪ conM with a 6= b.

Given an OBDM specification Σ = 〈O,S,M〉, an S-databaseD, an interpretation
I = 〈∆I , ·I〉 for 〈Σ, D〉, and a GLAV mapping assertion m = ∃~y.φS(~x, ~y) →
∃~z.ϕO(~x, ~z) belonging to a mappingM relating schema S to O, we say that the pair
〈D, I〉 satisfies m if the following holds: for each homomorphism h from φS(~x, ~y) to
D, there exists a homomorphism h′ from ϕhIO (~x, ~z) to I, where ϕhIO (~x, ~z) denotes
the set of all atoms occurring in ϕO(~x, ~z) obtained by replacing each term t, that
is either a constant or t ∈ ~x, with h(t)I (by definition, h(t) is either a constant
occurring in D or a constant occurring inM, and therefore h(t)I is a domain object
belonging to ∆I). Furthermore, we say that 〈D, I〉 satisfies a mappingM relating
schema S to O, denoted by 〈D, I〉 |=M, if 〈D, I〉 satisfies every assertion m ∈M.

We are now ready to formalise the notion of model of an OBDM system. An
interpretation I for an OBDM system 〈Σ, D〉 is a model of 〈Σ, D〉 (also called a
model of Σ relative to D), denoted by I |= 〈Σ, D〉, if (i) I |= O and (ii) 〈D, I〉 |=M.

The set of models of an OBDM system 〈Σ, D〉, denoted by ModD(Σ), is the set
of interpretations I for 〈Σ, D〉 such that I |= 〈Σ, D〉. An S-database D is said to be
consistent with Σ = 〈O,S,M〉 if ModD(Σ) 6= ∅, inconsistent otherwise.
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In OBDM one of the main service of interest is query answering, i.e., computing
the certain answers to queries posed over the ontology (cf. Figure 2.1). Given an
OBDM specification Σ = 〈O,S,M〉, an S-database D, and an UCQ 6= query qO
over O, we denote by certDqO,Σ the set of certain answers of qO with respect to Σ
and D, i.e., the set of tuples of constants (c1, . . . , cn) such that (cI1 , . . . , cIn) ∈ qIO for
each I ∈ ModD(Σ). Observe that, if 〈Σ, D〉 is unsatisfiable, then the set of certain
answers of any query qO (over O) with respect to Σ and D is trivially the set of all
possible tuples of constants occurring in D whose arity is the one of the query.

Given an OBDM specification Σ = 〈O,S,M〉 and two queries q1
O, q

2
O over O, we

write certq1
O,Σ
v certq2

O,Σ
if certD

q1
O,Σ
⊆ certD

q2
O,Σ

for each S-database D. We also write
certq1

O,Σ
@ certq2

O,Σ
if (i) certq1

O,Σ
v certq2

O,Σ
, and in addition (ii) certD

q1
O,Σ

( certD
q2
O,Σ

for at least an S-database D. Finally, we say that q1
O and q2

O are equivalent
with respect to Σ, denoted by certq1

O,Σ
≡ certq2

O,Σ
, if both certq1

O,Σ
v certq2

O,Σ
and

certq2
O,Σ
v certq1

O,Σ
hold, that is, certD

q1
O,Σ

= certD
q2
O,Σ

for each S-database D.
For an OBDM specification Σ = 〈O,S,M〉 and a query qO over O, following

the literature terminology, we say that a query qS over S is a perfect (respectively,
sound) O-to-S Σ-rewriting of qO if qDS = certDqO,Σ (respectively, qDS ⊆ certDqO,Σ) for
each S-database D. The perfect O-to-S Σ-rewriting of qO is denoted by REWqO,Σ.
Observe that, by definition, REWD

qO,Σ = certDqO,Σ for each S-database D.
Let Σ = 〈O,S,M〉 be an OBDM specification where O = ∅, i.e., O has no

assertions, and M is a GLAV mapping. From result of [Friedman et al., 1999;
Calvanese et al., 2012], it is well-known that, given a UCQ qO over O, by splitting
the GLAV mappingM into a GAV mapping followed by a LAV mapping over an
intermediate alphabet, it is always possible to compute a UCQ over S, denoted by
MapRef(qO,M), such that MapRef(qO,M) ≡ REWqO,Σ.

We conclude this chapter with the following observations for OBDM specifications
Σ = 〈O,S,M〉 where O is a DL-LiteR ontology andM is a GLAV mapping:

• Given a UCQ qO over O, we denote by PerfRefqO,Σ the UCQ obtained by
first executing the algorithm PerfectRef on O and qO, and then by rewrit-
ing the obtained UCQ with respect to mapping M, i.e., PerfRefqO,Σ :=
MapRef(PerfectRef(O, qO),M). From results of Subsection 2.5.3 and the above
observation, it is easy to see that, if qO is a UCQ over O of arity n, then
REWqO,Σ ≡ PerfRefqO,Σ ∪ PerfRefVnO,Σ. In other words, if qO is a UCQ over
O, then the UCQ PerfRefqO,Σ ∪ PerfRefVnO,Σ is the perfect O-to-S Σ-rewriting
of qO, i.e, (PerfRefqO,Σ ∪ PerfRefVnO,Σ)D = certDqO,Σ for every S-database D.

• For an S-database D, we denote by CM(D)
O the canonical structure of O with

respect toM and D, i.e., the (possibly infinite) set of atoms over O obtained by
first chasing D with respect toM, and then by chasing, possibly ad infinitum,
the resulting set of atomsM(D) with respect to O as described in [Calvanese
et al., 2007b, Definition 5] but using the alphabet Var of variables whenever a
new element is needed in the chase. By combining results of [Fagin et al., 2005a,
Proposition 4.2] with [Calvanese et al., 2007b, Theorem 29], it is well-known
that, if qO is a UCQ over O and ~c is a tuple of constants, then ~c ∈ certDqO,Σ if

and only if ~c ∈ qC
M(D)
O
O , i.e., if and only if CM(D)

O |= qO(~c).
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Chapter 3

Abstraction in Ontology-based
Data Management: Framework

In this chapter, we illustrate a formal framework for abstraction in OBDM. Informally,
given a data service expressed as a query qS over the source schema, the goal is
in finding a query qO over the ontology that represents an abstraction of the data
service represented by qS in terms of the domain ontology through the mapping.

Specifically, we introduce three semantically well-founded notions, namely perfect,
sound, and complete source-to-ontology rewriting, and two basic computational
problems, namely verification and computation. In what follows, Σ = 〈O,S,M〉
refers to an OBDM specification, and qS and qO to queries over the source schema
S and over the ontology O, respectively, of the same arity.

3.1 The notion of Source-to-Ontology Rewriting
Intuitively, given a data service expressed as a query qS over S, we aim at finding
the query qO over O that semantically characterises qS with respect to the OBDM
specification Σ = 〈O,S,M〉 of the information system. Since the evaluation of
queries over O is based on certain answers, this means that we aim at finding a
query over O whose certain answers with respect to Σ and D precisely capture the
evaluation of qS over D, for every S-database D. Therefore, we are naturally led to
the notion of perfect source-to-ontology rewriting.

Definition 3.1. We say that qO is a perfect S-to-O Σ-rewriting of qS , if for every
S-database D, ModD(Σ) 6= ∅ implies certDqO,Σ = qDS . If in addition qO ∈ LO for a
query language LO, then we say that qO is an LO-perfect S-to-O Σ-rewriting of qS .

Example 3.1. Let Σ = 〈O,S,M〉, qS , and qO be the OBDM specification, the
query over S, and the query over O, respectively, illustrated in Example 1.1. One
can easily verify that qO is a CQ-perfect S-to-O Σ-rewriting of qS .

The next proposition states that perfect source-to-ontology rewritings are always
unique (up to equivalence with respect to the underlying OBDM specification Σ).

Proposition 3.1. If q1 and q2 are perfect S-to-O Σ-rewritings of qS , then they are
equivalent with respect to Σ, i.e., certq1,Σ ≡ certq2,Σ.
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Proof. Following Definition 3.1, since q1 and q2 are perfect S-to-O Σ-rewritings of
qS , we have that certDq1,Σ = qDS = certDq2,Σ for all S-databases D consistent with Σ.
For all the S-databases D that are not consistent with Σ, however, by definition of
certain answers, we have that certDq1,Σ = certDq2,Σ as well. So, certDq1,Σ = certDq2,Σ for
all S-databases D. Thus, certq1,Σ ≡ certq2,Σ, as required.

The next example shows that perfect source-to-ontology rewritings are not
guaranteed to exists, even in trivial cases.

Example 3.2. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { ∃WorksFor vWorker,MathStudent v Student }

• S = { s1, s2, s3, s4, s5 }

• M = { m1,m2,m3,m4,m5,m6 }, where:
m1 : s1(x) → Worker(x),
m2 : s1(x) → Student(x),
m3 : s2(x1, x2) → WorksFor(x1, x2),
m4 : s3(x) → MathStudent(x),
m5 : s1(x) ∧ s4(x) → Engineer(x),
m6 : s1(x1) ∧ s5(x1, x2) → PlaysSport(x1, x2).

Let the data service be expressed as the query qS = {(x) | s1(x)} over the
source schema S. By inspecting the mapping M and the ontology O one can
see that, since the certain answers of q1

O = {(x) | Worker(x)} include also the
values stored in the projection on the first component of s2, and since the certain
answers of q2

O = {(x) | Student(x)} include also the values stored in s3, both
queries are too general for exactly characterising qS . On the other hand, queries
q3
O = {(x) | Engineer(x)} and q4

O = {(x) | ∃y.PlaysSport(x, y)} are too specific, and
therefore we conclude that no perfect S-to-O Σ-rewriting of qS exists.

In order to cope with the situations illustrated above, we introduce the notions of
sound and complete source-to-ontology rewritings, which, intuitively, provide sound
and complete approximations of perfect source-to-ontology rewritings, respectively.

Definition 3.2. We say that qO is a sound S-to-O Σ-rewriting of qS , if for every
S-database D, ModD(Σ) 6= ∅ implies certDqO,Σ ⊆ q

D
S .

Definition 3.3. We say that qO is a complete S-to-O Σ-rewriting of qS , if for every
S-database D, ModD(Σ) 6= ∅ implies qDS ⊆ certDqO,Σ.

We illustrate these notions continuing on the previous example.

Example 3.3. Refer to Example 3.2. Note that q1
O and q2

O are complete S-to-O
Σ-rewritings of qS , whereas q3

O and q4
O are sound S-to-O Σ-rewritings of qS .

Obviously, qO is a perfect S-to-O Σ-rewriting of qS if and only if qO is both a
sound, and a complete S-to-O Σ-rewriting of qS .

As Example 3.3 shows, different sound or complete source-to-ontology rewrit-
ings of a query qS may exist, and therefore it is reasonable to look for the “best”
approximations of qS , at least relative to a certain query language LO over O.



3.1 The notion of Source-to-Ontology Rewriting 29

Definition 3.4. We say that qO ∈ LO is an LO-maximally sound S-to-O Σ-rewriting
of qS , if qO is a sound S-to-O Σ-rewriting of qS and there exists no q′ ∈ LO such
that (i) q′ is a sound S-to-O Σ-rewriting of qS , (ii) certqO,Σ v certq′,Σ, and (iii)
certDqO,Σ ( certDq′,Σ for an S-database D.

Definition 3.5. We say that qO ∈ LO is an LO-minimally complete S-to-O Σ-
rewriting of qS , if qO is a complete S-to-O Σ-rewriting of qS and there exists no q′ ∈
LO such that (i) q′ is a complete S-to-O Σ-rewriting of qS , (ii) certq′,Σ v certqO,Σ,
and (iii) certDq′,Σ ( certDqO,Σ for an S-database D.

We illustrate the above notions by developing on Example 3.2.

Example 3.4. We refer again to Example 3.2. Observe that neither q1
O nor q2

O
are CQ-minimally complete S-to-O Σ-rewritings of qS . Indeed, one can verify that
the CQ q5

O = {(x) |Worker(x) ∧ Student(x)} is a UCQ-minimally complete S-to-O
Σ-rewriting of qS . As for queries q3

O and q4
O, it is easy to see that they are both

CQ-maximally sound S-to-O Σ-rewritings of qS , but neither of them is a UCQ-
maximally sound S-to-O Σ-rewriting of qS . Indeed, one can verify that the UCQ
q6
O = q3

O ∪ q4
O is a UCQ-maximally sound S-to-O Σ-rewriting of qS .

As we will see in a next proposition, there are settings for OBDM specifications
and query languages LO for which it is always the case that, if there exists an
LO-maximally sound (respectively, LO-minimally complete) S-to-O Σ-rewriting of
a query qS , then it is unique (up to equivalence w.r.t. Σ). In those cases, it is
reasonable to talk about the unique (up to equivalence w.r.t. Σ) LO-maximally sound
(respectively, LO-minimally complete) S-to-O Σ-rewriting of qS .

Definition 3.6. We say that qO ∈ LO is the unique (up to equivalence w.r.t.Σ) LO-
maximally sound S-to-O Σ-rewriting of qS , if (i) qO is a sound S-to-O Σ-rewriting
of qS , and (ii) every q′ ∈ LO that is a sound S-to-O Σ-rewriting of qS is such that
certq′,Σ v certqO,Σ.

Definition 3.7. We say that qO ∈ LO is the unique (up to equivalence w.r.t.Σ)
LO-minimally complete S-to-O Σ-rewriting of qS , if (i) qO is a complete S-to-O
Σ-rewriting of qS , and (ii) every q′ ∈ LO that is a complete S-to-O Σ-rewriting of
qS is such that certqO,Σ v certq′,Σ.

Let us continue on the running example of this section.

Example 3.5. Refer again to Example 3.2, and consider also the queries q5
O and

q6
O defined in Example 3.4. It is straightforward to verify that q5

O (respectively, q6
O)

is the unique (up to equivalence w.r.t. Σ) UCQ-minimally complete (respectively,
UCQ-maximally sound) S-to-O Σ-rewriting of qS . Furthermore, observe that: (i)
since q5

O is a CQ, it is also the unique (up to equivalence w.r.t. Σ) CQ-minimally
complete S-to-O Σ-rewriting of qS , and (ii) since both q3

O and q4
O are CQ-maximally

sound S-to-O Σ-rewritings of qS and they are not equivalent w.r.t. Σ, we conclude
that the unique (up to equivalence w.r.t. Σ) CQ-maximally sound S-to-O Σ-rewriting
of qS does not exists.
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3.2 Computational Problems
Given the general framework presented in the previous section, it is natural to
consider (at least) the following two basic computational problems, for classes LS
and LO of queries over the source schema S and over the ontology O, respectively:

• Verification: given Σ = 〈O,S,M〉, qS over S such that qS ∈ LS , and qO over
O such that qO ∈ LO, verify whether qO is a perfect (respectively, sound,
complete) S-to-O Σ-rewriting of qS .

• Computation: given Σ = 〈O,S,M〉 and qS over S such that qS ∈ LS , compute
any perfect (respectively, LO-perfect, LO-maximally sound, LO-minimally
complete) S-to-O Σ-rewriting of qS , if it exists.

In what follows, if not otherwise stated, we silently refer to the following scenario
which use languages amongst the most popular considered in the literature: (i) the
setting for OBDM specifications is such that the DL ontology language is DL-LiteR,
the source schemas do not have integrity constraints, and the mapping language
follows the GLAV approach; and (ii) both LS and LO denote the class of UCQs.

Interestingly, in this scenario, we have the following result.

Proposition 3.2. If q1 and q2 are UCQ-minimally complete (respectively, UCQ-
maximally sound) S-to-O Σ-rewritings of qS , then they are equivalent w.r.t.Σ.

Proof. We first address the case of UCQ-maximally sound, and then the case of
UCQ-minimally complete.

Assume that q1 and q2 are UCQ-maximally sound S-to-O Σ-rewritings of qS and
suppose, for the sake of contradiction, that they are not equivalent w.r.t. Σ. This
implies the existence of two S-databases D1 and D2 such that (i) ~c1 6∈ certD1

q1,Σ and
~c1 ∈ certD1

q2,Σ for a tuple of constants ~c1, and (ii) ~c2 6∈ certD2
q2,Σ and ~c2 ∈ certD2

q1,Σ for a
tuple of constants ~c2. But then, it can be readily seen that the UCQ Q = q1 ∪ q2 is
such that (i) since both q1 and q2 are sound S-to-O Σ-rewritings of qS , Q is a sound
S-to-O Σ-rewriting of qS , (ii) for both i = 1 and i = 2, we have certqi,Σ v certQ,Σ,
and (iii) for both i = 1 and i = 2, the S-database Di is such that certDiqi,Σ ( certDiQ,Σ.
Therefore, according to Definition 3.4 we have a contradiction on the fact that q1
and q2 are UCQ-maximally sound S-to-O Σ-rewritings of qS , as required.

Assume that q1 and q2 are UCQ-minimally complete S-to-O Σ-rewritings of qS
and suppose, for the sake of contradiction, that they are not equivalent w.r.t. Σ.
This implies the existence of two S-databases D1 and D2 such that (i) ~c1 ∈ certD1

q1,Σ
and ~c1 6∈ certD1

q2,Σ for a tuple of constants ~c1, and (ii) ~c2 ∈ certD2
q2,Σ and ~c2 6∈

certD2
q1,Σ for a tuple of constants ~c2. But then, consider the query q where certDq,Σ =

certDq1,Σ
⋂ certDq2,Σ for every S-database D. Obviously, since q1 and q2 are UCQs,

q always exists and can be expressed as a UCQ, too. It can be readily seen that
(i) since q1 and q2 are complete S-to-O Σ-rewritings of qS , q is a complete S-to-O
Σ-rewriting of qS as well, (ii) for both i = 1 and i = 2, we have certq,Σ v certqi,Σ,
and (iii) for both i = 1 and i = 2, the S-database Di is such that certDiq,Σ ( certDiqi,Σ.
Therefore, according to Definition 3.5 we have a contradiction on the fact that q1
and q2 are UCQ-minimally complete S-to-O Σ-rewritings of qS , as required.
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3.3 Related Work

In this section, we provide a detailed relationship between the new definitions
introduced in Section 3.1 and some literature notions about pertinent subjects that
we argue are worth comparing to.

3.3.1 A slightly different Semantics

A similar, but not equivalent, notion of perfect source-to-ontology rewriting given in
Definition 3.1 is the notion of realization provided in [Lutz et al., 2018]. Specifically,
qO is a realization of qS in Σ if certDqO,Σ = qDS for every S-database D. Observe that,
while the latter sanctions that certDqO,Σ = qDS for all S-databases D, in Definition 3.1
the condition is limited only to the S-databases D that are consistent with Σ. The
different behaviour between the two notions is highlighted by the following example.

Example 3.6. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { Professor v ¬Student }

• S = { s1, s2, s3 }

• M = { m1,m2,m3 }, where:

m1 : s1(x) → Worker(x),
m2 : s2(x) → Professor(x),
m3 : s3(x) → Student(x).

Let the query over S be qS = {(x) | s1(x)}, and let the query over O be qO =
{(x) |Worker(x)}. Note that (i) PerfectRef(O, qO) = qO, and therefore PerfRefqO,Σ =
MapRef(PerfectRef(O, qO),M) = {(x) | s1(x)}, and (ii) VO = {() | ∃y.Professor(y)∧
Student(y)}, and therefore PerfRefVO,Σ = MapRef(PerfectRef(O,VO),M) = {() |
∃y.s2(y) ∧ s3(y)}. Finally, we know that REWqO,Σ ≡ PerfRefqO,Σ ∪ PerfRefV1

O,Σ
,

where V1
O = {(x) | ∃y.Professor(y) ∧ Student(y) ∧ >(x)}.

Consider now the S-database D = {s1(c1), s2(c2), s3(c2)}. We have that qDS =
{(c1)}, whereas, since D is inconsistent with Σ (i.e., ModD(Σ) = ∅), certDqO,Σ =
PerfRefDV1

O,Σ
, and therefore the set of certain answers of qO with respect to Σ and

D contains all the 1-tuples of constants in dom(D) = {c1, c2} (hence including
the tuple (c2)). It follows that, according to the semantics proposed in [Lutz et
al., 2018] (which ranges over all S-databases), qO is not a realization of qS in Σ,
whereas, according to Definition 3.1, qO is a perfect S-to-O Σ-rewriting of qS because
qDS = certDqO,Σ for each S-database D consistent with Σ.

Notice, however, that the two notions turn out to be in fact equivalent when
dealing with OBDM specifications where inconsistencies can not arise. For instance,
OBDM specifications of our setting where the DL ontology language DL-LiteR is
replaced with an ontology language not able to express inconsistencies, such as
the DL DL-LiteRDFS and the DLs EL and ELHI [Baader et al., 2005] considered
in [Lutz et al., 2018].
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3.3.2 Relationship with Ontology-to-Source Rewritings

As argued in the introduction, most of (if not all) the literature about managing
data sources through an ontology, or more generally, about data integration, assume
that the user query is expressed over a global domain schema, and the goal is to
find an ontology-to-source rewriting (i.e., a query over the source schema) that
captures the original query in the best way, independently from the current source
database. The framework just introduced can be therefore seen as a sort of reverse
engineering problem, because we start with a source query and we aim at deriving a
corresponding query over the ontology, called a source-to-ontology rewriting. Here,
we make explicit the relationships between these new notions of source-to-ontology
rewritings and the usual notions of ontology-to-source rewritings studied in OBDM.

Theorem 3.1. Let Σ = 〈O,S,M〉 be an OBDM specification, and let qS and qO be
queries over S and over O, respectively. We have that:

1. qS is a sound O-to-S Σ-rewriting of qO if and only if qO is a complete S-to-O
Σ-rewriting of qS ;

2. If qS is a perfect O-to-S Σ-rewriting of qO, then qO is a perfect S-to-O Σ-
rewriting of qS . The converse does not necessarily hold.

Proof. As for 1, by definition qS is a sound O-to-S Σ-rewriting of qO if and only
if qDS ⊆ certDqO,Σ for every S-database D. Since for all the S-databases D that are
inconsistent with Σ the above inclusion trivially holds, this is equivalent to the
condition qDS ⊆ certDqO,Σ for every S-database D consistent with Σ, which is exactly
the definition of qO being a complete S-to-O Σ-rewriting of qS (cf. Definition 3.3).

As for the implication part of 2, by definition qS is a perfect O-to-S Σ-rewriting
of qO if and only if qDS = certDqO,Σ for every S-database D, which obviously implies
that qO is a perfect S-to-O Σ-rewriting of qS .

To show that the converse does not necessarily hold, consider Σ = 〈O,S,M〉, qS ,
and qO as described in Example 3.6. In particular, qO is a perfect S-to-O Σ-rewriting
of qS , whereas qS is not a perfect O-to-S Σ-rewriting of qO.

Once again, it is easy to see that the converse statement of point 2 of the above
theorem becomes in fact true when dealing with ontologies expressed in those DLs
where inconsistencies can not arise.

3.3.3 Relationship with View-based Query Processing

In order to establish a relationship between the notion of source-to-ontology rewritings
and the view-based query processing approach, here we consider OBDM specifications
Σ = 〈O,S,M〉 where O = ∅ and mappingM is a pure GAV mapping.

As a first consideration, observe that every pure GAV mapping M can be
equivalently rewritten as a set of pure GAV mapping assertions of the form
∃~y.φS(~x, ~y) → ϕO(~x), where ϕO(~x) is simply an atom without constants or re-
peated variables, i.e., ϕO(~x) is either of the form A(x) for an atomic concept A in
the alphabet of O, or of the form P (x1, x2) for an atomic role P in the alphabet of
O and with x1 and x2 being different variables.
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Example 3.7. LetM be composed of the following pure GAV mapping assertions:

m1 : ∃y1, y2.s1(y1, x1, x3) ∧ s2(x3, x2, y2) → P1(x1, x2) ∧ P2(x1, x3),
m2 : ∃y1.s3(x1, x2, y1) → P2(x1, x2).

Then,M is equivalent to the following set of pure GAV mapping assertions:

m1 : ∃y1, y2, y3.s1(y1, x1, y3) ∧ s2(y3, x2, y2) → P1(x1, x2),
m2 : ∃y1, y2, y3.s1(y1, x1, x2) ∧ s2(x2, y3, y2) → P2(x1, x2),
m3 : ∃y1.s3(x1, x2, y1) → P2(x1, x2).

LetM be a pure GAV mapping relating a schema S to an ontology O, and let
A (respectively, P ) be an atomic concept (respectively, atomic role) in the alphabet
of O. We denote by VA (respectively, VP ) the following UCQ over S:

VA = {(x) | ∃~y1.φ1
S(x, ~y1)} ∪ . . . ∪ {(x) | ∃ ~ylA.φ

lA
S (x, ~ylA)}

VP = {(x1, x2) | ∃~y1.φ1
S(x1, x2, ~y1)} ∪ . . . ∪ {(x1, x2) | ∃ ~ylP .φ

lP
S (x1, x2, ~ylP )},

where ∃~yi.φiS(x, ~yi)→ A(x) (respectively, ∃~yi.φiS(x1, x2, ~yi)→ P (x1, x2)) is a map-
ping assertion inM for each i ∈ [1, lA] (respectively, for each i ∈ [1, lP ]). Furthermore,
we denote by VM = {VA1 , . . . , VAn , VP1 , . . . , VPm} the set of UCQ view definitions
over schema S obtained by associating the UCQ VA (respectively, VP ) to each atomic
concept A (respectively, atomic role P ) in the alphabet of O. Finally, given a query
qO over O, we denote by qVMO the query over the view alphabet VM obtained by
replacing each predicate name A (respectively, P ) with VA (respectively, VP ).

Example 3.8. Let M = {m1,m2,m3} be the pure GAV mapping defined in
Example 3.7, and let qO = {(x) | ∃y.P2(x, y)}. We have that VM = {VP1 , VP2},
where VP1 = {(x) | ∃y1, y2, y3.s1(y1, x1, y3) ∧ s2(y3, x2, y2)} and VP2 = {(x1, x2) |
∃y1, y2, y3.s1(y1, x1, x2) ∧ s2(x2, y3, y2)} ∪ {(x1, x2) | ∃y1.s3(x1, x2, y1)}, and qVMO =
{(x) | ∃y.VP2(x, y)}.

We are now ready to draw the correspondence between the notions of source-to-
ontology rewritings introduced in Section 3.1 and the usual notions of rewritings
with respect to view definitions (cf. Section 2.4).

Theorem 3.2. Let Σ = 〈O,S,M〉 be an OBDM specification where O = ∅ andM
is a pure GAV mapping, and let qS and qO be two UCQs over S and O, respectively.
We have that qO is a perfect (respectively, sound) S-to-O Σ-rewriting of qS if and
only if qVMO is an exact (respectively, a sound) rewriting of qS with respect to VM.

Proof. The proof is based on the following three observations:

1. By [Levy et al., 1995], a UCQ q is an exact (respectively, a sound) rewriting
of a UCQ qS with respect to a set of UCQ view definitions V if and only if
expV(q) ≡ qS (respectively, expV(q) v qS), where expV(·) is the function that,
given a UCQ q over the view alphabet, replace each atom occurring in q by
the definition of the views (being careful to use unique variables in place of



34 3. Abstraction in Ontology-based Data Management: Framework

those variables that appear in the bodies of the view but not in the heads
of those), and then turning the resulting formula into an equivalent UCQ
(e.g., expVM(qVMO ) = {(x) | ∃y, y1, y2, y3.s1(y1, x, y) ∧ s2(y, y3, y2)} ∪ {(x) |
∃y, y1.s3(x, y, y1)}, where qVMO and VM are the query and the set of view
definitions, respectively, of Example 3.8).

2. For OBDM specifications Σ = 〈O,S,M〉 with O = ∅ and M a pure GAV
mapping, a UCQ qO is a perfect (respectively, sound) S-to-O Σ-rewriting of a
UCQ qS if and only if MapRef(qO,M) ≡ qS (respectively, MapRef(qO,M) v
qS), where MapRef(qO,M) in this case is equivalent to unfolding the query qO
with respect toM [Poggi et al., 2008], i.e., replacing each atom α occurring in
qO by the logical disjunction of all the left-hand sides of mapping assertions in
M having the predicate name α in the right-hand side (being careful to use
unique variables in place of those variables that appear in the left-hand side of
the mapping assertions but not in the right-hand side of those), and then turning
the resulting formula into an equivalent UCQ (e.g., MapRef(qO,M) = {(x) |
∃y, y1, y2, y3.s1(y1, x, y) ∧ s2(y, y3, y2)} ∪ {(x) | ∃y, y1.s3(x, y, y1)}, where qO
andM are the query and the pure GAV mapping, respectively, of Example 3.8).

3. By construction, MapRef(qO,M) = expVM(qVMO ) for any UCQ qO over an
ontology O and for any pure GAV mappingM relating a schema S to O.

Thus, qO is a perfect (respectively, sound) S-to-O Σ-rewriting of qS if and
only if MapRef(qO,M) ≡ qS (respectively, MapRef(qO,M) v qS), which, since
MapRef(qO,M) = expVM(qVMO ), it is so if and only if expVM(qVMO ) ≡ qS (respectively,
expVM(qVMO ) v qS), and therefore if and only if qVMO is an exact (respectively, a
sound) rewriting of qS with respect to VM, as required.

From the sound part of the above theorem, we derive the following corollary.

Corollary 3.1. Let Σ = 〈O,S,M〉 be an OBDM specification where O = ∅ andM
is a pure GAV mapping, and let qS and qO be two UCQs over S and O, respectively.
We have that qO is the unique (up to equivalence w.r.t.Σ) UCQ-maximally sound
S-to-O Σ-rewriting of qS if and only if qVMO is a UCQ-maximally sound rewriting of
qS with respect to VM.

In order to continue deriving further connections, we explore the following result.

Theorem 3.3. [Abiteboul and Duschka, 1998; Duschka and Genesereth, 1998] Let
V be a set of UCQ view definitions over a schema S, and let qS be a UCQ. If query
qV over the view alphabet V is a UCQ-maximally sound rewriting of qS with respect
to V, then qV is a perfect rewriting of qS with respect to V.

The assumption that the target list of each disjunct of the various view definitions
in V does not have repeated variables or constants is essential for the above theorem
to hold. In fact, as shown in [Afrati and Chirkova, 2019] and also in the following
example, the above theorem does not carry over when this assumption is removed.

Example 3.9. Consider the set V = {V } of a CQ view definition over schema
S = {s} and the CQ qS over S, where V = {(x, x) | s(x)} and qS = {(x) | s(x)}.
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It is clear that qV = {(x) | V (x, x)} is a UCQ-maximally sound rewriting
of qS with respect to V. Consider, however, the view extension E = {E} with
E = {V (c1, c2), V (c3, c3)}. By construction of the view definition V , we have
(c1, c2) 6∈ V D for each S-database D. But then, since V (c1, c2) ∈ E , there is no
S-database D for which E ⊆ V(D). By definition this implies that certEqS ,V = ∅,
whereas qEV = {(c3)}. So, qV is not a perfect rewriting of qS with respect to V.

From Corollary 3.1 and the above theorem, it is immediate to derive an interesting
correspondence between the two notions under considerations.

Corollary 3.2. Let Σ = 〈O,S,M〉 be an OBDM specification where O = ∅ andM
is a pure GAV mapping, and let qS and qO be two UCQs over S and O, respectively.
We have that qO is the unique (up to equivalence w.r.t.Σ) UCQ-maximally sound
S-to-O Σ-rewriting of qS if and only if qVMO is a perfect rewriting of qS with respect
to VM.

However, as shown in [Duschka and Genesereth, 1998; Afrati and Chirkova, 2019],
UCQ-maximally sound rewritings of CQs qS with respect to UCQ view definitions V
are not guaranteed to exists. The following example gives an intuitive reason of why
a UCQ-maximally sound rewriting may not exists for certain choices of qS and V.

Example 3.10. Consider the set V = {V1, V2} of UCQ view definitions over schema
S = {sc, se} and the CQ qS , where:

V1 = {(x) | sc(x,Red)} ∪ {(x) | sc(x,Green)}
V2 = {(x1, x2) | se(x1, x2)}
qS = {() | ∃y1, y2, y3.se(y1, y2) ∧ sc(y1, y3) ∧ sc(y2, y3)}

Intuitively, source predicate se contains the edges of a graph and mirror them
into V2, whereas V1 will contain those vertices in sc colored by either Red or Green.
Finally, query qS asks whether there is a pair of vertices connected by an edge and
colored with the same color.

The fact that se may contain the edges of a non-2-colourable graph can be easily
detected by certain queries issued over the view alphabet. For instance, the query
q3
V = {() | ∃y1, y2, y3.V2(y1, y2) ∧ V2(y2, y3) ∧ V2(y3, y1) ∧ V1(y1) ∧ V1(y2) ∧ V1(y3)} if
true implies the existence of a triangle (and therefore a non-2-colourable pattern) in
the graph represented by source predicates se and sc.

More generally, one can verify that each query qV over the view alphabet is a sound
rewriting of qS with respect to V if and only if the graph described by qV is not 2-
colourable. Since a graph is not 2-colourable if and only if it contains an odd cycle [As-
ratian et al., 1998], we conclude that the query qiV = {() | ∃y1, . . . , yi.V2(y1, y2) ∧
V2(y2, y3) ∧ . . . ∧ V2(yi−1, yi) ∧ V2(yi, y1) ∧ V1(y1) ∧ V1(y2) ∧ . . . ∧ V1(yi)} is a sound
rewriting of qS with respect to V, for each odd i ≥ 3. Furthermore, the following
query qV over the view alphabet is a perfect rewriting of qS with respect to V:

qV =
⋃

odd i≥3
qiV

Obviously, such infinite union is not representable by a UCQ, and therefore we
conclude that no UCQ-maximally sound rewriting of qS with respect to V exists.
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This result, together with Corollary 3.1, allows us to derive the first negative
result on UCQ-maximally sound source-to-ontology rewritings.

Corollary 3.3. UCQ-maximally sound S-to-O Σ-rewritings of CQs qS over S are
not guaranteed to exists, even when OBDM specifications Σ = 〈O,S,M〉 are such
that O = ∅ andM is a pure GAV mapping.

Proof. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { se, sc }

• M = { m1,m2,m3 }, where:
m1 : sc(x,Red) → A(x),
m2 : sc(x,Green) → A(x),
m3 : se(x1, x2) → P (x1, x2).

Similarly to Example 3.10, for the CQ qS = {() | ∃y1, y2, y3.se(y1, y2)∧sc(y1, y3)∧
sc(y2, y3)} no UCQ-maximally sound S-to-O Σ-rewriting of qS exists.

In Example 3.10, a maximally sound rewriting of qS with respect to V does exist
in the class of Datalog queries, non-2-colourability is indeed expressible in Datalog
(see, e.g., [Kolaitis and Vardi, 2008]). Actually, if we modify the above example by
considering V ′ = {V ′1 , V ′2} where V ′1 = {(x) | sc(x,Red)}∪{(x) | sc(x,Green)}∪{(x) |
sc(x,Blue)} and V ′2 = V2, we have that a maximally sound rewriting of qS with
respect to V ′ does not exist even in the class of Datalog queries. This is due to the
following facts: (i) Given as input a set of view extensions E = {E1, E2} where Ei
is the view extension of V ′i for both i = 1 and i = 2, as shown in [van der Meyden,
1993] via a reduction from non-3-colourability, the problem of checking whether
certEqS ,V ′ is true is coNP-hard in the size of E ;1 (ii) Analogously to Theorem 3.3,
every maximally sound rewriting of a UCQ qS with respect to a set of UCQ view
definitions V in the class of Datalog queries is also a perfect rewriting of qS with
respect to V; (iii) Answering Datalog queries over relational databases is in PTime
in data complexity [Vardi, 1982]. Thus, unless PTime = NP, a maximally sound
rewriting of qS with respect to V ′ can not exists in the class of Datalog queries.2

Lastly, we observe that Example 3.10, as well as the non-existence results provided
in [Duschka and Genesereth, 1998; Afrati and Chirkova, 2019], makes use of CQs qS
having more than one join existential variable in their body. On the one hand, in
Section 6.2 we will strengthen such a result, by showing that it holds even for CQs qS
with only a single join existential variable. On the other hand, in Chapter 8 we will
prove that having no join existential variables in the body of UCQs qS is a sufficient
condition that guarantees the existence of UCQ-maximally sound rewritings of qS
with respect to UCQ view definitions V . Thus, due to Theorem 3.3, in such cases the

1More precisely, given a set of UCQ view definitions V over a schema S, a set of view extensions
E , a UCQ qS over S, and a tuple of constants ~c, the problem of checking whether ~c ∈ certEqS ,V is
coNP-complete in the size of E [Abiteboul and Duschka, 1998].

2Conversely, as shown in [Duschka and Genesereth, 1998; Afrati et al., 1999], maximally sound
rewritings (which are again perfect rewritings) of UCQs qS with respect to UCQ view definitions V
always exist in the class of Disjunctive Datalog queries [Lobo et al., 1992; Eiter et al., 1997].
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perfect rewriting of qS with respect to V can be always expressed as a UCQ, exactly
as in the case of CQ view definitions [Levy et al., 1995]. We refer to Section 8.3 for
a complete discussion on this topic.

3.3.4 Inverse Mapping and/or Reversing the Arrows (Not!)

An important concept studied in the data exchange literature is the one of inverse
mapping. In a nutshell, given a mappingM from a schema S to a schema O, the
inverse of M, denoted by M′, is a mapping from O to Ŝ that recovers as much
information as possible. Here, Ŝ = {ŝ | s ∈ S}, i.e., Ŝ is simply a copy of S.
According to [Fagin, 2007],M′ is an inverse ofM if and only ifM◦M′ ≡ Îd, where
M◦M′ is the composition formula [Fagin et al., 2005c] and Îd is the identity mapping
from S to Ŝ, i.e., Îd = {s(x1, . . . , xn) → ŝ(x1, . . . , xn) | s ∈ S}. In other words,
M′ is an inverse ofM if and only if ModM◦M′(D) = Mod Îd(D) = {D′ | D̂ ⊆ D′}
for each S-database D, where D̂ = {ŝ(c1, . . . , cn) | s(c1, . . . , cn) ∈ D}, and, for
a mapping M relating schema S to schema Ŝ and an S-database D, ModM(D)
denotes the set of all Ŝ-databases D′ for which 〈D,D′〉 |=M. This notion turns out
to be rather restrictive, as it is rare that a schema mapping possesses an inverse.
Example 3.11. LetM = {m1,m2,m3}, where:

m1 : s1(x) → A1(x),
m2 : s1(x) ∧ s3(x) → A2(x),
m3 : s2(x) ∧ s4(x) → A2(x).

It is straightforward to verify thatM does not have an inverse mapping.
To remedy this situation, (at least) two other notions have been introduced in

literature: (i) the notion of quasi-inverse which is a principled relaxation of the
notion of inverse. According to [Fagin et al., 2008], a mappingM′ is a quasi-inverse
ofM if and only if for each pair of S-databases D1 and D2 there are two S-databases
D3 and D4 for which ModM(D1) = ModM(D3), ModM(D2) = ModM(D4), and
ModM◦M′(D3) = {D′ | D̂4 ⊆ D′}; (ii) the notion of maximum recovery which is a
strict generalisation of the notion of inverse. According to [Arenas et al., 2009],M′
is a maximum recovery ofM if and only if 〈D, D̂〉 |=M◦M′ for each S-database
D, and for every mappingM′′ either 〈D, D̂〉 6|=M◦M′′ for at least an S-database
D, or ModM◦M′′(D) ⊆ ModM◦M′(D) for each S-database D.
Example 3.12. LetM be the mapping as defined in Example 3.11, and consider
the mappingM′ = {m′1,m′2,m′3}, where:

m′1 : A1(x) → ŝ1(x),
m′2 : A2(x) → ŝ1(x) ∧ ŝ3(x),
m′3 : A2(x) → ŝ2(x) ∧ ŝ4(x).

One can see thatM′ is both a quasi-inverse and a maximum recovery ofM.
To figure out a possible correspondence between the notion of source-to-ontology

rewriting and the notions of quasi-inverse and maximum recovery, here we consider
OBDM specifications Σ = 〈O,S,M〉 where O = ∅.
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Due to Proposition 1, one might think that in order to compute a perfect S-
to-O Σ-rewriting of qS it is sufficient to compute a mapping M′ that is either a
quasi-inverse or a maximum recovery ofM, and then computing the perfect O-to-Ŝ
Σ′-rewriting of q̂S using the well-known techniques of data integration (cf. Section 2.6).
Here, q̂S denotes the query obtained from qS by replacing each predicate name s ∈ S
with ŝ ∈ Ŝ, and Σ′ = 〈Ŝ,M′,O〉 denotes an OBDM specification where Ŝ plays the
role of an (empty) ontology and O plays the role of a source schema. We now prove
that this is an absolutely wrong belief.

Example 3.13. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2, s3, s4 }

• M = { m1,m2,m3 } is the mapping defined in Example 3.11.

Let, moreover, Σ′ = 〈Ŝ,M′,O〉 be the following OBDM specification:

• Ŝ = ∅

• O = { A1, A2 }

• M′ = { m′1,m′2,m′3 } is as defined in Example 3.12, i.e., it is both the quasi-
inverse and the maximum recovery ofM.

Let the query over S be qS = {(x) | s1(x)}. We have that qO = {(x) | A1(x)}
is the perfect S-to-O Σ-rewriting of qS , whereas one can verify that the perfect
O-to-Ŝ Σ′-rewriting of q̂S is the query q′O = {(x) | A1(x)} ∪ {(x) | A2(x)}, which is
a complete, but not a sound, S-to-O Σ-rewriting of qS .

Furthermore, one might think that the perfect O-to-Ŝ Σ′-rewriting of q̂S always
produces a complete S-to-O Σ-rewriting of qS . We now prove that this a wrong
belief as well. Let the query over S be q′S = {(x) | s1(x) ∧ s2(x)}. We have that the
query q′′O = {(x) | A1(x) ∧A2(x)} ∪ {(x) | A2(x)} is the perfect O-to-Ŝ Σ′-rewriting
of q̂′S , but not a complete S-to-O Σ-rewriting of q′S . In this case, one can verify that
the unique (up to equivalence w.r.t. Σ) UCQ-minimally complete S-to-O Σ-rewriting
of q′S is the query qO defined above.

We conclude with a very elementary but useful observation. Notice that, in
the above example, the quasi-inverse and maximum recovery mapping M′ of M
is obtained by simply reversing the arrows of M. Therefore, given an OBDM
specification Σ = 〈O,S,M〉, the OBDM specification rev(Σ) = 〈Ŝ, rev(M),O〉
where rev(M) is the mapping from Ŝ to O obtained by simply reversing the arrows
ofM does not help in any way for finding source-to-ontology rewritings.
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Chapter 4

Dealing with Inequalities in
Lightweight Description Logics

As explained in the introduction, we will see that by allowing inequalities in a certain
target query language considered in this thesis provide a better means to compute
abstractions of data services compared to the same language without inequalities.

This chapter deals with the problem of adding inequalities to UCQs in the
OBDM scenario. Notably, although UCQs constitute the most popular class of
queries studied for both databases and ontologies, they have several limitations in
expressive power. For instance, suppose we want to retrieve all the triangles in
an undirected graph possibly with loops.1 This property can not be expressed by
means of a UCQ, whereas it can be expressed as the following CQ 6=,b q = {(x, y, z) |
edge(x, y)∧edge(x, z)∧edge(y, z) ∧ x 6= y ∧ x 6= z ∧ y 6= z}, where the predicate edge
represents the connections between vertices in the graph.

It is worth noting that in OBDM, while answering (U)CQs has been exten-
sively studied, e.g., by establishing bound on the size of rewritings [Gottlob et al.,
2014], developing optimisation algorithms [Rosati and Almatelli, 2010], implement-
ing engines for real-world applications [Calvanese et al., 2011; Civili et al., 2013;
Calvanese et al., 2017], etc., the problem of answering (U)CQ 6=s has been rarely
investigated. We start by analysing the case of knowledge bases.

To the best of our knowledge, the basic known facts about such problem can be
summarised as follows, which hold regardless of whether the UNA is adopted or not:

• In stark contrast to the UCQ case, answering UCQ6=s even over DL-Litecore
knowledge bases is undecidable [Gutiérrez-Basulto et al., 2012]. For DL-LiteR
knowledge bases, undecidability holds already for CQ 6=s [Gutiérrez-Basulto
et al., 2015]. Looking at these results, one can easily realise that the main of
source of undecidability stems from both the ability of the ontology language
to express incomplete information through existential quantifiers, and the
possibility of imposing inequalities between existential variables in the query;

• In [Gutiérrez-Basulto et al., 2015], it is also proved that for the subclasses of
CQ 6=s and UCQ6=s named local CQ 6=s and local UCQ 6=s, respectively, query an-
swering over DL-LiteR knowledge bases is decidable, but with a coNExpTime

1In graph theory, a loop is an edge that connects a vertex with itself [Bondy and Murty, 2008].
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upper bound in data complexity. Furthermore, it is provably intractable (coNP-
hard in data complexity) already for local CQ6=s. Local (U)CQs are special
(U)CQs with inequalities, designed in such a way that each inequality atom in
the query that contributes to a certain answer with respect to a DL knowledge
base has at least one of its terms bound by an individual in the ABox.

The goal of this chapter is then to investigate under which conditions, stronger
than local UCQs, tractability of answering queries with inequalities is recovered,
or at least the complexity is lowered with respect to the one of local UCQs. The
basic idea to achieve this goal is to explore ontology languages and query languages
ensuring the following property: each inequality atom α 6= β that contributes to the
certain answer to a query with respect to a DL knowledge base, it does so with both
terms α and β bounded by individuals in the ABox. In order to follow this path, we
explore two alternative strategies:

1. The first strategy is to consider UCQ6=,bs, which restricts the application of
the inequality atoms to either individuals or distinguished variables, i.e., we
consider the problem of answering (U)CQ 6=,bs over DL-LiteR knowledge bases.
Notice that, although limited, the expressive power of (U)CQ 6=,bs allow for
interesting queries to be expressed such as the one computing the triangles in
an undirected graph with loops.

2. The second strategy is to consider DL-Lite¬RDFS knowledge bases, which elim-
inates all the constructs introducing incomplete information resulting from
existentially quantified assertions, i.e., we consider the problem of answering
UCQ 6=s over DL-Lite¬RDFS knowledge bases.

As a first consideration, observe that the above problems are straightforward
generalisations of the UCQ case when the UNA is adopted. To see this, it is sufficient
to consider the slight extension of the algorithm PerfectRef accepting UCQ6=s as input
queries rather than UCQs, where the predicate 6= is treated in the reformulation
algorithm as an additional atomic role of the input DL-LiteR ontology. From now
on, we implicitly refer to PerfectRef as the algorithm described in Subsection 2.5.3
with the above modification. With this discussion in mind, it is straightforward to
verify that the computational complexity of the above defined problems remains the
same as that of the problem of answering UCQs over DL-LiteR knowledge bases.

Theorem 4.1. Both the problem of answering UCQ 6=,bs over DL-LiteR knowledge
bases and the problem of answering UCQ 6=s over DL-Lite¬RDFS knowledge bases are
FOL-rewritable (and therefore in AC0 in data complexity), and NP-complete in
combined complexity.

Proof. Let q be a UCQ 6=,b (respectively, UCQ 6=) over a DL-LiteR (respectively,
DL-Lite¬RDFS) knowledge base K = 〈O,A〉. Analogously to [Calvanese et al., 2007b,
Theorem 29], since we are adopting the UNA, it is easy to see that ~c ∈ certAq,O
if and only if there is a disjunct q′ = {~t | ∃~y.φ(~x, ~y)} of q for which there is a
homomorphism h from q′ to CAO with h(~t) = ~c. Note that (i) h(α) 6= h(β) for each
inequality atom α 6= β occurring in q′; (ii) both h(α) 6= h(β) are individuals.
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This is because, in the case that O is a DL-LiteR ontology, h(α) and h(β) are
necessarily individuals occurring in A since q is a UCQ6=,b. In the case that O
is a DL-LiteRDFS ontology, again, both h(α) and h(β) are necessarily individuals
occurring in A since CAO does not introduce any variable in Var. Thus, with the
same arguments of [Calvanese et al., 2007b, Lemma 39], we can easily conclude that
certAq,O = PerfectRef(O, q)IA , from which the claim trivially follows.

However, while answering UCQs over DL-LiteR knowledge bases is insensitive
to the adoption of the UNA [Artale et al., 2009](cf. Subsection 2.5.3), the following
example shows that this is not anymore the case even when answering CQ 6=,bs over
knowledge bases with empty TBoxes.

Example 4.1. Consider the knowledge base K = 〈O,A〉, where O = ∅ and A =
{P (c1, c2)}. For the CQ 6=,b q = {(x1, x2) | P (x1, x2)∧ x1 6= x2}, it is easy to see that
the tuple (c1, c2) is in the certain answers of q with respect to O and A when the
UNA is adopted, while it is not if the UNA is not adopted. For this latter, consider
the model I = 〈∆I , ·I〉 of K with ∆I = c, cI1 = cI2 = c, and P I = {(c, c)}, which
does not satisfy the UNA. We have qI = ∅.

All the rest of this chapter is devoted to analyse the computational complexity
of the above problems when the UNA is not adopted, as in the OWL 2 web ontology
language profiles. We also make a connection on how these new results contribute,
on the one hand, to new results on containment of UCQ 6=s in the relational databases
theory, and, on the other hand, to new results on the Direct Semantics Entailment
Regime (DSER) [Glimm, 2011]. The complexity results are summarised in Figure 4.1.

In principle, since the UNA is not adopted, it may be reasonable to include in
knowledge bases K = 〈O,A〉 also ABox assertions sanctioning the fact that two
individuals have to be interpreted as different elements in all possible of models of
K, as can be effectively done in OWL 2 QL by means of the DifferentIndividuals
assertions. Notice, however, that the expressive capabilities of the DL-LiteR and
DL-Lite¬RDFS knowledge base languages would remain the same, since in fact each
ABox assertion of the form α = DifferentIndividuals(c1, c2) is equivalent to the
ABox assertions DIFF1(c1, α), DIFF2(c2, α), where α is a fresh individual and DIFF1,
DIFF2 are two atomic roles such that DIFF1 v ¬DIFF2 is a disjointness assertion of
every ontology O. An analogous but different argument (since the ontology size
of the equivalent knowledge base is linear on the size of the original ABox) holds
also for DL-Litecore knowledge bases. Indeed, each ABox assertion of the form
α = DifferentIndividuals(c1, c2) is equivalent to the set of assertions Aα1

new(c1),
Aα2

new(c2), and Aα1
new v ¬Aα2

new, where Aα1
new and Aα2

new are fresh atomic concepts.
In what follows on this chapter, unless otherwise stated, we implicitly assume

to deal with satisfiable knowledge bases.2 Moreover, unless otherwise stated and
without loss of generality, we consider only boolean UCQ 6=s. Indeed, given an n-ary
UCQ 6= qO, a DL-LiteR knowledge base K = 〈O,A〉, and an n-tuple ~c of constants,
checking whether ~c ∈ certAqO,O is equivalent to checking whether K |= qO(~c).

2As discussed in Subsection 2.5.3, for unsatisfiable knowledge bases query answering is trivial.
Furthermore, the problem of checking whether a DL-LiteR knowledge base is satisfiable is FOL-
rewritable (and therefore in AC0 in data complexity) and in PTime in the size of the ontology.
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DL-LiteR:
Data Combined

CQ6=,bs in AC0 NP-c
UCQ6=,bs in AC0 Πp

2-c

DL-Lite¬RDFS:
Data Combined

UCQ1,6=s PTime-c NP-c
UCQ 6=s coNP-c Πp

2-c

Figure 4.1. Summary of data and combined complexity results of our considered problems
when the UNA is not adopted (“-c” abbreviates “-complete”). The table on the left
(respectively, right) consider DL-LiteR (respectively, DL-Lite¬

RDFS) knowledge bases.

4.1 The Chase for Answering Queries with Inequalities

The conceptual tool we use for addressing the problem of answering queries with
inequalities over DL-LiteR knowledge base is an extension of the chase illustrated
in [Calvanese et al., 2007b]. Specifically, given a DL-LiteR knowledge base K =
〈O,A〉, we build a (possibly infinite) set of atoms, starting from Ch0(K) := A, and
repeatedly computing Chj+1(K) from Chj(K) by applying suitable rules, where each
rule can be applied only if certain conditions hold. In doing so, we make use of
the alphabet Var of variables, and follow a deterministic strategy that is fair, i.e., if
at some point a rule is applicable, then it will be eventually applied. Finally, we
set IK :=

⋃
i≥0 Chi(K). Notice that we make use of the additional binary predicate

symbol ineq, which is used to record all inequalities logically implied by K.
The rules we use include all the ones illustrated in [Calvanese et al., 2007b,

Definition 5]. For instance, if A1 v ∃P ∈ O, A1(e1) ∈ Chj(K), and no e2 exists
such that P (e1, e2) ∈ Chj(K), then we set Chj+1(K) := Chj(K) ∪ {P (e1, e

′)}, where
e′ ∈ Var does not appear in Chj(K). There are, however, two crucial additions
related to the ineq predicate. In what follows, when we say R(e1, e2) holds in
Chj(K), where R is a basic role, we mean (i) P (e1, e2) ∈ Chj(K), if R = P , or (ii)
P (e2, e1) ∈ Chj(K), if R = P−. Also, when we say that B(e1) holds in Chj(K),
where B is a basic concept, we mean (i) A(e1) ∈ Chj(K) if B = A, and (ii) R(e1, e2)
holds in Chj(K) for some e2, if B = ∃R. The additional two rules are as follows:

• if B1 v ¬B2 ∈ O, B1(e1) and B2(e2) hold in Chj(K), and ineq(e1, e2) 6∈
Chj(K), then Chj+1(K) := Chj(K) ∪ {ineq(e1, e2), ineq(e2, e1)};

• if R1 v ¬R2 ∈ O, ineq(e1, e2) 6∈ Chj(K), and either R1(e3, e1) and R2(e3, e2)
hold in Chj(K) or R1(e1, e3) and R2(e2, e3) hold in Chj(K), then Chj+1(K) :=
Chj(K) ∪ {ineq(e1, e2), ineq(e2, e1)}.

In other words, for a DL-LiteR knowledge base K = 〈O,A〉, the set of atoms IK
contains all atoms contained in CAO plus some possible atoms with ineq as predicate,
used to record all and only the inequalities logically implied by K.

Obviously, for a DL-LiteR knowledge base K, the set IK can be infinite, due to
the presence of existential quantifiers in the right-hand side of inclusion assertions,
which, by introducing fresh unknown variables, can trigger an infinite number of rule
applications. It is easy to see that, on the contrary, for a DL-Lite¬RDFS knowledge
base K, IK is finite, and can be computed in polynomial time in the size of K.

We next show that IK enjoys some crucial properties.
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Proposition 4.1. IfM = 〈∆M, ·M〉 is a model of a DL-LiteR knowledge base K,
then there exists a function Ψ from dom(IK) to ∆M such that:

1. for every e ∈ dom(IK), if A(e) ∈ IK, then Ψ(e) ∈ AM;

2. for every pair e1, e2 ∈ dom(IK), if P (e1, e2) ∈ IK, then (Ψ(e1),Ψ(e2)) ∈ PM;

3. for every pair e1, e2 ∈ dom(IK), if ineq(e1, e2) ∈ IK, then Ψ(e1) 6= Ψ(e2).

Proof. Consider any model M of K = 〈O,A〉. By [Calvanese et al., 2007b,
Lemma 28], there exists a function Ψ from dom(IK) to ∆M with Ψ(c) = cM

for each individual c occurring in A such that both conditions 1 and 2 hold.
As for condition 3, from the rules applied for building IK, if two elements

e1, e2 ∈ dom(IK) are such that ineq(e1, e2) ∈ IK, then by definition one of the
following two conditions holds: (i) B1 v ¬B2 ∈ O and B1(e1), B2(e2) hold in IK
(thus, B1(e1) ∈ IK and B2(e2) ∈ IK), (ii) R1 v ¬R2 ∈ O and either R1(e3, e1) and
R2(e3, e2) hold in IK (thus, R1(e3, e1) ∈ IK and R2(e3, e2) ∈ IK), or R1(e1, e3) and
R2(e2, e3) hold in IK (thus, R1(e1, e3) ∈ IK and R2(e2, e3) ∈ IK).

Suppose by contradiction that Ψ does not satisfy condition 3, i.e., there are two
elements e1, e2 ∈ dom(IK) such that ineq(e1, e2) ∈ IK and Ψ(e1) = Ψ(e2).

If ineq(e1, e2) ∈ IK because of (i), then, by condition 1, we derive Ψ(e1) ∈ BM1
and Ψ(e2) ∈ BM2 , which implies thatM does not satisfy the disjointness assertion
B1 v ¬B2 of O, thus contradicting the fact thatM is a model of K, as required.

If ineq(e1, e2) ∈ IK because of (ii), then, by condition 2, we derive that ei-
ther (Ψ(e3),Ψ(e1)) ∈ RM1 and (Ψ(e3),Ψ(e2)) ∈ RM2 , or (Ψ(e1),Ψ(e3)) ∈ RM1 and
(Ψ(e2),Ψ(e3)) ∈ RM2 . Notice, however, that both cases imply that M does not
satisfy the disjointness assertion R1 v ¬R2 of O, thus contradicting the fact that
M is a model of K, as required.

Therefore, we conclude that Ψ must be such that for every pair e1, e2 ∈ dom(IK),
if ineq(e1, e2) ∈ IK, then Ψ(e1) 6= Ψ(e2).

A reasonable question to ask is whether IK is the right tool for query answering.
The next theorem provides a positive answer to this question for CQ 6=,bs. In what
follows, given a CQ6=,b q over an ontology O, δ(q) denotes the query obtained by
replacing each inequality atom x1 6= x2 in q with the atom ineq(x1, x2).

Theorem 4.2. Let ~c be a tuple of individuals occurring in a satisfiable DL-LiteR
knowledge base K = 〈O,A〉, and let q be a CQ6=,b over O. We have that ~c ∈ certAq,O
if and only if ~c ∈ δ(q)IK.

Proof. Consider the boolean query q(~c). By definition, we have ~c ∈ certAq,O if and
only if K |= q(~c), and ~c ∈ δ(q)IK if and only if IK |= δ(q(~c)). We now prove that
K |= q(~c) if and only if IK |= δ(q(~c)), thus showing the claim.

“If part:” If IK |= δ(q(~c)), then, using Proposition 4.1, we easily derive that
M |= q(~c) for each modelM of K. Thus, K |= q(~c), as required.

“Only-if part:” Suppose that IK 6|= δ(q(~c)). If in δ(q(~c)) there is at least an
atom, which is not an ineq atom, that is not satisfied by IK, then, from IK itself,
we easily obtain a modelMK of K such thatMK 6|= q(~c), and therefore K 6|= q(~c).
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On the other hand, if IK satisfies all atoms of δ(q(~c)) different from ineq atoms,
then there is at least one atom of the form ineq(c1, c2) in δ(q(~c)) that is false in IK.
Observe that, since q(~c) is a boolean CQ6=,b, both c1 and c2 must be individuals.

Consider the interpretationM′ = 〈∆M, ·M〉 for K obtained from IK as follows:
(i) ∆M = Const; (ii) cM′ = c, for each individual c occurring in A such that c 6= c1
and c 6= c2; (iii) cM

′
1 = cM

′
2 = c′, where c′ ∈ Const is a fresh constant not occurring

in A; and (iv) the extensions of atomic concepts and atomic roles properly follows
atoms of IK, but where each variable v ∈ Var occurring in IK is replaced everywhere
with a fresh constant cv ∈ Const. Since ineq(c1, c2) 6∈ IK, we have that M′ is a
model of K. In proof, ifM′ does not satisfy a disjointness assertion, then, by simple
induction on the steps applied for building IK, we would easily derive a contradiction
on the fact that ineq(c1, c2) 6∈ IK.

But then,M′ is a model of K such that cM′1 = cM
′

2 . Since, however, c1 6= c2 is
an inequality atom occurring in the body of q(~c), we deriveM′ 6|= q(~c). Therefore,
M′ is a model of K for whichM′ 6|= q(~c). Thus, K 6|= q(~c), as required.

4.2 Answering CQ6=,bs over DL-LiteR knowledge bases
In this section, we first consider the problem of answering conjunctive queries with
bounded inequalities (CQ6=,bs) over satisfiable DL-LiteR knowledge bases, and then
we discuss how these results carry over on the one hand to the OBDM scenario, and,
on the other hand, to the case of the DSER, which is the semantics usually adopted
in the Semantic Web scenarios that slightly differs from the classical FOL semantics.

We start by introducing some notations. Given an inequality atom x1 6= x2 and
a disjointness assertion γ, we denote by ρ(x1 6= x2, γ) the following open formula:

• ρ(x1 6= x2, A1 v ¬A2) = A1(x1) ∧A2(x2),

• ρ(x1 6= x2, A v ¬∃R) = ρ(x1 6= x2,∃R v ¬A) = ∃y.A(x1) ∧R(x2, y), where y
is a fresh existential variable,

• ρ(x1 6= x2, ∃R1 v ¬∃R2) = ∃y1, y2.R1(x1, y1)∧R2(x2, y2), where y1 and y2 are
fresh different existential variables, and

• ρ(x1 6= x2, R1 v ¬R2) = ∃y.R1(x1, y) ∧ R2(x2, y) ∨ ∃y.R1(y, x1) ∧ R2(y, x2),
where y is a fresh existential variable,

where an atom of the form R(x, y) stands for either P (x, y) if R denotes an atomic
role P , or P (y, x) if R denotes the inverse of an atomic role, i.e., R = P−.

Example 4.2. Consider the atom x 6= c and the DL-LiteR disjointness assertion
P1 v ¬P2. Then, we have that ρ(x 6= c, P1 v ¬P2) = ∃y.P1(x, y) ∧ P2(c, y) ∨
∃y.P1(y, x) ∧ P2(y, c).

Given an inequality atom x1 6= x2 and a DL-LiteR ontology O, we denote by
σ(x1 6= x2,O) the following disjunction of atoms:

m∨
i=1

(ρ(x1 6= x2, γi) ∨ ρ(x2 6= x1, γi)),

where γ1, . . . , γm are all the disjointness assertions of the DL-LiteR ontology O.



4.2 Answering CQ6=,bs over DL-LiteR knowledge bases 45

Example 4.3. Consider the atom x 6= c and the DL-LiteR ontology O = {A v
∃P, P1 v ¬P2, P3 v P2}. We have that σ(x 6= c,O) = ∃y.P1(x, y) ∧ P2(c, y) ∨
∃y.P1(y, x) ∧ P2(y, c) ∨ ∃y.P1(c, y) ∧ P2(x, y) ∨ ∃y.P1(y, c) ∧ P2(y, x).

Finally, for a CQ 6= q over a DL-LiteR ontology O, we denote by λ(q,O) the query
obtained from q by replacing every inequality atom x1 6= x2 with σ(x1 6= x2,O), and
then turning the resulting formula into an equivalent UCQ.

Example 4.4. Consider the CQ 6= q = {(x) | ∃y1.P (x, y1)∧x 6= c} over the ontology
O of Example 4.3. We have that λ(q,O) = {q1, q2, q3, q4}, where

• q1 = {(x) | ∃y1, y2.P (x, y1) ∧ P1(x, y2) ∧ P2(c, y2)}.

• q2 = {(x) | ∃y1, y2.P (x, y1) ∧ P1(y2, x) ∧ P2(y2, c)}.

• q3 = {(x) | ∃y1, y2.P (x, y1) ∧ P1(c, y2) ∧ P2(x, y2)}.

• q4 = {(x) | ∃y1, y2.P (x, y1) ∧ P1(y2, c) ∧ P2(y2, x)}.

The next important proposition, whose proof relies on [Calvanese et al., 2007b,
Theorem 29] and on Theorem 4.2, states that computing certAq,O, for a given DL-LiteR
knowledge base K = 〈O,A〉 and CQ6=,b q over O, can be reduced to computing the
certain answers of the UCQ λ(q,O) with respect to O and A.

Proposition 4.2. Let K = 〈O,A〉 be a DL-LiteR knowledge base, and let q be a
CQ 6=,b over O. Then, we have that certAq,O = certAλ(q,O),O.

Proof. Let ~c be any tuple of individuals occurring in A. By definition, we have
~c ∈ certAq,O if and only if K |= q(~c). Analogously, ~c ∈ certAλ(q,O),O if and only if
K |= λ(q,O)(~c). We now prove that K |= q(~c) if and only if K |= λ(q,O)(~c).

“If part:” If K |= λ(q,O)(~c), then, due to [Calvanese et al., 2007b, Theorem 29],
we derive that there is a boolean CQ q′ in the boolean UCQ λ(q,O)(~c) for which
IK |= q′. Observe that, by construction, each boolean CQ q′ in the boolean UCQ
λ(q,O)(~c) is such that q′ = {() | α1 ∧ . . . ∧ αn ∧ β1 ∧ β′1 ∧ . . . ∧ βm ∧ β′m}, where αis
are atoms that were not inequality atoms in the boolean CQ q(~c), whereas the pair
of atoms (βi, β′i)s are obtained after replacing an inequality atom of the form c1 6= c2
with σ(c1 6= c2,O). Since q(~c) is a boolean CQ, both c1 and c2 must be individuals.

Notice, however, that since IK |= βi ∧ β′i, by construction of σ(c1 6= c2,O) and
the additional rules applied for building IK (the ones regarding the ineq predicate),
we easily derive that ineq(c1, c2) ∈ IK. Moreover, since this is true for each pair of
atoms (βi, β′i) for i ∈ [1,m], we further derive that δ(q(~c)) is such that IK |= δ(q(~c)),
thus implying that ~c ∈ δ(q)IK . By virtue of Theorem 4.2, we derive that ~c ∈ certAq,O,
and therefore K |= q(~c), as required.

“Only-if part:” If K |= q(~c), then, by virtue of Theorem 4.2, we derive that
IK |= δ(q(~c)). Consider each atom of the form ineq(c1, c2) occurring in δ(q(~c)).
Observe that, since δ(q(~c)) is a boolean CQ, both c1 and c2 must be individuals.
From the premises of the additional rules for building IK (the ones regarding the ineq
predicate), we easily derive that the formula σ(c1 6= c2,O) is true when evaluated
over IK, i.e., IK |= σ(c1 6= c2,O). Therefore, it is easy to see that IK |= q′ for at least
a boolean CQ q′ in λ(q,O)(~c). Thus, due to [Calvanese et al., 2007b, Theorem 29],
we derive K |= λ(q,O)(~c), as required.
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Let NoUNAPerfectRef denotes the algorithm that, given in input a DL-LiteR
ontology O and a CQ6=,b q over O, it returns the UCQ PerfectRef(O, λ(q,O)). By
combining the above proposition with [Calvanese et al., 2007b, Lemma 39], we
immediately derive the following result.

Corollary 4.1. Let O be a DL-LiteR ontology, and let q be a CQ 6=,b over O. For
every ABox A such that the DL-LiteR knowledge base K = 〈O,A〉 is satisfiable, we
have certAq,O = NoUNAPerfectRef(O, q)IA.

Example 4.5. Consider the DL-LiteR knowledge base K = 〈O,A〉, where O is the
DL-LiteR ontology described in Example 4.3 and A = {A(c1), P1(c2, c), P3(c2, c)}.
Let, moreover, q be the CQ6= described in Example 4.4. NoUNAPerfectRef(O, q)
contains, among others, the following CQ:

q5 = {(x) | ∃y2.A(x) ∧ P1(y2, c) ∧ P3(y2, x)},

which is obtained from the CQ q4 of λ(q,O) described in Example 4.4 by first
applying τ to q4, thus obtaining {(x) | ∃y2.P (x, _ ) ∧ P1(y2, c) ∧ P2(y2, x)}, and
then by applying the inclusion assertions A v ∃P and P3 v P2 to atoms P (x, _ )
and P2(y2, x), respectively. Obviously, qIA5 = {(c1)}. One can easily verify that
(c1) ∈ certAq,O (more specifically, certAq,O = {(c1)}), as expected.

The next theorem shows that, even when the UNA is not adopted, answer-
ing CQ 6=,bs over DL-LiteR knowledge bases has exactly the same computational
complexity of answering UCQs over DL-LiteR knowledge bases.

Theorem 4.3. Answering CQ 6=,bs over DL-LiteR knowledge bases is FOL-rewritable
(and therefore in AC0 in data complexity) and NP-complete in combined complexity.

Proof. FOL-rewritability is a direct consequence of Corollary 4.1.
The membership in NP in combined complexity can be easily proven with a

version of the NoUNAPerfectRef algorithm that nondeterministically guess a CQ of
the final UCQ NoUNAPerfectRef(O, q), which can be generated after a polynomial
number of transformations of the initial CQ 6=,b q. Finally, NP-hardness already
follows from CQ evaluation over relational databases [Abiteboul et al., 1995].

4.2.1 Queries with Inequalities in Ontology-based Data Manage-
ment

We now briefly discuss how the above results behave in the context of the OBDM
scenario when the UNA is not adopted. Let Σ = 〈O,S,M〉 be an OBDM specification
where O is a DL-LiteR ontology andM is a GLAV mapping. Clearly, since DL-LiteR
is insensitive to the adoption of the UNA for UCQ answering, given a UCQ qO
over O of arity n, it is not hard to verify that PerfRefqO,Σ ∪ PerfRefVnO,Σ is the
perfect O-to-S Σ-rewriting of qO even when the UNA is not adopted, where VO is
the violation query for O and PerfRefq,Σ := MapRef(PerfectRef(O, q),M) for a UCQ
q over O (cf. Section 2.6).

Let us now turn to the case of CQ 6=,bs. Given a CQ 6=,b qO over O of arity n, we de-
note by NoUNAPerfRefqO,Σ the UCQ over S obtained by first executing the algorithm
NoUNAPerfectRef on O and qO, and then by rewriting the obtained UCQ with respect
to mappingM, i.e., NoUNAPerfRefqO,Σ := MapRef(NoUNAPerfectRef(O, qO),M).
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Theorem 4.4. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a
DL-LiteR ontology and M is a GLAV mapping. When the UNA is not adopted,
given a CQ 6=,b over O, we have that NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ is the
perfect O-to-S Σ-rewriting of qO, i.e., (NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ)D =
certDqO,Σ, for every S-database D.

Proof. Let D be an S-database. If D is inconsistent with Σ, i.e., ModD(Σ) = ∅,
then PerfRefDVnO,Σ = certDqO,Σ, which corresponds to the set of all possible tuples of
constants occurring in D whose arity is the one of the query.

On the other hand, if D is consistent with Σ (and therefore PerfRefDVnO,Σ =
∅), then, due to Corollary 4.1, we have certDqO,Σ = certDq′,Σ′ , where q′ =
NoUNAPerfectRef(O, qO) and Σ′ = 〈∅,S,M〉. But then, since q′ is a UCQ and
the ontology of Σ′ = 〈∅,S,M〉 contains no assertions, certDq′,Σ′ = MapRef(q′,M)D

(cf. Section 2.6). It follows that certDqO,Σ = MapRef(NoUNAPerfectRef(O, qO),M)D,
i.e., certDqO,Σ = NoUNAPerfRefDqO,M, as required.

4.2.2 The case of the Direct Semantics Entailment Regime

The de facto standard query language for the Semantic Web is SPARQL3. As defined
in a W3C standard specification [Glimm and Ogbuji, 2013], the query language
SPARQL 1.1 [Harris and Seaborne, 2013] (i.e., the current version of SPARQL) relies
on the notion of SPARQL entailment regime, which defines:

1. the syntax and the semantics of assertions of the queried knowledge base;

2. the syntax of conjunctive queries considered legal for the regime;

3. the semantics of such queries, i.e., what are the answers to a query.

As for 1, we assume to deal with (satisfiable) OWL 2 QL (equivalently, DL-LiteR)
knowledge bases without the UNA. As for 2, we now consider general UCQ6=s.
Finally, as for 3, we follow the OWL 2 QL DSER, which is the most typical SPARQL
Entailment Regime for OWL 2 QL (equivalently, DL-LiteR) knowledge bases.

Specifically, given a DL-LiteR knowledge base K = 〈O,A〉 and a CQ6= q =
{(t1, . . . , tn) | ∃y1, . . . , ym.φ(~x, ~y)} over O, DSER defines the answers to q with
respect to O and A, denoted by DScertAq,O, as follows: an n-tuple of individuals
~c = (c1, . . . , cn) (with cj = tj for each j ∈ [1, n] in which tj is a constant) is in
DScertAq,O if and only if there exists an m-tuple of individuals ~c′ = (c′1, . . . , c′n) for
which K |= q(~c, ~c′), where q(~c, ~c′) = {() | φ(~x/~c, ~y/~c′)} denotes the boolean CQ6= in
which φ(~x/~c, ~y/~c′) is the body obtained from φ(~x, ~y) by replacing all the occurrences
of the term ti (respectively, yi) with the individual ci (respectively, c′i), for each
i ∈ [1, n] (respectively, i ∈ [1,m]). In other words, for an n-tuple of individuals ~c, in
contrast to classical logic, existential variables ~y, although projected out from the
final answers, are required to be bound to the same m-tuple of constants ~c′, in every
model of K.

Example 4.6. Let us recall Example 4.5. We have that (c1) 6∈ DScertAq,O, since
there is no y1 for which P (c, y1) is known to hold.

3SPARQL Protocol and RDF Query Language: https://www.w3.org/2001/sw/wiki/SPARQL

https://www.w3.org/2001/sw/wiki/SPARQL
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Furthermore, given a DL-LiteR knowledge base K = 〈O,A〉 and a UCQ6= q =
q1 ∪ . . . ∪ ql over O, again differently from the classical logic, we have DScertAq,O =
DScertAq1,O ∪ . . . ∪DScertAql,O.

Example 4.7. Consider the knowledge base K = 〈O,A〉, where O = ∅ and A =
{P (a, b)}. For the boolean UCQ 6=,b Q = q1∪q2 over O, where q1 = {() | P (a, a)} and
q2 = {() | a 6= b}, it is easy to see that both DScertAq1,O = ∅ and DScertAq2,O = ∅ hold.
For the former, consider a modelM of K in which aM 6= bM. For the latter, consider
a modelM of K in which aM = bM. Therefore, DScertAQ,O = ∅ by definition.

Notice, however, that K |= Q. Indeed, for any modelM of K, aM 6= bM implies
M |= q2, whereas aM = bM impliesM |= q1. Thus, certAQ,O = {()}.

We now present the algorithm DSERPerfectRef for answering UCQ 6=s over
DL-LiteR knowledge bases under the DSER semantics. Given in input a DL-LiteR
ontology O and a UCQ6= q over O, DSERPerfectRef returns a reformulated UCQ.

Algorithm 4.1 DSERPerfectRef
Input:

DL-LiteR ontology O;
UCQ6= q = q1 ∪ . . . ∪ qn over O

Output:
UCQ qr over O

1: qr := ∅
2: for i← 1 to n do
3: Let qi = {~t | ∃~y.φ(~x, ~y)}
4: Compute λ(q′i,O), where q′i = {(~t, ~y) | φ(~x, ~y)}
5: for each CQ q′ ∈ PerfectRef(O, λ(q′i,O)) do
6: Let q′ = {(~t, ~y) | φ(~x, ~y)}
7: qr := qr ∪ q, where q = {~t | ∃~y.φ(~x, ~y)}
8: end for
9: end for

10: return qr

Roughly speaking, according to the meaning of the union operator under DSER,
the algorithm treats each CQ of q separately. In particular, for each CQ qi = {~t |
∃~y.φ(~x, ~y)} of q, according to the meaning of the existential quantifiers under DSER,
the algorithm consider the CQ q′i = {(~t, ~y) | φ(~x, ~y)}, i.e., the query obtained from q
in which existential variables ~y become distinguished (and therefore bound). After
that, it rewrites inequality atoms through the function λ to capture only those
inequalities logically implied. Finally, for each CQ in PerfectRef(O, λ(q′i,O)), the
algorithm projects those variables that were originally existential variables.

Example 4.8. Consider the DL-LiteR knowledge base K = 〈O,A〉, where

• O = { Male v ¬Female,Pregnant v Female,Employee v ∃WorksFor }
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• A =

{ WorksFor(John,HOPE),WorksFor(Cleo,HOPE),Employee(Alice),
Parent(John,Bill),Parent(John,Wendy),Parent(Alice,Bill),
Parent(Alice,Wendy),Parent(Cleo,Alex),Parent(Cleo,Alexander),
Male(Bill),Pregnant(Wendy) }.

Consider also the following CQ6= q over O asking for those people working for
some company and having at least two children:

q = {(x) | ∃y1, y2, y3.WorksFor(x, y1) ∧ Parent(x, y2) ∧ Parent(x, y3) ∧ y2 6= y3}.

As a first step, DSERPerfectRef(O, qO) computes the UCQ λ(q′,O), where q′ =
{(x, y1, y2, y3) | WorksFor(x, y1) ∧ Parent(x, y2) ∧ Parent(x, y3) ∧ y2 6= y3}. Note
that λ(q′,O) contains, among others, the CQ {(x, y1, y2, y3) | WorksFor(x, y1) ∧
Parent(x, y2) ∧ Parent(x, y3) ∧Male(y2) ∧ Female(y3)}.

Then, PerfectRef(O, λ(q′,O)) computes, among others, the CQ {(x, y1, y2, y3) |
WorksFor(x, y1)∧Parent(x, y2)∧Parent(x, y3)∧Male(y2)∧Pregnant(y3)}. Note that,
since y1 is a distinguished variable in q′, the inclusion assertion Employee v ∃WorksFor
is not used to rewrite q′ with respect to O.

As a last step, the algorithm returns the UCQ which contains, among oth-
ers, the CQ q1 = {(x) | ∃y1, y2, y3.WorksFor(x, y1) ∧ Parent(x, y2) ∧ Parent(x, y3) ∧
Male(y2) ∧ Pregnant(y3)}. Observe that qIA1 = {(John)}. One can indeed verify
that DScertAq,O = {(John)}, as expected. Finally, note that (Cleo) 6∈ DScertAq,O
and (Alice) 6∈ DScertAq,O since Alex and Alexander are not known to be different
individuals and it is not known which is the project Alice works for, respectively.

From the results given previously for CQ 6=,bs, and from the considerations of how
the algorithm capture the DSER, we immediately derive the following result.

Proposition 4.3. Let O be a DL-LiteR ontology, and let q be a UCQ6= over O. For
every ABox A such that the DL-LiteR knowledge base K = 〈O,A〉 is satisfiable, we
have DScertAq,O = DSERPerfectRef(O, q)IA.

We also get that answering UCQ6=s over DL-LiteR knowledge bases under DSER
has exactly the same computational complexity of answering UCQs over DL-LiteR
knowledge bases.

Theorem 4.5. Answering UCQ6=s over DL-LiteR knowledge bases under DSER
is FOL-rewritable (and therefore in AC0 in data complexity) and NP-complete in
combined complexity.

Related to this problem is the result in [Gutiérrez-Basulto et al., 2015], which
shows that answering even CQ6=s over DL-LiteR knowledge bases is in general
undecidable. We point out, however, that such a negative result is due to the fact
that existential variables are assigned the standard logical meaning, which is not the
case in DSER. To the best of our knowledge, only few works [Kontchakov et al., 2014;
Gottlob and Pieris, 2015; Poggi, 2016; Arenas et al., 2018] have investigated the
problem of answering queries over DL-LiteR knowledge bases under DSER. With the
only exception of [Poggi, 2016] (which shows that the problem of answering UCQ 6=s
over DL-LiteR knowledge bases under DSER can be reduced to the evaluation of a
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Datalog program, and therefore is in PTime in data complexity and in ExpTime in
combined complexity), none of the other works consider queries possibly containing
inequalities. In fact, in [Gottlob and Pieris, 2015] it is even claimed that inequalities
cannot occur within legal OWL 2 QL basic graph patterns, which is a strong assumption,
because inequalities can be expressed by means of DifferentIndividuals atoms.

4.3 Answering UCQ6=,bs over DL-LiteR knowledge bases

In this section, we consider the problem of answering UCQ 6=,bs over satisfiable
DL-LiteR knowledge bases. The next example shows that, differently from the
UCQ case, the certain answers of UCQ 6=,bs over DL-LiteR knowledge bases is not
necessarily equivalent to the union of the certain answers of the singles CQs.

Example 4.9. Recall Example 4.7, where K = 〈O,A〉 with O = ∅ and A =
{P (a, b)}. For the boolean UCQ6=,b Q = q1 ∪ q2 over O, where q1 = {() | P (a, a)}
and q2 = {() | a 6= b}, it is easy to see that both K 6|= q1 and K 6|= q2. For the former,
consider a modelM of K in which aM 6= bM. For the latter, consider a modelM
of K in which aM = bM. Notice, however, that K |= Q. Indeed, for any modelM
of K, aM 6= bM impliesM |= q2, and aM = bM impliesM |= q1.

The above example also tells us that answering UCQ6=,bs overDL-LiteR knowledge
bases K = 〈O,A〉 can not be done simply using the interpretation IK. Indeed, one
can verify that δ(Q) = δ(q1) ∪ δ(q2) is such that IK 6|= δ(Q), whereas K |= Q.

The conceptual tool we use for addressing the problem of answering queries with
inequalities over DL-LiteR knowledge base is the notion of equivalence relation.4
Specifically, we now introduce the notions of e-satisfiability and e-entailment for
an equivalence relation e. In what follows, for an equivalence relation e, we write
c1 ∼e c2 to actually denote (c1, c2) ∈ e.

Definition 4.1. Let K = 〈O,A〉 be a knowledge base, e be an equivalence relation
on a set I of individuals occurring in A, and M be a model of K. Then, we say
thatM is an e-model of K, denoted byM |=e K, if for any pair of individuals c1, c2
occurring in I , we have that cM1 = cM2 if and only if c1 ∼e c2. Furthermore, we say
that K is e-satisfiable if it has an e-model.

Definition 4.2. Let K = 〈O,A〉 be a knowledge base, q be a boolean query over
O, and e be an equivalence relation on a set I of individuals occurring in A. Then,
we say that K e-entails q, denoted by K |=e q, ifM |= q for each e-modelM of K.

Observe that, for a knowledge base K = 〈O,A〉, if e is the equivalence relation
on the set of all individuals occurring in A such that e = {(c, c) | c occurs in A}
(respectively, e is the equivalence relation on the empty set of individuals, i.e., e = {}),
then the notions of e-satisfiability and e-entailment coincide with the usual notion
of satisfiability and entailment, respectively, when the UNA is adopted (respectively,
when the UNA is not adopted).

4An equivalence relation e on a set of individuals I is a binary relation over I that is reflexive,
symmetric, and transitive.
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In what follows, for a knowledge base K = 〈O,A〉 and an equivalence relation e,
we denote by Ke = 〈Oe,Ae〉 the knowledge base obtained from K by adding e in the
alphabet of O as a new atomic role (obtaining the ontology Oe), and Ae is the ABox
for Oe such that Ae = A∪ e, i.e., Ae = A∪ {e(c1, c2) | (c1, c2) ∈ e}. Moreover, for a
query q over an ontology O, we denote by Iq the set of all individuals occurring in q.

We now prove that, in principle, the notion of e-entailment can be used for the
problem of answering UCQ 6=,bs over DL-LiteR knowledge bases.

Proposition 4.4. Let K = 〈O,A〉 be a DL-LiteR knowledge base, and q be a boolean
UCQ 6=,b. We have that K 6|= q if and only if there exists an equivalence relation e on
Iq such that K 6|=e q.

Proof. “If part:” Suppose that there exists an equivalence relation e on Iq such
that K |=e q. This implies that there is an e-modelM of K such thatM 6|= q. Since
M is an e-model of K, thenM is also a model of K. Thus, K 6|= q, as required.

“Only-if part:” Suppose that K 6|= q. It follows that there is a modelM of K
for whichM 6|= q. Consider now the equivalence relation e on Iq given by the model
M, that is, (c1, c2) ∈ e if and only if cM1 = cM2 and c1, c2 ∈ Iq.

Let I be the interpretation for K similar toM but, for each individual c 6∈ Iq,
we set cI = c and replace each occurrence of the object cM with cI = c. Since
M 6|= q, it can be easily verified that I 6|= q as well. In particular, since cI = cM for
each c ∈ Iq (i.e., for each individual appearing in the query), the evaluation of each
inequality atom of q (since q is a boolean UCQ6=,b, the inequality atoms are only
between individuals) over I andM coincide. Notice, moreover, that sinceM is a
model of K, we have that I is a model of K as well, and therefore an e-model of K
by construction. So, I is an e-model of K such that I 6|= q, and therefore K 6|=e q.

To conclude the proof, observe that e is an equivalence relation on the set of
individuals Iq such that K 6|=e q, as required.

The above proposition suggests a nondeterministic algorithm for the problem of
answering UCQ 6=,bs over DL-LiteR knowledge bases, which consists in guessing an
equivalence relation e on Iq, and then checking whether K 6|=e q, where K = 〈O,A〉
and q are the input DL-LiteR knowledge base and UCQ6=,b over O, respectively. So,
for the case of DL-LiteR knowledge bases K = 〈O,A〉, we now study the problems
of (i) checking whether K is e-satisfiable for an arbitrary equivalence relation e on
a set I of individuals of A; (ii) checking whether K |=e q for a boolean UCQ 6=,b q
over O and an arbitrary equivalence relation e on Iq such that K is e-satisfiable.
Specifically, we next show that the computational complexity of both the above
problems remains the same of the case when e simulates the adoption of the UNA.

We start with the e-satisfiability check. We assume to deal with satisfiable
knowledge bases (notice that e-satisfiability always implies satisfiability, and therefore,
in case of unsatisfiable knowledge bases, e-satisfiability becomes trivial).

Proposition 4.5. Let K = 〈O,A〉 be a DL-LiteR knowledge base and e be an
equivalence relation on a set I of individuals occurring in A. The problem of
checking whether K is e-satisfiable is in AC0 in the size of A and e, and in PTime
in the size of O.
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Proof. Let VeO be the e-violation query for O obtained from VO by adding the
following disjuncts over the signature of Oe:

• {() | ∃y1, y2.A1(y1) ∧A2(y2) ∧ e(y1, y2)} for each disjointness assertion of the
form A1 v ¬A2 belonging to O,

• {() | ∃y1, y2, y3.A(y1) ∧R(y2, y3) ∧ e(y1, y2)} for each disjointness assertion of
the form A v ¬∃R or of the form ∃R v ¬A belonging to O,

• {() | ∃y1, y2, y3, y4.R1(y1, y3) ∧ R2(y2, y4) ∧ e(y1, y2)} for each disjointness as-
sertion of the form ∃R1 v ¬∃R2 belonging to O,

• {() | ∃y1, y2, y3, y4.R1(y1, y3) ∧ R2(y2, y4) ∧ e(y1, y2) ∧ e(y3, y4)} for each dis-
jointness assertion of the form R1 v ¬R2 belonging to O,

where an atom of the form R(y, y′) stands for either P (y, y′) if R denotes an atomic
role P , or P (y′, y) if R denotes the inverse of an atomic role, i.e., R = P−.

Intuitively, for checking e-satisfiability it is sufficient to check whether the
equivalence relation e contradicts a disjointness assertion of O. We now prove that
K is e-satisfiable if and only if Ke 6|= VeO.

If Ke |= q for some disjunct q of VeO, then it is easy to see that there are at least
two individuals c1 ∼e c2 of I such that I 6|= K in each interpretation I with cI1 = cI2 ,
and therefore K is not e-satisfiable, as required. Conversely, if Ke 6|= VeO, then from
IK it is possible to obtain a modelM where cM1 = cM2 for each (c1, c2) ∈ e. It is
easy to see thatM |=e K, and therefore K is e-satisfiable.

Finally, observe that VeO can be constructed in PTime in the size of O, and, as
usual, checking whether Ke 6|= VeO is FOL-rewritable (and therefore in AC0 in the
size of Ae) and in PTime in the size of Oe, thus showing the claim.

We now focus on the problem of checking whether K |=e q for a DL-LiteR
knowledge base K = 〈O,A〉, boolean UCQ 6=,b over O, and equivalence relation e on
Iq. To this aim, we provide algorithm EquivalenceRelationRef that, given in input
a boolean UCQ 6=,b q over O and an equivalence relation e on Iq, it reformulates
q according to e and returns a UCQ over Oe. In the algorithm, we assume that
boolean queries may contain false and true atoms in their body, with their obvious
semantics. Furthermore, P(·) is a function returning the power set of a given set as
input. Finally, ej(·) is the function that takes a CQ q as input, and returns the set
of all existential variables of q that are join existential variables, i.e., the existential
variables y such that my ≥ 2, where my denotes the number of occurrences of the
variable y in the body of q.

Intuitively, the algorithm first reformulates the given UCQ6=,b q into a UCQ by
directly evaluating each inequality atom c1 6= c2 based on the equivalence relation e
(notice that, since q is a boolean UCQ 6=,b, each inequality atom c1 6= c2 is such that
both c1 and c2 are individuals).

Afterwards, for each possible set Y ∈ P(ej(qi)) of join existential variables
occurring in the CQ qi, the algorithm reformulates qi by allowing that different
occurrences y1, y2, . . . , ymy of the same existential variable y ∈ Y may be possibly
mapped to also distinct individuals, with the proviso that such distinct individuals
belong to the same equivalence class in e (which is captured by e(z, z′) atoms).
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Algorithm 4.2 EquivalenceRelationRef
Input:

boolean UCQ6=,b q = q1 ∪ . . . ∪ qn over an ontology O;
equivalence relation e on Iq

Output:
UCQ qe over Oe

1: qe := ∅
2: PR := ∅
3: for i← 1 to n do
4: for each inequality atom α : c1 6= c2 occurring in the body of the CQ qi do
5: if c1 ∼e c2 then
6: Replace atom α with false
7: else
8: Replace atom α with true
9: end if

10: end for
11: PR := PR ∪ {qi}
12: for each Y ∈ P(ej(qi)) do
13: qY := qi
14: for each y ∈ Y do
15: Let y1, y2, . . . , ymy denote all the occurrences of y in the body of qY
16: for j ← 1 to my do
17: Replace the occurrence yj of y with a fresh existential variable zjy
18: end for
19: for each pair (k, l) with 0 ≤ k < l ≤ my do
20: Add the atom e(zky , zly) in conjunction to the body of qY
21: end for
22: end for
23: PR := PR ∪ {qY}
24: end for
25: end for
26: for each q ∈ PR do
27: for each individual c occurring in q do
28: Replace each occurrence of c in q with a fresh existential variable yc
29: Add the atom e(yc, c) in conjunction to the body of q
30: end for
31: qe := qe ∪ q
32: end for
33: return qe

An analogous consideration holds for the various individuals occurring in queries,
where in the last steps of the algorithm each CQ q is further reformulated to allow
that an existential variable yc may match an individual c′ that is not necessarily the
original individual c of q, but it is such that c ∼e c′, i.e., an individual that is in the
same equivalence class of c in e.
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Example 4.10. Consider the knowledge base K = 〈O,A〉, where O = ∅, and

A = {Author(Nicky),Author(Nicolas),Cited(Nicolas,Nicky),Cited(Nicky,Nicolas)}.

Consider also the following UCQ6=,b over O asking for the pair of authors that either
are known to be different, or have been cited by the same author:

q′ = {(x1, x2) | Author(x1) ∧ Author(x2) ∧ x1 6= x2} ∪
{(x1, x2) | ∃y.Cited(y, x1) ∧ Cited(y, x2)}.

Suppose we want to check whether (Nicky,Nicolas) ∈ certAq′,O, i.e., whether
K |= q, where q = {() | Author(Nicky),Author(Nicolas) ∧ Nicky 6= Nicolas} ∪
{() | ∃y.Cited(y,Nicky) ∧ Cited(y,Nicolas)}. By exploiting Proposition 4.4, we
consider the two possible equivalence relation on Iq:

• e1 = {(Nicky,Nicky), (Nicolas,Nicolas)};

• e2 = {(Nicky,Nicky), (Nicolas,Nicolas), (Nicky,Nicolas), (Nicolas,Nicky)}.

As for e1, we easily derive that K |=e1 q because NickyI 6= NicolasI in
each e1-model I of K. Moreover, one can easily verify that Ke1 |= qe1 for
qe1 = EquivalenceRelationRef(q, e1), since the inequality atom Nicky 6= Nicolas of the
first disjunct of q is replaced with the atom true in qe1 .

As for e2, we have K |=e2 q as well, since in each model I of K for which
NickyI = NicolasI = o ∈ ∆I we have that object o has been cited by itself.
Moreover, observe that the second disjunct of qe2 = EquivalenceRelationRef(q, e2) is

{() | ∃z1
y , z

2
y , yNicky, yNicolas.Cited(z1

y , yNicky) ∧ Cited(z2
y , yNicolas)∧

e(z1
y , z

2
y) ∧ e(yNicky,Nicky) ∧ e(yNicolas,Nicolas)}.

One can easily verify that, as expected, Ke2 |= qe2 with the bindings for the
above disjunct z1

y = yNicolas → Nicolas, and z2
y = yNicky → Nicky.

We conclude that K |= q, and thus (Nicky,Nicolas) ∈ certAq′,O.

The next crucial proposition states that checking whether K |=e q, for a given
DL-LiteR knowledge base K = 〈O,A〉, boolean UCQ6=,b q over O, and equivalence
relation e on Iq such that K is e-satisfiable, can be reduced to checking whether
Ke |= qe, where qe is the UCQ returned by EquivalenceRelationRef(q, e).

Proposition 4.6. Let K = 〈O,A〉 be a DL-LiteR knowledge base, q be a boolean
UCQ 6=,b over O, and e be an equivalence relation e on Iq such that K is e-
satisfiable. We have that K |=e q if and only if Ke |= qe, where qe is the UCQ
EquivalenceRelationRef(q, e).

Proof. “If part:” Suppose that Ke |= qe. Since K is e-satisfiable by assumption
(and therefore Ke is a satisfiable DL-LiteR knowledge base) and qe is a UCQ, due
to [Calvanese et al., 2007b, Theorem 29], there is a disjunct qY of qe for which there is
a homomorphism h from qY to CAeOe , where C

Ae
Oe is the canonical structure of Oe with

respect to Ae, and qY is a CQ obtained from some disjunct qi of q by reformulating
it according to e (thus removing inequality atoms) and the set Y ∈ P(ej(qi)) of join
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existential variables of qi. We now prove that M |= qi for each e-model M of K,
thus implying that K |=e q.

Consider any e-modelM of K, and let ψ be the function satisfying conditions 1
and 2 of Proposition 4.1. As a first consideration, note that each possible inequality
atom of q (which is only between individuals) is evaluated exactly as in the algorithm
over the modelM. Furthermore, even if two variables zky and zly of qY that replace
an existential variable y ∈ Y of qi may match two distinct individuals in CAeOe under h
(i.e., h(zky ) 6= h(zly)), the facts that e(h(zky ), h(zly)) ∈ CAeOe and thatM is an e-model
of K implies that zky

M = zly
M. An analogous consideration holds also for variables

yc of qY replacing all occurrences of individuals c ∈ Iq of qi.
But then, consider the function fM with (i) fM(y) = ψ(h(ziy)) for an arbitrary

i ∈ [1,my], for each y ∈ Y, (ii) fM(y) = ψ(h(y)), for each y 6∈ Y, and (iii)
f(c) = ψ(h(yc)), for each individual c ∈ Iqi . It is not hard to see that fM consists in
a homomorphism from qi toM, and thereforeM |= qi as required.

“Only-if part:” Suppose that K |=e q. Consider the DL-LiteR knowledge base
K′ = 〈O,A′〉 and the UCQ6=,b q′, where A′ and q′ are the ABox and the query,
respectively, obtained from A and q by replacing each individual c ∈ Iq with a fresh
individual denoting its equivalence class in e. Obviously, since K |=e q, we have that
K′ |= q′. In fact, there is a homomorphism h from some disjunct q′i of q′ to CA

′
O with

h(c) = c for each individual c ∈ Iq′ , and therefore h(c1) 6= h(c2) for each inequality
atom c1 6= c2 of q′i.

Let now Y ∈ P(ej(qi)) be the set of join existential variables of q′i for which y ∈ Y
if and only if h(y) is one of the fresh individual introduced in A′. It is not hard to
ascertain that, if we reformulate the disjunct qi of q with respect to Y as described
in the algorithm, then we obtain a CQ qY for which there is a homomorphism from
qY to CAeOe , thus implying that Ke |= qY . It follows that Ke |= qe, as required.

Based on this results, we are now ready to characterise the computational
complexity of checking whether K |=e q for a DL-LiteR knowledge base K = 〈O,A〉,
boolean UCQ6=,b q, and equivalence relation e on Iq.
Theorem 4.6. Let K = 〈O,A〉 be a DL-LiteR knowledge base, q be a boolean
UCQ6=,b over O, and e be an equivalence relation e on Iq. The problem of checking
whether K |=e q is NP-complete, and in AC0 in the size of A and e.
Proof. Checking whether K |=e q can be done by first checking whether K is e-
satisfiable, and then, by exploiting Proposition 4.6, checking whether Ke |= qe,
where qe is the UCQ returned by EquivalenceRelationRef(q, e). Notice that, due to
Proposition 4.5, the e-satisfiability check can be done in AC0 in the size of A and e,
and in polynomial time in the size of O. Moreover, as usual, the problem of checking
whether Ke |= qe for a DL-LiteR knowledge base Ke = 〈Oe,Ae〉 and a UCQ qe is in
AC0 in the size of Ae and in NP in combined complexity.

Thus, as for the claim of the theorem, the membership in AC0 in the size of A
and e is a direct consequence of Propositions 4.5 and 4.6, whereas the membership
in NP in the size of the input can be easily proven by considering a version of the
EquivalenceRelationRef algorithm that nondeterministically guess a disjunct qi of q
and a subset Y ∈ P(ej(qi)), and then with a further NP-step checks whether the
reformulated qi according to Y is logically implied by Ke.
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Finally, NP-hardness follows from CQ evaluation over relational databases.

With the above result at hand, and by recalling Proposition 4.4, we are ready to
show an upper bound for our problem. Notably, answering UCQ6=,bs over DL-LiteR
knowledge bases has the same data complexity of the UCQs and CQ 6=,bs cases.

Theorem 4.7. Answering UCQ 6=,bs over DL-LiteR knowledge bases is in AC0 in
data complexity and in Πp

2 in combined complexity.

Proof. For a DL-LiteR knowledge base K = 〈O,A〉 and a UCQ 6=,b q over O, we
now show how to decide K 6|= q in AC0 in data complexity and in Σp

2 in combined
complexity, thus proving the claim. Due to Proposition 4.4, K 6|= q can be decided
as follows:

1. Guess an equivalence relation e on Iq;

2. If K 6|=e q, return true (i.e., K 6|= q), otherwise return false (i.e., K |= q),

where, due to Theorem 4.6, this last step can be done in AC0 in the size of A and e,
and in coNP in the size of A, e, and q.

So, we easily derive a nondeterministic algorithm deciding K 6|= q that first
requires an NP step in the size of q in order to guess an equivalence relation e on Iq
(observe that the equivalence relation is only on the set Iq of individuals occurring
in q, and thus such step is constant time in the size of A). Finally, with a single call
to an coNP-oracle, the algorithm checks whether K 6|=e q, where, as already said,
this check can be done in AC0 in the size of A and e.

We conclude the analysis of the considered problem of this section by establishing
that the Πp

2 combined complexity upper bound is tight. Thus, unless the polynomial
hierarchy collapses to the first level, answering UCQ6=,bs over DL-LiteR knowledge
bases does not have the same combined complexity of the UCQs and CQ6=,bs cases.

Theorem 4.8. Answering UCQ 6=,bs over DL-LiteR knowledge bases is Πp
2-hard in

combined complexity.

Proof. The proof is by a LogSpace reduction from the ∀∃-CNF problem, which
is Πp

2-complete [Stockmeyer, 1976]. ∀∃-CNF is the problem of deciding, given
a 3-CNF formula F = c1 ∧ . . . ∧ cp on a set of variables X = {x1, . . . , xm} ∪
Y = {y1, . . . , yn} such that the variables in X (respectively, Y ) are universally
(respectively, existentially) quantified, whether F is true, i.e., whether for each
possible truth assignment to the variables in X, there exists a truth assignment to
the variables in Y that satisfies F . Each clause ci is a disjunction of three literals,
where each literal is either a variable z ∈ X ∪ Y or its negated. For i = 1, . . . , p, we
denote by zi,1, zi,2, zi,3 the first, the second, and the third, respectively, variable
appearing (either positive or negated) in clause ci.

Let F be an instance of the ∀∃-CNF problem. We now construct a DL-LiteR
knowledge base KF = 〈O,AF 〉 and a UCQ6=,b QF .

For each clause ci of F , observe that there are exactly seven satisfying truth
assignment for the clause ci. As individuals of AF we have 0, 1, an individual xi
for each i ∈ [1,m], and an individual Ai,k for each i ∈ [1, p] and for each k ∈ [1, 7].
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Intuitively, Ai,k denotes the k-th satisfying truth assignment {vk,1, vk,2, vk,3} for the
clause ci, where, for j ∈ [1, 3], value vk,j corresponds to the truth assignment (i.e.,
either 0 or 1) given to the variable zi,j . Then, the ABox AF is defined as follows:

AF = {Pi,1(Ai,k, vk,1), Pi,2(Ai,k, vk,2), Pi,3(Ai,k, vk,3) | i ∈ [1, p] and k ∈ [1, 7]}∪
{Hi(xi) | i ∈ [1,m]},

where (i) for each i ∈ [1, p] and for each j ∈ [1, 3], Pi,j is an atomic role in the
alphabet of O, and (ii) for each universally quantified variable xi ∈ X, Hi is an
atomic concept in the alphabet of O. Finally, the knowledge base KF is defined as
the pair KF = 〈O,AF 〉, where the ontology O contains no axioms, i.e., O = ∅.

As for the UCQ 6=,b, let QF = q1 ∪ . . . ∪ qm ∪ qF , where qi = {(x1, . . . , xm) |
H1(x1) ∧ . . . ∧Hm(xm) ∧ xi 6= 0 ∧ xi 6= 1} for each i ∈ [1,m], and qF is

{(x1, . . . , xm) |∃a1, . . . , ap, y1, . . . , yn.∧
i∈[1,p]

(Pi,1(ai, zi,1) ∧ Pi,2(ai, zi,2) ∧ Pi,3(ai, zi,3)) ∧
∧

i∈[1,m]
(Hi(xi))}.

Observe that O = ∅ is fixed, whereas both AF and QF can be constructed
in LogSpace from F . To illustrate the reduction, consider the formula F =
∀x1, x2.∃y1, y2.((y1 ∨ y2 ∨ x1)

∧
(¬y1 ∨ ¬y2 ∨ ¬x2)). In this case, the reduction

produces the knowledge base KF = 〈O,AF 〉, where O = ∅ and AF contains the
assertions {H1(x1), H2(x2)} in union to all the the assertions involving atomic roles
Pi,j for i ∈ [1, 2] and j ∈ [1, 3], which, for ease of exposition, are visualised as the
extension of each atomic role Pi,j in Figure 4.2.

P1,1 P1,2 P1,3 P2,1 P2,2 P2,3
A1,1, 0 A1,1, 0 A1,1, 1 A2,1, 0 A2,1, 0 A2,1, 0
A1,2, 0 A1,2, 1 A1,2, 0 A2,2, 0 A2,2, 0 A2,2, 1
A1,3, 0 A1,3, 1 A1,3, 1 A2,3, 0 A2,3, 1 A2,3, 0
A1,4, 1 A1,4, 0 A1,4, 0 A2,4, 0 A2,4, 1 A2,4, 1
A1,5, 1 A1,5, 0 A1,5, 1 A2,5, 1 A2,5, 0 A2,5, 0
A1,6, 1 A1,6, 1 A1,6, 0 A2,6, 1 A2,6, 0 A2,6, 1
A1,7, 1 A1,7, 1 A1,7, 1 A2,7, 1 A2,7, 1 A2,7, 0

Figure 4.2. Extension of atomic roles Pi,j . Each row Ai,k, vk,j (with vk,j being either 0 or
1) of an atomic role Pi,j has to be read as the ABox assertion Pi,j(Ai,k, vk,j)

Finally, the query QF produced by the reduction contains the following disjuncts:

q1 = {(x1, x2) |H1(x1) ∧H2(x2) ∧ x1 6= 0 ∧ x1 6= 1}∪
q2 = {(x1, x2) |H1(x1) ∧H2(x2) ∧ x2 6= 0 ∧ x2 6= 1}∪
qF = {(x1, x2) |∃a1, a2, y1, y2.

P1,1(a1, y1) ∧ P1,2(a1, y2) ∧ P1,3(a1, x1) ∧ P2,1(a2, y1) ∧ P2,2(a2, y2)∧
P2,3(a2, x2) ∧H1(x1) ∧H2(x2)}.

Informally, any model I of KF for which both xIi 6= 0I and xIi 6= 1I hold for some
i ∈ [1,m] is such that the tuple (xI1 , . . . , xIm) ∈ qIi , and therefore (xI1 , . . . , xIm) ∈ QIF .
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Conversely, if this is not the case, then we can see the model I as a truth assignment
to the universally quantified variables of F . Consider now the query qF . For each
i ∈ [1,m], because of the presence of atom Hi(xi) and the ABox assertion H(xi),
the distinguished variable xi of qF is either 1I or 0I . Then, given a truth assignment
to the universally quantified variables of F , the query qF asks whether there exists
a truth assignment to the existentially quantified variables that satisfies formula F .

More formally, let F be any instance of the of the ∀∃-CNF problem. We now
prove that (x1, . . . , xm) ∈ certAFQF ,O if and only if F is true.

“If part:” Suppose that F is true, that is, for every possible truth assignment
to the variables in X, there exists a truth assignment to the variables in Y that
satisfies F . Consider any possible model I for KF . If both xIi 6= 0I and xIi 6= 1I for
some i ∈ [1,m], then it is straightforward to verify that (xI1 , . . . , xIm) ∈ qIi . Then,
let individual xi be such that either xIi = 0I or xIi = 1I , for each i ∈ [1,m]. We can
see such interpretation I as a truth assignment to the variables in X. Specifically,
let VX = {vx1 , . . . , vxm} be the truth values given by I to the variables in X, i.e.,
vxi = 1 if xIi = 1I , otherwise (i.e., xIi = 0I) vxi = 0.

Consider the partial function h from variables of qF to I such that h(xi) = xIi .
Since for every truth assignment to the variables in X there exists a truth assignment
to the variables in Y that satisfies F , let VY = {vy1 , . . . , vyn} be such truth assignment
for the variables in Y . For each i ∈ [1, p], consider the following extension of h:
h(yi) = vIyi and h(ai) = AIi,k for an arbitrary k ∈ [1, 7] satisfying (i) (AIi,k, h(zi,1)) ∈
P Ii,1, (ii) (AIi,k, h(zi,2)) ∈ P Ii,2, and (iii) (AIi,k, h(zi,3)) ∈ P Ii,3. Observe that, since by
assumption clause ci is satisfied under the truth assignment V = VX ∪ VY , at least
one individual Ai,k for some k ∈ [1, 7] must exists by construction.

But then, it can be easily verified that h is a homomorphism from qF to I
such that h(~x) = (xI1 , . . . , xIm), thus implying (xI1 , . . . , xIm) ∈ qIF . It follows that,
for each possible model I for KF , either (xI1 , . . . , xIm) ∈ qIi for some i ∈ [1,m], or
(xI1 , . . . , xIm) ∈ qIF . Thus, (x1, . . . , xm) ∈ certAFQF ,O, as required.

“Only-if part:” Suppose, for the sake of contradiction, that F is not true, that
is, there exists a truth assignment to the variables in X such that every possible
truth assignment to the variables in Y does not satisfy F . Let VX = {v1, . . . , vm}
be the assignment to the variables in X (vi is either 1 or 0, for each i ∈ [1,m])
that makes F not satisfiable. Consider the model I of KF such that (i) ∆I =
{0, 1} ∪ {Ai,k | i ∈ [1, p] and k ∈ [1, 7]}, (ii) xIi = vi for each i ∈ [1,m], 0I = 0,
1I = 1, and AIi,k = Ai,k for each i ∈ [1, p] and for each k ∈ [1, 7], and (iii) P Ii,j = P IAi,j
for each i ∈ [1, p] and for each j ∈ [1, 3], and HIi = {vi} for each i ∈ [1,m].

For each i ∈ [1,m], since individual xi is such that either xIi = 1I or xIi = 0I , we
have qIi = ∅. Moreover, due to the fact that, for each i ∈ [1,m], we have HIi = {vi}
and Hi(xi) is an atom of qF , every possible homomorphism h from qF to I must
be such that h(xi) = vi for each i ∈ [1,m]. Since, however, by assumption F is not
satisfiable when replacing variables xis with truth values vis, by construction of qF
and I we easily conclude that qIF = ∅. It follows that, for the model I of KF , we
have (xI1 , . . . , xIm) 6∈ QIF . Thus, (x1, . . . , xm) 6∈ certAFQF ,O, as required.

Finally, observe that the same proof works even for boolean UCQ6=,bs. To see
this, it is sufficient to consider the boolean UCQ 6=,b Q′F similar to QF , but where
each disjunct has an empty target list and the distinguished variable xi is replaced
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with the corresponding individual xi of the ABox AF , for each i ∈ [1,m].

Corollary 4.2. Answering UCQ6=,bs over DL-LiteR knowledge bases is in AC0 in
data complexity and Πp

2-complete in combined complexity.

By looking at the proof of the above theorem, one can see that Πp
2-hardness holds

already for UCQ6=,bs having at most two inequalities per disjunct and for knowledge
bases having an empty ontology (i.e., an ontology without assertions).

4.4 Answering UCQ6=s over DL-Lite¬RDFS knowledge
bases

In this section, we study the problem of answering UCQ6=s over satisfiable
DL-Lite¬RDFS knowledge bases. Theorem 4.2 tells us that the certain answers to a
CQ 6=,b q over a DL-Lite¬RDFS knowledge base K are the tuples of individuals ~c such
that ~c ∈ δ(q)IK . The next example shows that the problem drastically changes as
soon as we consider general CQ6=s.

Example 4.11. Consider the DL-Lite¬RDFS knowledge base K = 〈O,A〉, where
O = {A1 v ¬A2} and A = {A1(a1), A2(a2), P (b, c1), P (b, c2), P (c1, a1), P (c2, a2)}.
For the boolean CQ6= q = {() | ∃y1, y2, y3.P (y1, y2) ∧ P (y1, y3) ∧ y2 6= y3}, we
have that IK 6|= δ(q) because ineq(c1, c2) 6∈ IK (regarding the ineq predicate, only
ineq(a1, a2) and ineq(a2, a1) are in IK). Notice, however, that K |= q. Indeed, in each
model M with cM1 6= cM2 , we have M |= q with the bindings y1, y2, y3 → b, c1, c2,
whereas, in each model M with cM1 = cM2 , we have M |= q with the bindings
y1, y2, y3 → c1, a1, a2.

The above example provides a hint on how to design an algorithm for our problem.
Intuitively, given a DL-Lite¬RDFS knowledge base K = 〈O,A〉 and a boolean UCQ6=
q over O, we can check whether K 6|= q by simply guessing an equivalence relation e
on the set I of individuals occurring in A for which K 6|=e q.

Proposition 4.7. Let K = 〈O,A〉 be a DL-Lite¬RDFS knowledge base and let q be a
boolean UCQ 6= over O. We have that K 6|= q if and only if there exists an equivalence
relation e on a set I of individuals occurring in A such that K 6|=e q.

Proof. “If part:” Same as in the proof of the “If part” of Proposition 4.4.
“Only-if part:” Suppose that K 6|= q. It follows that there exists a modelM

of K such that M 6|= q. Consider the equivalence relation e on the set I of all
individuals of A such that, for any pair c1, c2 of individuals of A, (c1, c2) ∈ e if and
only if cM1 = cM2 . By definition, we have that M is an e-model of K for which
M 6|= q. Thus, e is the equivalence relation such that K 6|=e q, as required.

From the above result, we can derive upper bounds in both data and combined
complexity for the problem of answering UCQ 6=s over DL-Lite¬RDFS knowledge bases.

Theorem 4.9. Answering UCQ6=s over DL-Lite¬RDFS ontologies is in coNP in data
complexity and in Πp

2 in combined complexity.
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Proof. For a DL-Lite¬RDFS knowledge base K = 〈O,A〉 and a UCQ6= q over O, we
now show how to decide K 6|= q in NP in data complexity and in Σp

2 in combined
complexity, thus proving the claim. Due to Proposition 4.7, K 6|= q can be decided
as follows:

1. Guess an equivalence relation e on the set I of all individuals of A;

2. If K 6|=e q, return true (i.e., K 6|= q), otherwise return false (i.e., K |= q),

where, due to the fact that we are considering DL-Lite¬RDFS knowledge base (and
thus, IK is finite and does not introduce any variable), this last step can be done
by simply computing IK and, after replacing each occurrence of every individual c
in IK and in q with a new object denoting its equivalence class in e, we can check
whether the resulting IK and q are such that (i) IK 6|= δ(q) and (ii) there is no
object o for which ineq(o, o) ∈ IK (i.e., K is e-satisfiable).

So, we easily derive a nondeterministic algorithm deciding K 6|= q that first
requires an NP step in the size of A in order to guess an equivalence relation e.
Then, it requires a polynomial time step for computing IK, replacing all individuals
c in IK and q with a new object denoting its equivalence class in e, and check
whether there is no object o for which ineq(o, o) ∈ IK. Finally, with a single call to
an coNP-oracle, the algorithm checks whether the resulting IK and q are such that
IK 6|= δ(q). Observe that this last check can be done in AC0 in the size of A.

We now provide matching lower bounds for both data and combined complexity,
showing that they hold already for the case of CQ 6=s. We start with data complexity.

Theorem 4.10. Answering CQ6=s over DL-Lite¬RDFS knowledge bases is coNP-hard
in data complexity.

Proof. The proof is by a LogSpace reduction from the data complexity version of
the problem of answering CQ 6=s over a data exchange setting [Fagin et al., 2005a],
known to be coNP-hard (in fact, coNP-complete) already for boolean CQ2,6=s [Madry,
2005]. Since the target schema T of the problem considered in [Madry, 2005] uses
only binary predicates and has no target constraints (i.e., T has no assertions),
and since it uses a set of LAV source-to-target dependencies, such problem can be
reformulated in the OBDM scenario as follows: there exists an OBDM specification
Σ = 〈T,S,M〉 with T = ∅ and M being a LAV mapping, and a boolean CQ2, 6=

q over T such that, given an S-database D, checking whether certDq,Σ is true (i.e.,
certDq,Σ = {()}) when the UNA is adopted is in general a coNP-hard problem.

Let D be an S-database. We now construct a DL-Lite¬RDFS knowledge base
KD = 〈O,AD〉, where O = {P1 v ¬P2} with the alphabet being composed of all the
binary predicates (equivalently, atomic roles) of the target schema T plus the two
fresh atomic roles P1 and P2. Note that the above CQ2, 6= q is also a query over O.

In order to construct AD, we considerM(D), i.e., the chase of D with respect
to M. Specifically, from M(D) we obtain a set of ABox assertions by replacing
each variable v ∈ Var occurring inM(D) with a different fresh individual denoted
by cv. Furthermore, for each pair of constants c1, c2 occurring in D with c1 6= c2,
AD contains the ABox assertions P1(αc1,c2 , c1) and P2(αc1,c2 , c2), where αc1,c2 is a
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fresh individual. Intuitively, such assertions simulates the UNA but only on the
individuals that were in D.

Observe that both O and q do not depend on D, which is the only input of the
(data complexity version of the) problem we are reducing from. Finally, sinceM is
fixed, the ABox AD can be constructed in LogSpace from D [Arenas et al., 2010].

Let D be any S-database. We now prove that KD |= q (when the UNA is not
adopted) if and only if certDq,Σ = {()} (when the UNA is adopted).

“If part:” Suppose that KD 6|= q, i.e., there is a model I of KD for which I 6|= q.
By construction, however, since I is a model of KD, we have cI1 6= cI2 for each pair of
individuals c1, c2 occurring in D with c1 6= c2. But then, from I it is straightforward
to obtain a model I ′ ∈ ModD(Σ) satisfying the UNA for which I ′ 6|= q. Thus,
certDq,Σ = ∅, as required.

“Only-if part:” Suppose that certDq,Σ = ∅ when the UNA is adopted. It follows
that there is a model I ′ = 〈∆I′ , ·I′〉 of Σ relative to D that satisfies the UNA for
which I ′ 6|= q. By [Fagin et al., 2005a, Theorem 3.3], there exists a function ψ

from dom(CM(D)
O ) to ∆I′ satisfying conditions 1 and 2 of Proposition 4.1 such that

ψ(c) = cI
′ for each constant c ∈ dom(D).

Consider the interpretation I = 〈∆I , ·I〉 for KD, where ∆I = ∆I′ ∪ {αc1,c2 |
c1, c2 ∈ dom(D) ∧ c1 6= c2}, and ·I extends ·I′ by (i) assigning to each individual cv
of AD that replace a variable v inM(D) the image of v under ψ, i.e., cIv = ψ(v), (ii)
assigning αIc1,c2 = αc1,c2 to each introduced individual αc1,c2 in AD, and (iii) for both
i = 1 and i = 2, assigning to atomic role Pi the set P Ii = {(α, c) | Pi(α, c) ∈ AD}.

Since I ′ ∈ ModD(Σ) and satisfies the UNA (i.e., cI1 6= cI2 for each pair of
individuals c1, c2 occurring in D with c1 6= c2) by assumption, we derive that I is a
model of KD. Furthermore, since I ′ 6|= q, we have that I 6|= q as well. It follows that
KD 6|= q, as required.

Finally, we point out that the same result holds even for the problem of answering
UCQ 6=s over DL-LiteRDFS knowledge bases (in particular, even when ontologies have
no assertions). In particular, observe that it is sufficient to apply the following
changes to the above reduction: (i) ontology O′ has the same alphabet of O but has
no assertions, i.e., O′ = ∅, and (ii) the query issued over the ontology O′ is the fixed
UCQ q′ = q ∪ qP , where q is the CQ2, 6= as in the above reduction and qP is the CQ
{() | ∃y1, y2.P1(y1, y2) ∧ P2(y1, y2)}, which intuitively asks whether two constants
c1, c2 occurring in D with c1 6= c2 are interpreted as the same domain object.

Let D be any S-database. Using similar arguments as the ones given above,
it is easy to see that K′D |= q′ (when the UNA is not adopted) if and only if
certDq,Σ = {()} (when the UNA is adopted), where K′D is the DL-LiteRDFS knowledge
base K′D = 〈O′,AD〉.

The proof of the above theorem has two interesting implications: (i) coNP-
hardness in data complexity holds even for CQ2,6=s; (ii) Answering UCQ2,6=s (in
particular, the union of a CQ2, 6= and of a CQ) over knowledge bases with empty
ontologies is coNP-hard in data complexity, too.

Interestingly, implication (ii) corrects an erroneous statement in [Rosati, 2007,
Theorem 11], where it is claimed that answering UCQ 6=s over DL-LiteRDFS knowledge
bases is in LogSpace in data complexity regardless of whether the UNA is adopted
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or not. It turns out that, unless LogSpace = NP, this latter statement is true only
when the UNA is adopted (cf. beginning of this chapter).

We now provide the matching lower bound for combined complexity.

Theorem 4.11. Answering CQ6=s over DL-Lite¬RDFS knowledge bases is Πp
2-hard in

combined complexity.

Proof. The proof is by a LogSpace reduction from the containment problem for
conjunctive queries with inequalities, known to be Πp

2-hard (in fact, Πp
2-complete)

even when restricted to boolean CQ6=s over a schema with all predicates having arity
at most two [Kolaitis et al., 1998]. The containment problem for conjunctive queries
with inequalities is the problem of deciding, given two CQ6=s q1, q2 over the same
schema S, whether q1 v q2, i.e., whether qD1 ⊆ qD2 for each S-database D.

Let q1, q2 be two boolean CQ6=s over the same database schema S with all the
predicates of S having arity at most 2. We define a DL-Lite¬RDFS knowledge base
Kq1 = 〈O,Aq1〉 where O = {P1 v ¬P2} and the alphabet of O is composed of all
the binary predicates (equivalently, atomic roles) and unary predicates (equivalently,
atomic concepts) of the schema S, plus the two fresh atomic roles P1 and P2.

To construct Aq1 , we consider the freezing of q1, i.e., the set of facts obtained
from the body of q1 by replacing each variable in v with a fresh individual cv.

Specifically, Aq1 is such that (i) every non-inequality atom occurring in the
body of q1 becomes an ABox assertion of A (after replacing variables v with its
corresponding individual cv); (ii) for each inequality atom z1 6= z2 occurring in
q1, we have the ABox assertions P1(αz1,z2 , z

′
1) and P2(αz1,z2 , z

′
2), where αz1,z2 is a

fresh individual, and for both i = 1 and i = 2, if zi is a variable v, then z′i = cv,
otherwise (i.e., zi is a constant), z′i = zi; and finally, (iii) for each pair c1, c2 of
constants occurring in q1 with c1 6= c2, we have the ABox assertions P1(αc1,c2 , c1)
and P2(αc1,c2 , c2), where αz1,z2 is a fresh individual. Intuitively, such assertions
simulates the UNA on the individuals that were in q1 and on the terms t1 6= t2 that
were inequality atoms in (the freezing of) q1.

We now prove that q1 v q2 if and only if Kq1 |= q2.
“If part:” Suppose that q1 6v q2, i.e., there exists an S-database D for which

D |= q1 and D 6|= q2. Consider the homomorphism h from q1 to D (at least
one exists because D |= q1), and let I be an interpretation for Kq1 such that
(i) ∆I = dom(D) ∪ {α | for each introduced individual α}; (ii) cI = c for each
constant c occurring in q1, and αI = α for each introduced individual α; (iii)
cIv = h(v) for each variable v occurring in q1; (iv) for both i = 1 and i = 2,
P Ii = {(α, c) | Pi(α, c) ∈ Aq1}; and (v) the extension in I of each atomic role and
atomic concept of O corresponding to a relation in S is the same as the corresponding
relation in D.

Since h(z1) 6= h(z2) for each inequality atom z1 6= z2 of q1, we have that I is a
model of Kq1 by construction. Moreover, since D 6|= q2, we derive I 6|= q2 as well.
But then, I is a model of Kq1 for which I 6|= q2. It follows that Kq1 6|= q2, as required.

“Only-if part:” Suppose that Kq1 6|= q2, i.e., there exists a model I of Kq1 for
which I 6|= q2. Since I is a model of Kq1 , by construction we have that z′1

I 6= z′2
I for

each inequality atom z1 6= z2 occurring in q1, where for both i = 1 and i = 2 if zi is
a variable v, then z′i = cv, otherwise (i.e., zi is a constant), z′i = zi.
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Consider now the S-database D similar to I where each unary (resp., binary)
predicate in D has the same extension of the corresponding atomic concept (resp.,
role) in I, but, for every constant c of q1, every occurrence of the object cI is replaced
with the constant c in D (observe that, since I is a model of Kq1 , cI1 6= cI2 for each
pair c1, c2 of constants occurring in q1 with c1 6= c2). Obviously, since I 6|= q2, we
have that D 6|= q2 as well.

Furthermore, let h be a function from variables and constants of q1 to constants
of D such that (i) h(c) = c for each constant c of q1; and (ii) h(v) = cIv for each
variable v of q1. It is straightforward to verify that h is a homomorphism from q1 to
D. But then, the S-database D is such that D |= q1 and D 6|= q2. It follows that
q1 6v q2, as required.

Corollary 4.3. Answering UCQ 6=s over DL-Lite¬RDFS knowledge bases is coNP-
complete in data complexity and Πp

2-complete in combined complexity.

By looking at the proof of the above theorem, one can see that the output of the
reduction produces a CQ 6= whose number of inequalities is equal to the number of
inequalities of the input query q2, and therefore is not fixed a priori.

To the best of our knowledge, it is not known whether checking q1 v q2 is Πp
2-hard

even if q2 uses a fixed number of inequalities. More generally, it is thus natural to
ask which is the minimum number of inequalities in CQ 6=s that makes the problem
Πp

2-hard in combined complexity. Similarly to the case of the coNP-hardness result
in data complexity, we conjecture that such number is two.

Conjecture 4.1. Answering CQ2, 6=s over DL-Lite¬RDFS knowledge bases is Πp
2-hard

in combined complexity.

Even though we have not been able to prove this conjecture, interestingly, the
proof of Theorem 4.8 shows that Πp

2-hardness holds for UCQ2,6=,bs (i.e., UCQ2,6=s
with bounded inequalities) over knowledge bases with empty ontologies. Notice,
however, that the illustrated UCQ2, 6=,b does not have a fixed number of disjuncts.

Actually, with a slight adaptation of such proof, we now prove that the same
result holds even for UCQ2, 6=s that are the union of a fixed (but not bounded) CQ2, 6=

and a CQ without inequalities.

Theorem 4.12. Answering UCQ2, 6=s over knowledge bases with empty ontologies is
Πp

2-hard in data complexity.

Proof. Consider the following changes to the reduction illustrated in the proof of
Theorem 4.8:

• The ontology O contains the additional atomic concept B in its alphabet;

• For each i ∈ [1,m], the ABox AF additionally contains the ABox assertion
B(xi) (recall that xi is the individual corresponding to the universally quantified
variable xi);

• The boolean UCQ2, 6= QF is the union of a fixed CQ2,6= q and of qF , where:

– q = {() | ∃y.B(y) ∧ y 6= 0 ∧ y 6= 1};
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– qF is the boolean version of the CQ defined in the reduction of the proof
of Theorem 4.8:

{() |∃a1, . . . , ap, y1, . . . , yn.∧
i∈[1,p]

(Pi,1(ai, zi,1) ∧ Pi,2(ai, zi,2) ∧ Pi,3(ai, zi,3)) ∧
∧

i∈[1,m]
(Hi(xi))}.

Intuitively, through the possibility of involving existential variables in inequality
atoms, the CQ2, 6= q encases the behaviour of the UCQ 6=,b q1 ∪ . . . ∪ qm that asks
whether some individual xi (corresponding to the universally quantified variable xi
of formula F ) in a possible interpretation I is such that xIi 6= 0I and xIi 6= 1I .

Let F be any instance of the of the ∀∃-CNF problem. Using analogous arguments
to the ones provided in the proof of Theorem 4.8, it is easy to see that F is true
if and only if KF |= QF , where KF = 〈O,AF 〉 and QF are the knowledge base and
the query, respectively, obtained by modifying the reduction illustrated in the proof
of Theorem 4.8 as explained above.

Observe that the hardness results of Theorems 4.10 and 4.11 do not hold if
we replace DL-Lite¬RDFS with DL-LiteRDFS. This is due to the inability of the
DL-LiteRDFS knowledge base language to express inconsistencies. Specifically, given
a CQ6= q over a DL-LiteRDFS knowledge base K = 〈O,A〉, either q contains an
inequality atom, and therefore K 6|= q trivially holds, or q is a CQ. This clearly proves
that answering CQ 6=s over DL-LiteRDFS knowledge bases has the same computational
complexity of answering CQs over the same language (cf. beginning of this chapter).

Theorem 4.13. Answering CQ 6=s over DL-LiteRDFS knowledge bases is in AC0 in
data complexity and NP-complete in combined complexity.

As already noticed, if we move to consider UCQ6=s over DL-LiteRDFS knowledge
bases, the adaptation illustrated in the reduction of the proof of Theorem 4.10 and
Theorem 4.12 show a jump from AC0 to coNP for data complexity and from NP to
Πp

2 in combined complexity, respectively.

Theorem 4.14. Answering UCQ 6=s over DL-LiteRDFS knowledge bases is coNP-
complete in data complexity and Πp

2-complete in combined complexity. Both the
hardness results already hold for UCQ2,6=s over knowledge bases with empty ontologies.

To fully complete the picture of the problem of answering UCQ 6=s over
DL-Lite¬RDFS knowledge bases, it remains to study the case of UCQ1,6=s, i.e., UCQs
having at most one inequality per disjunct. We do so in the next section.

4.5 Answering UCQ1,6=s over DL-Lite¬RDFS knowledge
bases

In what follows, without loss of generality, we assume that each UCQ1,6= q is written
as q = q1 ∪ q2, where q2 is a UCQ with no inequalities and q1 is a UCQ1,6= having
exactly one inequality per disjunct.

In principle, for answering UCQ1,6=s over DL-Lite¬RDFS knowledge bases, it is
possible to use the algorithm provided in [Fagin et al., 2005a, Theorem 5.12] in the
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context of data exchange. Notice, however, that the running time of this algorithm
would be polynomial in the size of the ABox but exponential in the size of the query.
On the contrary, by elaborating on the idea of [Fagin et al., 2005a, Theorem 5.12],
we are able to prove that the problem is in PTime in data complexity and in NP in
combined complexity. We start with the following definition and algorithm.

Definition 4.3. Let K = 〈O,A〉 be a DL-Lite¬RDFS knowledge base, q be a boolean
UCQ1, 6= over O, and F = [f1, . . . , fm] be a list of functions from the set of variables
and individuals occurring in q to the set of individuals occurring in A. We say that
F is a good sequence with respect to K and q if CheckGood(K, q, F ) returns true.

Algorithm 4.3 CheckGood
Input:

DL-Lite¬RDFS knowledge base K = 〈O,A〉;
boolean UCQ1, 6= q = q1 ∪ q2 over O, where q1 is a UCQ1,6= having exactly one
inequality per disjunct and q2 is a UCQ;
list of functions F = [f1, . . . , fm]

Output:
true or false

1: Compute D := IK
2: for i← 1 to m− 1 do
3: if fi is a homomorphism from some disjunct of q1 to D then
4: Let z1 6= z2 be the inequality atom of such disjunct
5: if ineq(fi(z1), fi(z2)) ∈ D then
6: return true
7: else
8: replace each occurrence of individual fi(z1) in D and in q with fi(z2)
9: end if

10: else
11: return false
12: end if
13: end for
14: if fm is a homomorphism from some disjunct of q2 to D then
15: return true
16: else
17: return false
18: end if

Roughly speaking, starting from a set of facts D := IK over O (notice that
IK does not introduce variables), in each step i from 1 to m− 1 such that fi is a
homomorphism from a disjunct q′ of q1 to D, the algorithm CheckGood replaces
everywhere the individual fi(z1) with the individual fi(z2), to consider the models
in which fi(z1) = fi(z2), where z1 6= z2 is the only inequality atom occurring in the
body of q′. Indeed, since fi is a homomorphism from q′ to D, q1 is true in those
models where fi(z1) 6= fi(z2).
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Afterwards, the algorithm sanctions that F is a good sequence if and only if
either it is not possible to equate two individuals without contradicting an ineq fact
of D, or the resulting D and q2 are such that D |= q2.

Using the above notion of good sequence, it is possible to derive the following
characterisation (nA denotes the number of individuals occurring in the ABox A).

Proposition 4.8. Let K = 〈O,A〉 be a DL-Lite¬RDFS knowledge base, and let q be
a boolean UCQ1, 6= over O. We have that K |= q if and only if there exists a list
F = [f1, . . . , fm] of functions, with m ≤ nA, such that F is a good sequence with
respect to K and q.

Proof. “If part:” Suppose F = [f1, . . . , fm] (with m ≤ nA) is a good sequence
with respect to K and q, i.e., CheckGood(K, q, F ) returns true. It follows that, after
possibly applying l ≤ m − 1 equalities between individuals on D and q (where D
starts from IK), either l ≤ m− 2 and fl+1 is a homomorphism from a disjunct q′
of q1 to the resulting set of facts D such that ineq(fl+1(z1), fl+1(z2)) ∈ D (where
z1 6= z2 is the only inequality atom in the body of q′), or l = m − 1 and fm is a
homomorphism from a disjunct of q2 to D.

In both cases, consider each homomorphism fi from some of the disjuncts of q1
to D, for i = [1, l]. It is easy to see that all models I of K in which fi(z1)I 6= fi(z2)I
(where z1 6= z2 is the inequality atom of the disjunct q′ of q1 for which fi is a
homomorphism to D) is such that I |= q1, and therefore I |= q. So, at each iteration
the algorithm equates fi(z1) and fi(z2) in D to consider all the other possible models
in which fi(z1)I = fi(z2)I .

If fl+1 is a homomorphism from a disjunct q′ of q1 to the resulting set of facts D
such that ineq(fl+1(z1), fl+1(z2)) ∈ D (where z1 6= z2 is the only inequality atom in
the body of q′), due to Proposition 4.1, we derive that there is no models I in which
fi(z1)I = fi(z2)I . It trivially follows that K |= q1, and therefore O |= q.

Finally, in the case that fm is a homomorphism from a disjunct of q2 to the
resulting set of facts D, due to the above considerations, it can be easily proven that
each model I of K is such that either I |= q1, or I |= q2. Thus, K |= q, as required.

“Only-if part:” Suppose there is no such good sequence F with respect to K
and q, and consider the set of facts obtained in the following way starting from
D := IK: for each possible homomorphism h from a disjunct of q1 to D, replace
each occurrence of h(z1) in D and in q with h(z2), where z1 6= z2 is the inequality
atom of the disjunct of q1 for which h is a homomorphism to D.

Since there are nA individuals in the ABox A, and so also in D, there can be at
most nA − 1 of such homomorphisms. Indeed, after applying nA − 1 replacing as
described above, the resulting set of facts D would contain only one individual.

For the resulting set of facts D and query q observe that (i) it is never the case
that ineq(h(z1), h(z2)) ∈ D for some homomorphism h; and (ii) there is no disjunct
of q2 for which there is a homomorphism to D. In proof, if either point (i) or point
(ii) is not true, then we would easily derive a contradiction on the fact that there
exists no good sequence F with respect to K and q.

But then, by construction D is such that D 6|= q1 and D 6|= q2, and therefore
D 6|= q. From the resulting D, moreover, it is immediate to construct a model ID of
K such that ID 6|= q. It follows that K 6|= q, as required.
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We are now ready to establish upper bound results for the problem of answering
UCQ1, 6=s over DL-Lite¬RDFS knowledge bases.

Theorem 4.15. Answering UCQ1, 6=s over DL-Lite¬RDFS knowledge bases is in PTime
in data complexity and in NP (and therefore NP-complete) in combined complexity.

Proof. Due to Proposition 4.8, checking whether K |= q for a DL-Lite¬RDFS knowledge
base K = 〈O,A〉 and UCQ1, 6= q can be done as follows:

• Guess a list F = [f1, . . . , fm] of m ≤ nA functions from the set of variables
and individuals occurring in q to the set of individuals occurring in A;

• Check whether F is a good sequence with respect to K and q,

where checking whether F is a good sequence with respect to K and q can be done
by means of the above described CheckGood algorithm.

So, we easily derive a nondeterministic algorithm deciding K |= q that first
requires an NP step in order to guess the list F = [f1, . . . , fm] with m ≤ nA of
functions. This can be done in polynomial time in the size of A. Then, by exploiting
the CheckGood algorithm, we check whether F is a good sequence with respect to
K and q using: (i) a polynomial time step in the size of K for computing D := IK;
(ii) for each i ∈ [1,m − 1], a polynomial time step for checking whether fi is a
homomorphism from a disjunct of q1 to D, ineq(fi(z1), fi(z2)) 6∈ D (where z1 6= z2
is the inequality atom of such a disjunct), and for replacing each occurrence of fi(z1)
with fi(z2); finally, (iii) another polynomial time step for checking whether fm is a
homomorphism from some disjunct of the UCQ q2 to the resulting D.

While NP-hardness in combined complexity trivially follows from CQ evaluation
over relational databases, we now provide a matching lower bound for data complexity,
showing that it holds already for the case of CQ1,6=s.

Theorem 4.16. Answering CQ1, 6=s over DL-Lite¬RDFS knowledge bases is PTime-
hard in data complexity.

Proof. The proof is by a LogSpace reduction from the entailment problem for
HORN-3CNF, known to be PTime-complete [Börger et al., 1997]. Given a set
of formulas F = {f1, . . . , fm} on a set of propositional variables A = {a1, . . . , an}
where fi is either of the form fi = (aj ∧ ak → ah) or of the form fi = (> → ah), for
each i = [1, n], and given a propositional variable aw ∈ A, the entailment problem
for HORN-3CNF is the problem of deciding whether F |= aw.

LetH, P1, and P2 be three atomic roles, and letB1 andB2 be two atomic concepts.
We define the following fixed DL-Lite¬RDFS ontology O and boolean CQ1,6= q over O
with O = {B1 v ¬B2} and q = {() | ∃y1, y2.H(y1, y2)∧P1(y2, t)∧P2(y2, t)∧ y1 6= t},
where t is an individual.

Given a HORN-3CNF formula F , we construct an ABox AF as follows: (i) for
each formula fi ∈ F of the form fi = (aj ∧ ak → ah), we include the ABox assertions
H(ah, fi), P1(fi, aj), and P2(fi, ak), where ah, fi, aj , and ak are individuals of A; (ii)
for each formula fi ∈ F of the form fi = (> → ah), we include the ABox assertions
H(ah, fi), P1(fi, t), and P2(fi, t), where ah, fi and t are individuals of A; and, (iii)
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we include the ABox assertions B1(aw) and B2(t), stating that individuals aw and t
have to be interpreted as different elements in each possible model of KF = 〈O,AF 〉.

Observe that O and q do not depend on the inputs of the entailment problem
for HORN-3CNF, while AF can be constructed in LogSpace from them.

We now prove that KF |= q if and only if F |= aw, where KF is the DL-Lite¬RDFS
knowledge base KF = 〈O,AF 〉.

“If part:” Suppose that F |= aw. Then, it is possible to derive aw using the
following inference rules:

• F |= ah for each formula of the form (> → ah) occurring in F ;

• if F |= aj , F |= ak, and (aj ∧ ak → ah) is a formula in F , then F |= ah.

For each propositional variable ah ∈ A such that F |= ah we now show, by
induction on the length of the derivation of ah from F , that aIh = tI in each
interpretation I satisfying the ABox assertions in AF and such that I 6|= q.

Base case (l=0): Let fi ∈ F be a formula of the form fi = (> → ah). Then, in
the ABox AF there are the assertions H(ah, fi), P1(fi, t), and P2(fi, t). It is easy to
see that every interpretation I satisfying such assertions is such that either I |= q, or
aIh = tI . It follows that, for each propositional variable ah such that (> → ah) ∈ F
and for each interpretation I satisfying the ABox assertions in AF and such that
I 6|= q, we have aIh = tI , as required.

Inductive step: Let fi ∈ F be a formula of the form fi = (aj ∧ ak → ah), where
both propositional variables aj and ak are derived from F at length λ ≤ l − 1.
By the inductive hypothesis, we have that aIj = aIk = tI in each interpretation I
satisfying the ABox assertions in AF and such that I 6|= q. Since, however, H(ah, fi),
P1(fi, aj), and P2(fi, ak) are assertions occurring in AF , for such interpretations I
we have (aIh, fIi ) ∈ HI , (fIi , aIj = tI) ∈ P I1 , and (fIi , aIk = tI) ∈ P I2 . Thus, for each
propositional variable ah derived at length l and for each interpretation I satisfying
the ABox assertions in AF and such that I 6|= q, we derive that aIh = tI , as required.

Finally, due to the fact that F |= aw by assumption, we have that aIw = tI in
each interpretation I satisfying the ABox assertions in AF and such that I 6|= q.
But then, since both B1(aw) and B2(t) are assertions in AF , those interpretations I
do not satisfy the ontology assertion B1 v ¬B2, and therefore they are not models of
KF . Therefore, every model I of KF is such that I |= q. Thus, KF |= q, as required.

“Only-if part:” Suppose that F 6|= aw. Let V ⊂ A be the set of propositional
variables ah ∈ A such that F |= ah. Consider the interpretation I = 〈∆I , ·I〉 with
∆I = {ah | ah ∈ A \ V } ∪ {fi | fi ∈ F} ∪ {t}, where (i) tI = t; (ii) fIi = f , for each
formula fi ∈ F ; (iii) aIh = tI = t, for each ah ∈ V ; (iv) aIh = ah, for each ah ∈ A \V ;
(v) HI = {(aIh, fi) | fi = (aj ∧ ak → ah) ∈ F} ∪ {(aIh, fi) | fi = (> → ah) ∈ F},
P I1 = {(fi, aIj ) | fi = (aj ∧ ak → ah) ∈ F} ∪ {(fi, t) | fi = (> → ah) ∈ F}, and
P I2 = {(fi, aIk) | fi = (aj ∧ ak → ah) ∈ F} ∪ {(fi, t) | fi = (> → ah) ∈ F}; and (vi)
BI1 = {aIw} and BI2 = {tI = t}.

It is straightforward to verify that I 6|= q. Moreover, since F 6|= aw, we have
aIw 6= tI = t, and therefore I is a model of K. It follows that KF 6|= q, as required.

Finally, observe that the same proof works even by removing the ontology
assertion B1 v ¬B2 (i.e., with an empty ontology O), but adding the fixed boolean
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disjunct {() | ∃y.B1(y) ∧B2(y)} to the query q, and therefore answering UCQ1,6=s
over DL-LiteRDFS ontologies is PTime-hard in data complexity, too.

Corollary 4.4. Answering UCQ1, 6=s over DL-Lite¬RDFS knowledge bases is PTime-
complete in data complexity and NP-complete in combined complexity.

Again, from the proof of the above theorem we can derive interesting observations:
(i) since the result holds even for ontologies having disjointness assertions only
between concepts, the theorem strengthens the PTime-hardness result of [Gutiérrez-
Basulto et al., 2015, Theorem 15] for the case of DL-Litecore knowledge bases when
the UNA is not adopted; (ii) answering UCQ1,6=s over DL-LiteRDFS knowledge bases
is PTime-hard in data complexity, too.

We conclude this section with an observation for DL-LiteRDFS knowledge bases.
If we move to consider UCQ1, 6=s rather than CQ 6=s, we only have a jump from AC0

to PTime for data complexity, while the combined complexity remains the same.

Theorem 4.17. Answering UCQ1, 6=s over DL-LiteRDFS knowledge bases is PTime-
complete in data complexity and NP-complete in combined complexity. Both the
hardness results already hold for knowledge bases with empty ontologies.

4.6 Containment of UCQ6=s in Relational Databases

The results presented in Sections 4.4 and 4.5 have some interesting implications in the
context of containment of UCQs with inequalities in relational databases [Klug, 1988;
van der Meyden, 1997; Kolaitis et al., 1998; Koutris et al., 2017].

The containment problem for UCQ6=s has been shown to be in Πp
2 and conjectured

to be Πp
2-complete in [Klug, 1988]. Such conjecture has been then confirmed to be

true in [van der Meyden, 1997]. Later on, [Kolaitis et al., 1998] has studied the
impact on the computational complexity of some syntactic and structural conditions
for such problem. Specifically, the problem of checking whether q′ v q remains
Πp

2-hard even when restricted to queries q′ and q such that all database predicates
have arity at most two and every database predicate occurs at most three times
in the body of q′. Finally, note that the problem of checking whether q′ v q is
coNP-complete in the size of q′, i.e., when the query q is assumed to be fixed.

To the best of our knowledge, however, it has never been investigated how the
number of inequality atoms affects the computational complexity of this problem.
We do so in the remaining of this section.

4.6.1 Lower Bounds

In order to derive some interesting lower bound results, we start by proving that the
problem of checking whether K |= q, for a DL-Lite¬RDFS knowledge base and boolean
UCQ 6= q over O, can be polynomially reduced to the problem of checking whether
q′K v q, where q′K is a CQ6=.

Proposition 4.9. Let K = 〈O,A〉 be a DL-Lite¬RDFS knowledge base, and let q be
a boolean UCQ 6= over O. The problem of checking whether K |= q is polynomially
reducible to the problem of checking whether q′K v q, where q′K is a boolean CQ 6=.
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Proof. Without loss of generality, we can assume that q contains no constants in
the bodies of its disjuncts. If this is not the case, then for each constant c occurring
in a disjunct q′ of q, we add the assertion Ac(c) to the ABox A, the atom Ac(yc)
in conjunction to the body of q′, and replace each occurrence of c in the body of q′
with yc, where Ac and yc are a fresh atomic concept and a fresh existential variable,
respectively. It is straightforward to verify that query entailment is preserved with
this polynomial time transformation.

Given a DL-Lite¬RDFS knowledge base K = 〈O,A〉, we construct a CQ 6= q′K by
means of the following polynomial time steps:

1. We compute IK;

2. We consider the set of atoms S obtained from IK in the following way: for
every individual c occurring in IK, we replace each occurrence of c in IK with
a fresh existential variable vc;

3. We replace each atom of the form ineq(vc1 , vc2) ∈ S with the inequality atom
vc1 6= vc2 ;

4. We set q′K := {() | ∃~y.Sq(~y)}, where Sq(~y) denotes the conjunction of all atoms
occurring in the resulting set of atoms S.

We now prove that q′K v q if and only if K |= q, thus showing the claim.
“If part:” Suppose that q′K 6v q. Since both q′K and q are queries over the schema

O, it follows that there is a set of facts D over O for which D 6|= q and D |= q′K. Since
D |= q′K, there is a homomorphism h from q′K to D (and therefore h(vc1) 6= h(vc2)
for each inequality atom vc1 6= vc2 occurring in the body of q′K). Consider the
interpretation I = 〈∆I , ·I〉 for K with (i) ∆I = dom(D), (ii) cI = h(vc), for each
constant c occurring in A, and finally (iii) the extension of each atomic atomic
concept and atomic role is the same as in D.

Clearly, since D 6|= q and D |= q′K, we have I 6|= q and I |= q′K as well. Moreover,
since h(vc1) 6= h(vc2) for each inequality atom vc1 6= vc2 occurring in the body of q′K,
we have cI1 6= cI2 for each atom of the form ineq(c1, c2) ∈ IK. This, together with
the fact that I |= q′K, implies that I is a model of K. Thus, I is a model of K such
that I 6|= q. It follows that K 6|= q, as required.

“Only-if part:” Suppose that K 6|= q, i.e., there is a model I = 〈∆I , ·I〉 of K
for which I 6|= q. Consider the function h from the variables occurring in q′K to ∆I
such that h(vc) = cI , for each variable vc of q′K (note that vc is the variable that has
replaced the constant c of A in the step 2 of the reduction).

Since I is a model of K, it is straightforward to verify that h consists in a
homomorphism from q′K to I (and therefore h(vc1) 6= h(vc2) for each inequality atom
vc1 6= vc2 occurring in the body of q′K), and so I |= q′K. From the facts that I 6|= q
and I |= q′K, we can easily obtain a set of facts DI over O for which DI 6|= q and
DI |= q′K. It follows that q′K 6v q, as required.

Observe that (i) if K is a DL-LiteRDFS knowledge base rather than a DL-Lite¬RDFS
knowledge base, then the query q′K produced by the above illustrated reduction
contains no inequality atoms because IK contains no atoms with ineq as predicate,
and therefore q′K is a boolean CQ rather than a boolean CQ6=; and (ii) if K = 〈O,A〉
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is a DL-Lite¬RDFS knowledge base such that O contains no inclusion assertions,
then the above illustrated reduction is in fact a LogSpace reduction. From these
observations, we immediately derive the following two corollaries.

Corollary 4.5. Let K = 〈O,A〉 be a DL-LiteRDFS knowledge base, and let q be a
boolean UCQ6= over O. The problem of checking whether K |= q is polynomially
reducible to the problem of checking whether q′K v q, where q′K is a boolean CQ.

Corollary 4.6. Let K = 〈O,A〉 be a DL-Lite¬RDFS knowledge base such that O does
not have inclusion assertions, and let q be a boolean UCQ 6= over O. The problem of
checking whether K |= q is LogSpace reducible to the problem of checking whether
q′K v q, where q′K is a boolean CQ 6=.

Using results of Section 4.4, we are now ready to derive interesting lower bounds.
Let the containment problem for UCQ 6=s be the following decision problem: given
two UCQ6=s q′, q over the same schema S, check whether q′ v q.

Theorem 4.18. The containment problem for UCQ6=s is Πp
2-hard (and therefore

Πp
2-complete) already when ( i) both the input queries q′ and q are boolean and every

database predicate have arity at most two, ( ii) q′ is a CQ6= (respectively, CQ), and
( iii) q is a CQ 6= (respectively, UCQ2,6= which is the union of a fixed CQ2,6= and of a
CQ without inequalities).

Proof. By looking at the proof of Theorem 4.11 (respectively, Theorem 4.12),
one realises that checking whether K |= q for a given DL-Lite¬RDFS (respectively,
DL-LiteRDFS) knowledge base K = 〈O,A〉 and CQ 6= (respectively, UCQ2,6= which is
the union of a fixed CQ2, 6= and of a given CQ without inequalities) q is in general
Πp

2-hard. Since due to Proposition 4.9 (respectively, Corollary 4.5) this problem is
polynomially reducible to checking whether q′K v q, where q′K is a CQ6= (respectively,
CQ), then the claim trivially follows.

We also conjecture a stronger version of the above result, which turns out to be
valid as soon as Conjecture 4.1 is verified.

Conjecture 4.2. The containment problem for UCQ6=s is Πp
2-hard (and therefore

Πp
2-complete) already when ( i) both the input queries q′ and q are boolean and every

databases predicate have arity at most two, ( ii) q′ is a CQ6=, and ( iii) q is a CQ2,6=.

As for the complexity of the containment problem for UCQ6=s when the containing
query q is assumed to be fixed, we derive the following lower bounds.

Theorem 4.19. When the containing query q is assumed to be fixed, the containment
problem for UCQ 6=s is coNP-hard (and therefore coNP-complete) already when ( i)
both the input query q′ and the fixed query q are boolean and every database predicate
have arity at most two, ( ii) q′ is a CQ6= (respectively, CQ), and ( iii) q is a CQ2, 6=

(respectively, UCQ2, 6= which is the union of a CQ2, 6= and of a CQ without inequalities).

Proof. By looking at the proof of Theorem 4.10, one realises that there exists a
CQ2, 6= (respectively, UCQ2, 6= which is the union of a CQ2,6= and of a CQ without
inequalities) q such that checking whether K |= q for a given DL-Lite¬RDFS (respec-
tively, DL-LiteRDFS) knowledge base K = 〈O,A〉 is in general coNP-hard. Since
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due to Proposition 4.9 (respectively, Corollary 4.5) this problem is polynomially
reducible to checking whether q′K v q, where q′K is a CQ 6= (respectively, CQ), then
the claim trivially follows.

As for the case of the containment for queries having only one inequality per
disjunct, we have the following lower bound.

Theorem 4.20. When the containing query q is assumed to be fixed, the containment
problem for UCQ1, 6=s is PTime-hard already when the input query q′ is a CQ1, 6=

(respectively, CQ) and the fixed query q is a CQ1, 6= (respectively, UCQ1,6= which is
the union of a CQ1, 6= and of a CQ without inequalities).

Proof. By looking at the proof of Theorem 4.16, one realises that there exists a
CQ1, 6= (respectively, UCQ1, 6= which is the union of a CQ1,6= and of a CQ without
inequalities) q such that checking whether K |= q for a given DL-Lite¬RDFS (respec-
tively, DL-LiteRDFS) K = 〈O,A〉 with O having no inclusion assertions is in general
PTime-hard. Since due to Corollary 4.6 (respectively, the combination of Corol-
lary 4.6 and Corollary 4.5) this problem is LogSpace reducible to checking whether
q′K v q, where q′K is a CQ1, 6= (respectively, CQ), then the claim trivially follows.

4.6.2 Upper Bounds

By exploiting again the close connection between answering UCQ6=s over DL-Lite¬RDFS
knowledge bases and the containment problem for UCQ6=s, we can prove new upper
bound complexity results for the containment problem for UCQ1,6=s. We follow a
presentation path very similar to the one of Section 4.5, and start with the following
definition and CheckFContains algorithm.

Definition 4.4. Let q′ be a CQ6=, q be a UCQ1,6=, and F = [f1, . . . , fm] be a list of
functions from the set of variables and constants occurring in q to the set of variables
and constants occurring in q′. We say that F is a good sequence with respect to q′
and q if CheckFContains(q′, q, F ) returns true.

In the algorithm, for a CQ6= q′ and two terms fi(z1) and fi(z2) of q′, the query
q′
fi(z2)
fi(z1) denotes the CQ 6= obtained from q′ in the following way: if one among fi(z1)

and fi(z2) is a constant, then the variable is replaced everywhere in q′ by the constant;
if both are variables, then one is replaced everywhere in q′ by the other.

Roughly speaking, consider each step i from 1 to m − 1 such that fi is a
homomorphism from a disjunct q′′ of q. Clearly, if conditions of step 3 are satisfied,
then we trivially have that q′ v q′′ and the algorithm CheckFContains returns true.
If not, the algorithm replaces everywhere in q′ one of the two terms among fi(z1)
and fi(z2) with the other, to consider a “representative database” of q′ in which
fi(z1) = fi(z2), where z1 6= z2 is the inequality atom occurring in the body of q′′.

Thus, the algorithm returns true if and only if either it is not possible to equate
two terms without contradicting an inequality atom of q′ (or because they are both
constants), or the resulting q′ is such that q′ v q2.

Using the above notion of good sequence, it is possible to derive the following
characterisation (nq′ denotes the number of terms occurring in the query q′).
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Algorithm 4.4 CheckFContains
Input:

CQ6= q′ = {~t′ | ∃~y′.φ′(~x′, ~y′)}
UCQ1, 6= q = q1 ∪ q2, where q1 is a UCQ1,6= having exactly one inequality per
disjunct and q2 is a UCQ;
list of functions F = [f1, . . . , fm]

Output:
true or false

1: for i← 1 to m− 1 do
2: if fi is a homomorphism from some disjunct of q1 to q′ then
3: if fi(z1) 6= fi(z2) ∈ φ′(~x′, ~y′) or fi(z1) and fi(z2) are both constants then
4: return true
5: else
6: q′ := q′

fi(z2)
fi(z1)

7: end if
8: else
9: return false

10: end if
11: end for
12: if fm is a homomorphism from some disjunct of q2 to the resulting q′ then
13: return true
14: else
15: return false
16: end if

Proposition 4.10. Let q′ and q be a CQ 6= and a UCQ1, 6=, respectively. We have
that q′ v q if and only if there exists a list F = [f1, . . . , fm] of functions, with
m ≤ nq′, such that F is a good sequence with respect to q′ and q.

Proof. “If part:” Suppose F = [f1, . . . , fm] (with m ≤ nq′) is a good sequence with
respect to q′ and q, i.e., CheckFContains(q′, q, F ) returns true. It follows that, after
possibly applying l ≤ m − 1 equalities between terms on q′, either l ≤ m − 2 and
fl+1 is a homomorphism satisfying conditions of steps 2 and 3 of the algorithm, or
l = m− 1 and fm is a homomorphism from some disjunct of q2 to q′.

In both cases, consider each homomorphism fi from some of the disjuncts of q1
to q′, for i = [1, l]. It is easy to see that all databases D and tuples of constants ~c for
which there is a homomorphism h from q′ to D with h(~t′) = ~c (thus ~c ∈ q′D) and in
addition with h(fi(z1)) 6= h(fi(z2)) is such that ~c ∈ q′′D as well, where z1 6= z2 is
the only inequality atom of the disjunct q′′ of q1 for which fi is a homomorphism to
q′. So, at each iteration the algorithm equates fi(z1) and fi(z2) in q′ to consider all
the other possible representative databases in which fi(z1) = fi(z2).

If fl+1 is a homomorphism from a disjunct q′′ of q1 to the resulting q′ such that
either fl+1(z1) 6= fl+1(z2) is an inequality atom of q′ (where z1 6= z2 is the only
inequality atom of q′′) or fl+1(z1) and fl+1(z2) are both constants, then we clearly
have q′ v q1, and therefore q′ v q.
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Finally, in the case that fm is a homomorphism from a disjunct of q2 to the
resulting q′, due to the above considerations, it can be easily proven that each
database D is such that either q′D ⊆ q1

D, or q′D ⊆ q2
D. Thus, q′ v q, as required.

“Only-if part:” Suppose there is no such good sequence F with respect to q′ and
q, and consider the following changes to the CQ6= q′: for each possible homomorphism
h from a disjunct of q1 to q′, we replace everywhere in q′ one of the two terms h(z1)
and h(z2) with the other, as described in step 6 of the algorithm, where z1 6= z2 is
the inequality atom of the disjunct of q1 for which h is a homomorphism to q′.

Since there are nq′ terms in the CQ6= q′, there can be at most nq′ − 1 of such
homomorphisms. Indeed, after applying nq′ − 1 replacing as described above, the
resulting q′ would contain only one term.

For the CQ 6= q′ and UCQ1, 6= q = q1∪q2 we have that (i) there is no homomorphism
h from a disjunct of q1 to q′ with either h(z1) 6= h(z2), or h(z1) and h(z2) being
both constants, where z1 6= z2 is the inequality atom of the disjunct for which h
is a homomorphism to q′; and (ii) there is no disjunct of q2 for which there is a
homomorphism to q′. In proof, if either point (i) or point (ii) is not true, then we
would easily derive a contradiction on the fact that there exists no good sequence F
with respect to q′ and q.

Consider now the freezing of the resulting CQ 6= q′, i.e., the set of facts Dq′ ,
here denoted by D for the sake of readability, corresponding to the set of all atoms
occurring in the body of q′ that are not inequality atoms, but where each variable
v is replaced with a different fresh constant cv. Let, moreover, ~c′ be the tuple of
constants obtained from the target list ~t′ of the resulting q′ after replacing each
distinguished variable v with the constant cv.

Clearly, D and ~c′ are such that ~c′ ∈ q′D by construction. Furthermore, due to
the facts that q′ and q are such that both the above points (i) and (ii) hold, we
derive that ~c′ 6∈ qD. Thus, q′D 6⊆ qD, and therefore q′ 6v q, as required.

For UCQs with no inequalities, it is known that query containment is in NP (in
particular, NP-complete), and is in PTime when the containing query q is assumed
to be fixed. We are now ready to show that the same holds even when the contained
query q′ is a UCQ6= and the containing query q is a UCQ1,6=.

Theorem 4.21. The containment problem for UCQ6=s when the containing query q
is a UCQ1, 6= is in NP (and therefore NP-complete). Moreover, it is in PTime when
the containing UCQ1, 6= q is assumed to be fixed.

Proof. Given a UCQ 6= q′ and UCQ1,6= q, observe that q′ v q if and only if q′′ v q
for each disjunct q′′ of q′, where q′′ is a CQ6=.

Due to Proposition 4.10, checking whether q′′ v q for a CQ6= q′′ and UCQ1,6= q
can be done as follows:

• Guess a list F = [f1, . . . , fm] of m ≤ nq′′ functions from the set of variables
and constants occurring in q to the set of variables and constants occurring in
q′′;

• Check whether F is a good sequence with respect to q′′ and q,
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where checking whether F is a good sequence with respect to q′′ and q can be done
by means of the above described CheckFContains algorithm.

So, we easily derive a nondeterministic algorithm deciding q′ v q. With an NP
step, for each disjunct q′′ of q′, we guess a list Fq′′ = [f1, . . . , fm] with m ≤ nq′′ of
functions from the set of variables and constants occurring in q to the set of variables
and constants occurring in q′′. Notice that this can be done in polynomial time in the
size of q′. Then, for each disjunct q′′ of q, by exploiting the CheckFContains algorithm
we check whether Fq′′ is a good sequence with respect to q′′ and q using: (i) for each
i ∈ [1,m− 1], a polynomial time step for checking whether fi is a homomorphism
from a disjunct of q1 to q′′, and for replacing everywhere in q′′ one of the two terms
among fi(z1) and fi(z2) with the other; finally, (ii) another polynomial time step
for checking whether fm is a homomorphism from some disjunct of the UCQ q2 to
the resulting CQ6= q′′.

Notice, however, that when the containing query is assumed to be fixed, the
containment problem for UCQs with no inequalities can be solved even in AC0 (it
is indeed sufficient to evaluate the containing query q over the database associated
to the contained query q′ [Chandra and Merlin, 1977]). On the other hand, as
shown in Theorem 4.20, the containment problem for UCQ1,6=s is PTime-hard when
the containing query is assumed to be fixed. Since AC0 ⊂ PTime, this makes the
two problems significantly different. We conclude the chapter by characterising the
computational complexity of the containment problem for UCQ1, 6=s, which can be
obtained by combining Theorem 4.20 with the above theorem.

Corollary 4.7. The containment problem for UCQ6=s when the containing query q
is a UCQ1, 6= is NP-complete. Moreover, it is PTime-complete when the containing
query q is assumed to be fixed.





77

Chapter 5

Complete Source-to-Ontology
Rewritings

In this chapter, we study both the verification, and the computation problem for
complete source-to-ontology rewritings. In what follows, given a syntactic object
x such as a UCQ, an ontology, or a mapping, we denote by σ(x) its size, i.e., the
number of symbols needed to write it, with names of predicates, variables, etc.
counting as one.

5.1 Verification Problem

Suppose we want to check whether qO is a complete S-to-O Σ-rewriting of qS .
Obviously, if qS is contained in PerfRefqO,Σ, then for every S-database D consistent
with Σ, we have that qDS ⊆ certDqO,Σ, and therefore the answer is positive. If qS is not
contained in PerfRefqO,Σ, however, it might be the case that qO is still a complete
S-to-O Σ-rewriting of qS , in particular in the case where the non-emptiness of the
answers of qS over D reveals the presence of inconsistencies. From this observation,
we can easily derive the following characterisation.

Lemma 5.1. qO is a complete S-to-O Σ-rewriting of qS if and only if qS v
(PerfRefqO,Σ ∪ PerfRefVnO,Σ), where n = ar(qO) = ar(qS).

Proof. “Only-if part:” Suppose that qO is a complete S-to-O Σ-rewriting of qS .
By definition, we have that for every S-database D either D is not consistent
with Σ, or qDS ⊆ certDqO,Σ. In the former case, we have PerfRefDVO,Σ = {()}, which
obviously implies that qDS ⊆ PerfRefDVnO,Σ. In the latter case, since D is consistent
with Σ, we have that certDqO,Σ = PerfRefDqO,Σ. Therefore, we have that qDS ⊆
(PerfRefqO,Σ ∪ PerfRefVnO,Σ)D for every S-database D, as required.

“If part:” Suppose, for the sake of contradiction, that qO is not a complete
S-to-O Σ-rewriting of qS , that is, there exists an S-database D consistent with Σ
such that qDS 6⊆ certDqO,Σ. Since D is consistent with Σ, we have (i) PerfRefDVO,Σ = ∅,
which implies that (i) PerfRefDVnO,Σ = ∅ and (ii) certDqO,Σ = PerfRefDqO,Σ. Therefore,
for the S-database D, we have that qDS 6⊆ (PerfRefqO,Σ ∪ PerfRefVnO,Σ)D. Thus,
qS 6v (PerfRefqO,Σ ∪ PerfRefVnO,Σ), as required.
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The following theorem characterises the computational complexity of the verifi-
cation problem for complete source-to-ontology rewritings.

Theorem 5.1. The verification problem for complete source-to-ontology rewritings
is NP-complete.

Proof. As for the upper bound, by virtue of Lemma 5.1, it is sufficient to show
how to check the containment qS v (PerfRefqO,Σ ∪ PerfRefVnO,Σ) in NP, where
n = ar(qO). In particular, for every disjunct q of qS , (i) we guess a query q′ over O
with the same arity of qO and size at most the maximum between σ(qO) and σ(VnO),
a sequence ρ of ontology assertions, a query q′′ over S with the same arity of qO and
size at most σ(M)× σ(q′), and a function φ from the variables of q′′ to the variables
of q, and (ii) we check in polynomial time whether we can rewrite either qO or VnO
into q′ through ρ, q′′ is in MapRef(q′,M), and φ is a homomorphism from q′′ to q.

As for the lower bound, the proof of NP-hardness is by a LogSpace reduction
from the 3-colourability problem, which is NP-complete [Garey et al., 1976]. 3-
colourability is the problem of deciding, given an undirected graph G = (V,E)
with no loops, whether G is 3-colourable, i.e., whether there exists a function
f : V → {R,G,B} such that f(yi) 6= f(yj) for each (yi, yj) ∈ E.

Let Σ = 〈O,S,M〉 be an OBDM specification as follows: ontology O contains
no axioms, i.e., O = ∅, schema S involves a binary predicate E and three unary
predicates sR, sG, and sB, and finally the mappingM = {m1,m2,m3,m4} with:

m1 : E(x1, x2) → P (x1, x2),
m2 : sR(x) → R(x),
m3 : sG(x) → G(x),
m4 : sB(x) → B(x),

where R, G, and B are atomic concepts, whereas P is an atomic role.
Let V = (y1, y2, . . . , yn), then we define a boolean CQ qO over O as follows:

qO = {(xR, xG, xB) | ∃y1, . . . , yn.R(xR) ∧G(xG) ∧B(xB)∧
∧

∧
(yi, yj) ∈ E

(P (yi, yj) ∧ P (yj , yi))}.

Also, let qS be the boolean CQJFE over S defined as follows: qS = {(xR, xG, xB) |
sR(xR) ∧ sG(xG) ∧ sB(xB) ∧ E(xR, xG) ∧ E(xG, xR) ∧ E(xR, xB) ∧ E(xB, xR) ∧
E(xB, xG) ∧ E(xG, xB)}.

Observe that Σ = 〈O,S,M〉 and qS do not depend on the input of the 3-
COLOURABILITY problem (i.e., G = (V,E)), whereas qO can be constructed in
LogSpace from it.

We now show that G is 3-colourable if and only if qO is a complete S-to-O
Σ-rewriting of qS . To begin observe that VO ≡ ⊥, and hence, for each S-database
D, we have that certDqO,Σ = PerfRefDqO,Σ, where PerfRefqO,Σ is the CQ over S:

{(xR, xG, xB) | ∃y1, . . . , yn.sR(xR) ∧ sG(xG) ∧ sB(xB)∧
∧

∧
(yi, yj) ∈ E

(E(yi, yj) ∧ E(yj , yi))}.
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“Only-if part:” Suppose that G is 3-colourable, that is, there exists a function
f : V → {R,G,B} such that f(yi) 6= f(yj) for each (yi, yj) ∈ E. But then, consider
the function h from the variables of PerfRefqO,Σ to the variables of qS such that
h(xR) = xR, h(xG) = xG, h(xB) = xB, and, for each i = 1, . . . , n:

h(yi) =


xR, if f(yi) = R,

xG, if f(yi) = G,

xB, if f(yi) = B.

It can be readily seen that h consists in a homomorphism from PerfRefqO,Σ to qS .
It follows that qS v PerfRefqO,Σ which, due to Lemma 5.1, implies that qO is a
complete S-to-O Σ-rewriting of qS .

“If part:” Suppose that G is not 3-colourable, that is, every possible function
f : V → {R,G,B} is such that f(yi) = f(yj) for some (yi, yj) ∈ E. It is not hard
to see that this implies that there exists no homomorphism from PerfRefqO,Σ to qS .
Therefore, since VO ≡ ⊥, we have that qS 6v (PerfRefqO,Σ ∪ PerfRefV3

O,Σ
) which, due

to Lemma 5.1, implies that qO is not a complete S-to-O Σ-rewriting of qS .

Note that the result of NP-hardness already holds when Σ = 〈O,S,M〉 is fixed
(i.e., it does not depend on the input of the reduction) with O containing no axioms
andM being both a pure GAV mapping and a LAV mapping, qS is a fixed CQJFE,
and finally qO is a CQ.

5.2 Computation Problem
We now provide the algorithm MinimallyComplete for computing UCQ-minimally
complete source-to-ontology rewritings.

Algorithm 5.1 MinimallyComplete
Input:

OBDM specification Σ = 〈O,S,M〉;
UCQ qS = q1

S ∪ . . .∪ qnS over S, where qiS = {~ti | ∃~yi.φi(~xi, ~yi)} for each i ∈ [1, n]
Output:

UCQ qO over O

1: qO := {~t1 | ∃ ~Y1.M(q1
S) ∧ >( ~x1)} ∪ . . . ∪ {~tn | ~Yn.M(qnS) ∧ >( ~xn)}, where ~Yi

includes the set of existential variables of qiS occurring inM(qS) plus the fresh
existential variables introduced byM(qS), for each i ∈ [1, n]

2: return qO

Informally, for each disjunct qiS of qS , the algorithm obtains a CQ by simply
chasing (the incomplete S-database associated to) qiS with respect toM, using > to
bind the distinguished variables that are not involved in the application ofM to qiS .
Finally, the output query qO is the union of all such CQs.

Example 5.1. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅



80 5. Complete Source-to-Ontology Rewritings

• S = { s1, s2, s3 }

• M = { m1,m2,m3,m4 }, where:
m1 : s1(x) → ∃z.P1(x, z) ∧A1(z),
m2 : ∃y.s2(x1, y) ∧ s2(y, x2) → P2(x1, x2),
m3 : ∃y.s1(c1) ∧ s3(x, y) → P3(x, c2),
m4 : ∃y.s3(x1, x2) ∧ s2(x2, y) → P4(x1, x2).

Let the data service be expressed as the following UCQ qS over S:

{(x1, x2) | ∃y1, y2.s1(x1) ∧ s2(x1, y1) ∧ s2(y2, x2)} ∪
{(x1, c3) | ∃y1, y2.s1(c1) ∧ s3(x1, y1) ∧ s2(y1, y2)}.

One can verify that MinimallyComplete(Σ, qS) returns the UCQ qO:

{(x1, x2) | ∃y3.P1(x1, y3) ∧A1(y3) ∧ >(x2)} ∪
{(x1, c3) | ∃y1, y3.P1(c1, y3) ∧A1(y3) ∧ P3(x1, c2) ∧ P4(x1, y1)},

which corresponds to the unique (up to equivalence w.r.t. Σ) UCQ-minimally complete
S-to-O Σ-rewriting of qS .

The following theorem establishes termination and correctness of the Minimally-
Complete algorithm.

Theorem 5.2. MinimallyComplete(Σ, qS) terminates and returns the unique (up to
equivalence w.r.t.Σ) UCQ-minimally complete S-to-O Σ-rewriting of qS .

Proof. Termination of the algorithm easily follows from the termination of the chase
of a source instance (possibly containing variables) with respect to a GLAV mapping,
or, equivalently, with respect to a set of source-to-target tgds [Fagin et al., 2005a].

As for the correctness, we first show that the computed qO = q1
O ∪ . . .∪ qnO, with

qiO = {~ti | ∃~Yi.M(qiS) ∧ >(~xi)} for every i ∈ [1, n], is a complete S-to-O Σ-rewriting
of qS . By construction, for every i ∈ [1, n], the CQ qiS corresponds to, or it is
contained in, a disjunct of MapRef(qiO,M). Thus, qiS v PerfRefqiO,Σ holds for every
i ∈ [1, n]. It follows that qS v PerfRefqO,Σ which, due to Lemma 5.1, implies that
qO is a complete S-to-O Σ-rewriting of qS . We now show that qO is actually the
unique (up to equivalence w.r.t. Σ) UCQ-minimally complete S-to-O Σ-rewriting of
qS , that is, each UCQ q′O that is a complete S-to-O Σ-rewriting of qS is such that
certqO,Σ v certq′O,Σ (cf. Definition 3.7). We do this by way of contradiction.

Let q′O be a UCQ such that certqO,Σ 6v certq′O,Σ, that is, there exists an S-
database D consistent with Σ such that certDqO,Σ 6⊆ certDq′O,Σ. It follows that there
is a tuple of constant ~c = (c1, . . . , cm) such that ~c 6∈ certDq′O,Σ, but ~c ∈ certDqO,Σ, i.e.,
~c ∈ certD

qiO,Σ
for some i ∈ [1, n]. Consider now the freezing of qiS = {~ti | ∃yi.φi(~xi, ~yi)},

i.e., the set DqiS
(here denoted by Di) of all facts over S obtained from φi(~xi, ~yi)

by replacing each variable v ∈ ~xi ∪ ~yi with a different fresh constant denoted by
cv. Let, moreover, ~ci be the freezed tuple of constants ~ci = (ci1, . . . , cim) where, for
each j ∈ [1,m], cij = tj if tj is a constant, and cij = cx if tj = x. We now prove
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that ~ci ∈ qiS
Di and ~ci 6∈ certDiq′O,Σ, thus showing that q′O is not a complete S-to-O

Σ-rewriting of qS .
Obviously, ~ci ∈ qiS

Di trivially holds. Consider CM(D)
O , i.e., the canonical structure

of O with respect toM and D. Since ~c ∈ certD
qiO,Σ

, there exists a homomorphism

h from qiO to CM(D)
O for which h(~ti) = ~c. Furthermore, due to the facts that M

is a GLAV mapping and O is a DL-LiteR ontology, and due to the fact that ~c is
in the evaluation of qiO over CM(D)

O (i.e., ~c ∈ qiO
CM(D)
O ), by construction of qiO and

Di it is easy to see the existence of a function f from CM(Di)
O to CM(D)

O for which
(i) f(c) = h(c) = c for each constant c occurring in qiO, (ii) f(cv) = h(v) for each
variable v ∈ ~xi ∪ ~yi of qiS occurring inM(qiS), and (iii) f(CM(Di)

O ) ⊆ CM(D)
O , where

f(CM(Di)
O ) is the image of CM(Di)

O under f . Observe that f(~ci) = ~c, and, since D is
consistent with Σ, Di is consistent with Σ as well.

Due to the existence of this function f and the assumption that ~c 6∈ certDq′O,Σ,
we derive that there is no disjunct q′ = {~t′ | ∃y′.φ′(~x′, ~y′)} of q′O for which there
is a homomorphism h′ from q′ to CM(Di)

O such that h′(~t′) = ~ci (otherwise, the
composition function f ◦ h′ would result in a homomorphism from q′ to CM(D)

O
such that f(h′(~t′)) = ~c, and therefore this would contradict the assumption that
~c 6∈ certDq′O,Σ). Thus, ~ci 6∈ certDiq′O,Σ as well. To conclude the proof, observe that

Di is an S-database consistent with Σ for which ~ci ∈ qiS
Di (and so ~ci ∈ qDiS ) and

~ci 6∈ certDiq′O,Σ, thus implying that q′O is not a complete S-to-O Σ-rewriting of qS .

The following result is an immediate consequence of the above theorem.

Corollary 5.1. The unique (up to equivalence w.r.t.Σ) UCQ-minimally complete
S-to-O Σ-rewriting of qS always exists. Furthermore, if qS is a CQ, then it can be
expressed as a CQ as well.

Regarding the cost of the MinimallyComplete algorithm, we observe that, essen-
tially, it applies the chase of each (possibly incomplete source instance associated to
the) disjunct of qS via the conjunction of atoms that appear in the left-hand side of
the assertions inM. This results in a running time that does not depend on O and
S, is exponential in σ(M), and only polynomial in σ(qS).

Notice, however, that ifM is a LAV mapping, then the application of the chase is
feasible in polynomial time even in σ(M) (indeed, in this case there is no conjunction
of atoms to evaluate when applying the chase), and therefore the running time of
the algorithm becomes polynomial in the size of the input of the problem.

Conversely, even in the case of pure GAV mappings, next we show that a poly-
nomial time algorithm for computing UCQ-minimally complete source-to-ontology
rewritings already of CQJFEs would imply a polynomial time algorithm for checking
whether q1 v q2, where q1 is a CQJFE and q2 is a CQ. Since we also show that this
latter problem is NP-hard, it turns out that, unless PTime = NP, the computation
problem for complete source-to-ontology rewritings can not be solved in polynomial
time, even in the case of pure GAV mappingsM and CQJFEs qS .

We start by proving the following lemma.
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Lemma 5.2. If q1 is a UCQJFE and q2 is a UCQ, then the problem of checking
whether q1 v q2 is NP-complete.

Proof. The membership in NP follows from the membership in NP of the more
general case of containment between UCQs [Sagiv and Yannakakis, 1980].

We now show that the problem is NP-hard even when q1 is a boolean CQJFE,
q2 is a boolean CQ, and both q1 and q2 use only binary predicates. We follow a
proof strategy that is similar to the reduction illustrated in [Aho et al., 1979]. In
particular, we provide a LogSpace reduction from the 3-CNF problem, which is
NP-complete [Karp, 1972]. 3-CNF is the problem of deciding, given a CNF formula
F = c1 ∧ . . . ∧ cm on a set of variables Y = {y1, . . . , yn}, whether F is satisfiable,
that is, whether there exists a truth assignment V = {v1, . . . , vn} to the variables in
Y that satisfies F . Each clause ci is a disjunction of three literals, where each literal
is either a variable x ∈ X or its negated. For i = 1, . . . ,m, we denote by zi,1, zi,2,
and zi,3 the first, the second, and the third, respectively, variable appearing (either
positive or negated) in clause ci.

Let F be an instance of the 3-CNF problem. We now define a boolean CQJFE
q1 and a boolean CQ q2, where both queries use only binary predicates.

As for q1, it is the conjunction of the atoms appearing in its body: for each clause
ci of F , and for each of the seven satisfying truth assignments Ai,k = {v1, v2, v3}
for ci (where, for each k = 1, . . . , 7, Ai,k is a constant, and, for each j = 1, 2, 3,
vj is either the constant 1 or 0), the body of q1 contains the atoms si,1(Ai,k, v1),
si,2(Ai,k, v2), and si,3(Ai,k, v3).

As for q2, it is the conjunction of the atoms appearing in its body: for each clause
ci of F , the body of q2 contains the atoms si,1(ai, zi,1), si,2(ai, zi,2), and si,3(ai, zi,3),
where ai denotes a fresh existential variable.

To illustrate the reduction, consider the formula F = (y1 ∨ y2 ∨ ¬y3)
∧

(¬y1 ∨
y2 ∨ ¬y4). In this case, the reduction produces the following boolean CQJFE

q1 = {() | α1(A1,1, 0, 0, 0) ∧ α1(A1,2, 0, 1, 0) ∧ α1(A1,3, 0, 1, 1) ∧ α1(A1,4, 1, 0, 0)∧
α1(A1,5, 1, 0, 1) ∧ α1(A1,6, 1, 1, 0) ∧ α1(A1,7, 1, 1, 1) ∧ α2(A2,1, 0, 0, 0)∧
α2(A2,2, 0, 0, 1) ∧ α2(A2,3, 0, 1, 0) ∧ α2(A2,4, 0, 1, 1) ∧ α2(A2,5, 1, 0, 0)∧
α2(A2,6, 1, 1, 0) ∧ α2(A2,7, 1, 1, 1)},

where an atom of the form αi(x, y, z, w) is a shortcut for the conjunction of atoms
si,1(x, y) ∧ si,2(x, z) ∧ si,3(x,w).

Moreover, the reduction produces the following boolean CQ

q2 = {() | ∃a1, a2, y1, y2, y3, y4.s1,1(a1, y1) ∧ s1,2(a1, y2) ∧ s1,3(a1, y3)∧
s2,1(a2, y1) ∧ s2,2(a2, y2) ∧ s2,3(a2, y4)}.

With the same arguments given in [Aho et al., 1979], it is possible to prove that
every truth assignment satisfying formula F consists in a homomorphism from q2 to
q1 and vice versa.

In particular, from every truth assignment V = {v1, . . . , vn} to the variables in Y
that satisfies F it is possible to derive a homomorphism h from q2 to q1 in the following
way: (i) h(xj) = vj for each j ∈ [1, n], and (ii) h(ai) = Ai,k for each i ∈ [1,m], where
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k ∈ [1, 7] is an arbitrary value for which αi(Ai,k, h(zi,1), h(zi,2), h(zi,3)) is an atom of
q1 (observe that, since by assumption clause ci is satisfied under truth assignment
V , at least one constant Ai,k for some k ∈ [1, 7] must exists by construction).

Also, from every homomorphism h from q2 to q1, the truth assignment V =
{h(y1), . . . , h(yn)} satisfies formula F by construction.

From the above considerations, it follows that F is satisfiable if and only if
q1 v q2. To conclude the proof, we observe that both the boolean CQJFE q1 and
the boolean CQ q2 can be constructed in LogSpace from F .

Proposition 5.1. Assuming PTime ( NP, the computation problem for complete
source-to-ontology rewritings can not be solved in polynomial time.
Proof. Let q1 = {() | ∃~y1.ψ(~y1)} and q2 = {() | ∃~y2.φ(~y2)} be a boolean CQJFE
and a boolean CQ, respectively. We define an OBDM specification Σ = 〈O,S,M〉
as follows: ontology O contains no axioms, schema S is composed of all predicates
involved in ψ(~y1) and in φ(~y2) plus an additional fresh unary predicate s, and finally
the mappingM comprises only the following pure GAV mapping assertion:

∃~y2.s(x) ∧ φ(~y2)→ A(x),

where A is an atomic concept of O.
We also define a boolean CQJFE over S: qS = {() | ∃~y1.∃y.s(y) ∧ ψ(~y1)}, where

y denotes a fresh existential variable occurring neither in ~y1 nor in ~y2.
Note that the unique (up to equivalence w.r.t. Σ) UCQ-minimally complete

S-to-O Σ-rewriting of qS is either the query qO = {() | ∃y.A(y)} if it is a complete
S-to-O Σ-rewriting of qS , or the query q′O = {() | ∃y.>(y)}.

Specifically, we now prove that qO is the unique (up to equivalence w.r.t. Σ) UCQ-
minimally complete S-to-O Σ-rewriting if and only if q1 v q2. Due to Lemma 5.1, qO
is a complete S-to-O Σ-rewriting of qS if and only if qS v PerfRefqO,Σ ∪ PerfRefVO,Σ.
Since VO ≡ ⊥, in this case we have that qO is a complete S-to-O Σ-rewriting
of qS if and only if qS v PerfRefqO,Σ. Notice, however, that PerfRefqO,Σ = {() |
∃~y2.∃y.s(y) ∧ φ(~y2)}, and therefore qS v PerfRefqO,Σ if and only if q1 v q2.

We have reduced the problem of checking whether q1 v q2 for a boolean CQJFE
q1 and a boolean CQ q2 to the problem of computing the unique (up to equivalence
w.r.t. Σ) UCQ-minimally complete S-to-O Σ-rewriting of a CQJFE qS , where both
Σ = 〈O,S,M〉 and qS can be constructed in LogSpace from q1 and q2.

Thus, a polynomial time algorithm for computing UCQ-minimally complete
source-to-ontology rewritings of CQJFEs qS would imply a polynomial time algorithm
for checking whether q1 v q2, where q1 is a CQJFE and q2 is a CQ. Since by
Lemma 5.2 we know that this latter containment problem is in general NP-hard, it
follows that, unless PTime = NP, the computation problem for complete source-to-
ontology rewritings can not be solved in polynomial time, even in the case of pure
GAV mappingsM and CQJFEs qS .

5.3 Improving by means of Inequalities
In this section, we consider an extension of the scenario introduced in Section 3.2
in which LO is the class of UCQ 6=s rather than UCQs. Specifically, we tackle the
problem of computing UCQ 6=-minimally complete source-to-ontology rewritings.
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The next example shows that the usage of inequalities is an interesting feature
to consider when providing abstractions of data services. In general, UCQ 6=s provide
better approximated complete source-to-ontology rewritings compared to UCQs.

Example 5.2. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2 }

• M = { m1,m2,m3 }, where:
m1 : s1(x1, x2) → P (x1, x2),
m2 : s1(x, x) → A(x),
m3 : s2(x1, x2) → P (x1, x2).

Let the query over S be the CQ qS = {(x1, x2) | s1(x1, x2)}.
Then, MinimallyComplete(Σ, qS) returns the CQ qO = {(x1, x2) | P (x1, x2)},

which is the unique (up to equivalence w.r.t. Σ) UCQ-minimally complete S-to-O
Σ-rewriting of qS . Consider, however, the UCQ6= q′O = {(x1, x2) | P (x1, x2) ∧ x1 6=
x2}∪{(x, x) | P (x, x)∧A(x)}. Consider any S-databaseD and any tuple (c1, c2) ∈ qDS .
If c1 6= c2, then (c1, c2) ∈ certDq′O,Σ because of the first disjunct. Conversely, if c1 = c2,
then (c1, c2) ∈ certDq′O,Σ because of the second disjunct. This clearly proves that q′O
is a complete S-to-O Σ-rewriting of qS .

Furthermore, notice that certq′O,Σ @ certqO,Σ holds. On the one hand, certq′O,Σ v
certqO,Σ is trivially true. On the other hand, for the S-database D = {s2(c, c)}, we
have certDq′O,Σ = ∅, whereas certDqO,Σ = {(c, c)}, and therefore certDq′O,Σ ( certDqO,Σ.
Thus, q′O is a better complete approximation of qS (w.r.t. Σ) compared to qO.

The above example also suggests an algorithm for computing UCQ 6=-minimally
complete source-to-ontology rewritings. Informally, before of chasing (the incomplete
S-database associated to) the various disjuncts qiS of qS with respect to M, the
basic idea is to first compute the so-called inequality saturation of qS with respect
to conLM, and only after chasing each (incomplete S-database associated to the)
disjunct of the obtained query. Here, for a mappingM, conLM denotes the set of
all constants occurring in the left-hand side of mapping assertions inM.

Roughly speaking, the inequality saturation of a UCQ qS with respect to a
set of constants con is a UCQ 6= obtained by replacing each CQ qiS of qS with an
equivalent UCQ6=. This latter is obtained from qiS by computing a CQ 6= for each
possible unification between the terms in ter(qiS)∪con, and then imposing inequalities
between the syntactically different remaining variables. Here, for a CQ q, ter(q)
denotes the set of all terms (i.e., constants and variables) occurring in q.

We now present the algorithm Saturate that, given a UCQQ and a set of constants
con, returns a logically equivalent UCQ 6= representing the inequality saturation of
Q with respect to con. Essentially, the core of the algorithm is the one illustrated
in [Lembo et al., 2015], but extended in order to deal with a set of constants con
given as input. We include below the algorithm for the sake of completeness.

In the algorithm, two terms t1 and t2 are compatible if t1 and t2 denote distinct
terms and at least one of them is a variable. Furthermore, for a query q, q[t1/t2]
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denotes the query obtained from q by replacing every occurrence (even in the target
list) of the term t1 in q with the term t2 (obviously, if one of the two terms is a
constant, then we always assume that t2 is the constant and t1 is the variable).

Algorithm 5.2 Saturate
Input:

UCQ Q;
set of constants con

Output:
UCQ6= Q′

1: repeat
2: Q′′ := Q
3: for each CQ q ∈ Q′′ do
4: for each pair of compatible terms t1, t2 in ter(q) ∪ con do
5: Q := Q ∪ q[t1/t2]
6: end for
7: end for
8: until Q′′ = Q
9: Q′ := ∅

10: for each q ∈ Q′′ do
11: for each pair of compatible t1, t2 in ter(q) ∪ con do
12: Add the inequality atom t1 6= t2 in conjunction to the body of q
13: end for
14: Q′ := Q′ ∪ q
15: end for
16: return Q′

For a UCQ Q and a set of constants con, Saturate(Q, con) first computes the
UCQ Q′′ by unifying compatible terms in each query q ∈ Q in all possible ways.
Then, for any query q ∈ Q′′ and for each pair of terms t1 and t2 that are syntactically
different and compatible, it adds the inequality atom t1 6= t2 to the body of q.

The following example illustrates an execution of the Saturate algorithm.

Example 5.3. Let qS be the UCQ qS = q1
S ∪ q2

S , where q1
S = {(x) | ∃y.s1(x, y)}

and q2
S = {(x) | s2(x, c2)}, and let con = {c1}. One can verify that Saturate(qS , con)

returns the UCQ6= Q′ = q1,1
S ∪ q

1,2
S ∪ q

1,3
S ∪ q

1,4
S ∪ q

1,5
S ∪ q

2,1
S ∪ q

2,2
S ∪ q

2,3
S , where:

• q1,1
S = {(x) | ∃y.s1(x, y) ∧ x 6= y ∧ x 6= c1 ∧ y 6= c1};

• q1,2
S = {(x) | s1(x, x) ∧ x 6= c1};

• q1,3
S = {(c1) | ∃y.s1(c1, y) ∧ y 6= c1};

• q1,4
S = {(x) | s1(x, c1) ∧ x 6= c1};

• q1,5
S = {(c1) | s1(c1, c1)};

• q2,1
S = {(x) | s2(x, c2) ∧ x 6= c1 ∧ x 6= c2};
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• q2,2
S = {(c1) | s2(c1, c2)};

• q2,3
S = {(c2) | s2(c2, c2)}.

We are now ready to focus on the problem of computing UCQ6=-minimally com-
plete source-to-ontology rewritings, and present algorithm MinimallyCompleteIneq.

In the algorithm, we write each CQ6= q as q = {~t | ∃~y.φ(~x, ~y) ∧ ξ(~x, ~y)}, where
φ(~x, ~y) is the conjunction of the atoms occurring in the body of q that are not
inequality atoms, whereas ξ(~x, ~y) is the conjunction of all the inequality atoms
occurring in the body of q. Furthermore,M(q) for a CQ6= q is computed by simply
ignoring the inequality atoms of q, and thus treating it as a CQ. Finally, ξ(~x,~Y) is
the conjunction of the inequality atoms obtained from ξ(~x, ~y) by removing all those
atoms of the form y 6= t and t 6= y in which y is an existential variable occurring in
~y but not in ~Y (i.e., not inM(q)), and t is any other possible term.

Algorithm 5.3 MinimallyCompleteIneq
Input:

OBDM specification Σ = 〈O,S,M〉;
UCQ qS over S

Output:
UCQ6= qO over O

1: qO = ∅
2: for each CQ6= q ∈ Saturate(qS , conLM) do
3: Let q = {~t | ∃~y.φ(~x, ~y) ∧ ξ(~x, ~y)}
4: qO := qO ∪ {~t | ∃~Y.M(q) ∧ >(~x) ∧ ξ(~x,~Y)}
5: end for
6: return qO

Informally, the algorithm first computes the inequality saturation of qS with
respect to conLM. Then, for each CQ6= q ∈ Saturate(qS , conLM) the algorithm
obtains a CQ6= by chasing (the incomplete S-database associated to) the conjunctive
part of q with respect toM, using > to bind the distinguished variables that are
not involved in the application ofM, and adding the inequality atoms of q to the
so obtained query, where the inequality atoms involving existential variables not
appearing inM(q) are removed. Finally, the output UCQ 6= qO is the union of all
such CQ6=s.

Example 5.4. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2, s3 }

• M = { m1,m2,m3,m4,m5,m6 }, where:
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m1 : ∃y.s1(x, y) → AdvertisingCompany(x),
m2 : s1(c1, x) → PublicCompany(x),
m3 : s2(x1, x2) → Controls(x1, x2),
m4 : s2(x, x) → SelfHoldingCompany(x),
m5 : s3(x1, x2) → Controls(x1, x2);
m6 : s4(x) → AdvertisingCompany(x).

Let qS be the UCQ illustrated in Example 5.3. Since conLM = {c1},
Saturate(qS , conLM) is the UCQ 6= Q′ = q1,1

S ∪q
1,2
S ∪q

1,3
S ∪q

1,4
S ∪q

1,5
S ∪q

2,1
S ∪q

2,2
S ∪q

2,3
S il-

lustrated in Example 5.3. One can therefore verify that MinimallyCompleteIneq(Σ, qS)
returns the UCQ6= qO = q1,1

O ∪ q
1,2
O ∪ q

1,3
O ∪ q

1,4
O ∪ q

1,5
O ∪ q

2,1
O ∪ q

2,2
O ∪ q

2,3
O , where:

• q1,1
O = q1,2

O = {(x) | AdvertisingCompany(x) ∧ x 6= c1};

• q1,3
O = {(c1) | ∃y.AdvertisingCompany(c1) ∧ PublicCompany(y) ∧ y 6= c1};

• q1,4
O = {(x) | AdvertisingCompany(x) ∧ x 6= c1};

• q1,5
O = {(c1) | AdvertisingCompany(c1) ∧ PublicCompany(c1)};

• q2,1
O = {(x) | Controls(x, c2) ∧ x 6= c1 ∧ x 6= c2};

• q2,2
O = {(c1) | Controls(c1, c2)};

• q2,3
S = {(c2) | Controls(c2, c2) ∧ SelfHoldingCompany(c2)},

which corresponds to the unique (up to equivalence w.r.t. Σ) UCQ 6=-minimally
complete S-to-O Σ rewriting of qS .

The following theorem establishes termination and correctness of the Minimally-
CompleteIneq algorithm.

Theorem 5.3. MinimallyCompleteIneq(Σ, qS) terminates and returns the unique (up
to equivalence w.r.t.Σ) UCQ 6=-minimally complete S-to-O Σ-rewriting of qS .

Proof. Termination of the algorithm follows from (i) the termination of the chase of
a source instance (possibly containing variables) with respect to a GLAV mapping;
(ii) the termination of Saturate(qS , conLM), which is guaranteed by the fact that qS
is a disjunction of a finite number of CQs in which there is a finite number of atoms
and terms, and the fact that conLM is a set of a finite number of constants.

As for the correctness, we first show that the computed qO is a complete S-to-O
Σ-rewriting of qS . Let ~c = (c1, . . . , cn) be any tuple of constants such that ~c ∈ qDS .
We now prove that ~c ∈ certDqO,Σ. Clearly, ~c ∈ qDS implies the presence of a UCQ6=

q ∈ Saturate(qS , conLM) where q = {~t | ∃~y.φ(~x, ~y) ∧ ξ(~x, ~y)} for which ~c ∈ qD, i.e.,
there is a homomorphism h from the set of atoms occurring in φ(~x, ~y) to D for which
(i) h(~t) = ~c and (ii) h(α) 6= h(β) for each inequality atom α 6= β occurring in ξ(~x, ~y).

Consider now the CQ 6= q′ = {~t | ∃~Y.M(q) ∧ >(~x) ∧ ξ(~x,~Y)}, which is by con-
struction a disjunct of qO. Clearly, due to the existence of h, there must be a
homomorphism h′ from the set of all atoms occurring inM(q) and >(~x) toM(D)
for which h′(t) = h(t) for each term t occurring in q. This implies that (i) h′(~t) = ~c;
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(ii) h′(y) is a constant for each existential variable of q′ which was also in q; and (iii)
since atoms in ξ(~x,~Y) are a subset of those in ξ(~x, ~y), we have h′(α) 6= h′(β) for each
inequality atom α 6= β occurring in ξ(~x,~Y), where both h′(α) and h′(β) are constants
due to (ii). Since we are adopting the UNA, we have that (h′(α))I 6= (h′(β))I for
each inequality atom α 6= β occurring in ξ(~x,~Y) and for each model I ∈ ModD(Σ).

Due to the existence of homomorphism h′ from atoms occurring inM(q) and
>(~x) toM(D) satisfying (i), (ii), and (iii), and the above observation regarding
the UNA, we derive that (cI1 , . . . , cIn) ∈ q′I for each model I ∈ ModD(Σ). Therefore,
by definition of certain answers, ~c ∈ certDq′,Σ. Thus, ~c ∈ certDqO,Σ, as required.

We now show that qO is actually the unique (up to equivalence w.r.t. Σ) UCQ 6=-
minimally complete S-to-O Σ-rewriting of qS , that is, each UCQ6= q′O that is a
complete S-to-O Σ-rewriting of qS is such that certqO,Σ v certq′O,Σ (cf. Definition 3.7).
We do this by way of contradiction.

Let q′O be a UCQ 6= such that certqO,Σ 6v certq′O,Σ, that is, there exists an S-
database D consistent with Σ such that certDqO,Σ 6⊆ certDq′O,Σ. It follows that there
is a tuple of constant ~c = (c1, . . . , cn) such that ~c 6∈ certDq′O,Σ, but ~c ∈ certDqO,Σ.
By the definition of certain answers, there exists a model I ∈ ModD(Σ) such
that (cI1 , . . . , cIn) 6∈ q′O

I , whereas (cI1 , . . . , cIn) ∈ qIO. We now show the existence
of an S-database D′ for which (i) ~c ∈ qD′S , and (ii) I ∈ ModD′(Σ) (and therefore
~c 6∈ certD′q′O,Σ), thus proving that q′O is not a complete S-to-O Σ-rewriting of qS .

Since (cI1 , . . . , cIn) ∈ qIO, there is a disjunct in qO of the form {~t | ∃~Y.M(q) ∧
>(~x)∧ ξ(~x,~Y)} for which there is a homomorphism h from atoms occurring inM(q)
and >(~x) to I satisfying (i) h(~t) = ~c and (ii) h(α) 6= h(β) for each inequality atom
α 6= β occurring in ξ(~x,~Y). Observe that q ∈ Saturate(qS , conLM) is a CQ 6= of the
form {~t | ∃~y.φ(~x, ~y) ∧ ξ(~x, ~y)}. Consider the S-database D′ = h′(φ(~x, ~y)), where h′
extends h by assigning a different fresh constant to each existential variable y ∈ ~y
not occurring in ~Y (i.e., not occurring inM(q)).

Clearly, we have that ~c ∈ qD′ . Furthermore, due to the existence of the homomor-
phism h from atoms occurring inM(q) and >(~x) to I and by construction of D′, we
have 〈D′, I〉 |=M. Notice that this implies I ∈ ModD′(Σ). Indeed, on the one hand
〈D′, I〉 |= M, and, on the other hand, I |= O due to the initial assumption that
I ∈ ModD(Σ). But then, ~c ∈ qD′ for a query q ∈ Saturate(qS , conLM) implies that
~c ∈ qD′S , and (cI1 , . . . , cIn) 6∈ q′O

I for a model I ∈ ModD′(Σ) implies that ~c 6∈ certD′q′O,Σ.
It follows that, for the S-database D′ consistent with Σ, ~c ∈ qD′ and ~c 6∈ certD′q′O,Σ.
Thus, q′O is not a complete S-to-O Σ-rewriting of qS , as required.

The following result is an immediate consequence of the above theorem.

Corollary 5.2. The unique (up to equivalence w.r.t.Σ) UCQ 6=-minimally complete
S-to-O Σ-rewriting of qS always exists.

Differently from the MinimallyComplete algorithm, the running time of the
MinimallyCompleteIneq algorithm becomes exponential in σ(qS). This is due to
the computation of the inequality saturation of qS with respect to conLM, which is
done by means of the Saturate algorithm that, in general, even for a CQ Q and an
empty set of constants as input, it produces a number of queries that is exponential
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in the number of terms occurring in Q. As a result, the MinimallyCompleteIneq
algorithm returns, in general, a UCQ 6= having exponentially many disjuncts with
respect to the number of terms occurring in qS . Finally, we point out that it is
straightforward to construct cases where the number of disjuncts of the unique
(up to equivalence w.r.t. Σ) UCQ6=-minimally complete S-to-O Σ-rewriting of qS is
necessarily exponential in the number of terms occurring in qS .

5.4 Dropping the UNA
Let us now study complete source-to-ontology rewritings when the UNA is not
adopted. Clearly, since DL-LiteR is insensitive to the adoption of the UNA for UCQ
answering, from Theorem 5.2 we easily derive the following corollary.

Corollary 5.3. When the UNA is not adopted, MinimallyComplete(Σ, qS) terminates
and returns the unique (up to equivalence w.r.t.Σ) UCQ-minimally complete S-to-O
Σ-rewriting of qS .

Differently from the UCQ case, the next example shows that a UCQ6= qO that is
a complete S-to-O Σ-rewriting of qS when the UNA is adopted is not necessarily so
when the UNA is not adopted.

Example 5.5. Let Σ = 〈O,S,M〉, qS , and q′O be the OBDM specification, the CQ
over S, and the UCQ 6= over O, respectively, illustrated in Example 5.2.

Consider the S-database D = {s1(c1, c2)}, and the interpretation I for 〈Σ, D〉
with cI1 = cI2 = c, P I = {(c, c)}, and AI = ∅. Clearly, by definition of mapping
satisfaction (cf. Subsection 2.6.3), we have 〈D, I〉 |=M. Since I |= O trivially holds
because O = ∅, we have I ∈ ModD(Σ) (when the UNA is not adopted). Notice,
however, that q′O

I = ∅ because the inequality atom of the first disjunct is not
satisfied. Thus, (c1, c2) 6∈ certDq′O,Σ, whereas (c1, c2) ∈ qDS . Therefore, when the UNA
is not adopted, q′O is not a complete S-to-O Σ-rewriting of qS .

As we will see, the unique (up to equivalence w.r.t. Σ) UCQ6=-minimally complete
S-to-O Σ-rewriting of qS is the UCQ qO illustrated again in Example 5.2.

Quite interestingly, the next theorem proves that, when the UNA is not adopted,
for each OBDM specification Σ = 〈O,S,M〉 and query qS of our scenario under
consideration, the unique (up to equivalence w.r.t. Σ) UCQ6=-minimally complete
S-to-O Σ-rewriting of qS always coincides with the unique (up to equivalence w.r.t. Σ)
UCQ-minimally complete S-to-O Σ-rewriting of qS .

Theorem 5.4. When the UNA is not adopted, MinimallyComplete(Σ, qS) terminates
and returns the unique (up to equivalence w.r.t.Σ) UCQ 6=-minimally complete S-to-O
Σ-rewriting of qS .

Proof. Termination is already proven in Theorem 5.2.
The fact that the computed query qO is a complete S-to-O Σ-rewriting of qS

when the UNA is not adopted follows from the facts that it is so when the UNA is
adopted (cf. Theorem 5.2) and the insensitiveness of the UNA for UCQ answering.
We now prove that, when the UNA is not adopted, qO is actually the unique
(up to equivalence w.r.t. Σ) UCQ6=-minimally complete S-to-O Σ-rewriting of qS ,
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that is, each UCQ6= q′O that is a complete S-to-O Σ-rewriting of qS is such that
certqO,Σ v certq′O,Σ (cf. Definition 3.7). We do this by way of contradiction.

Let q′O be a UCQ 6= such that certqO,Σ 6v certq′O,Σ, that is, there exists an S-
database D consistent with Σ such that certDqO,Σ 6⊆ certDq′O,Σ. It follows that there
is a tuple of constant ~c = (c1, . . . , cm) such that ~c 6∈ certDq′O,Σ, but ~c ∈ certDqO,Σ. By
the definition of certain answers, there exists a model I = 〈∆I , ·I〉 ∈ ModD(Σ) such
that (cI1 , . . . , cIm) 6∈ q′O

I , whereas (cI1 , . . . , cIn) ∈ qIO. We now show the existence
of an S-database D′ for which (i) ~c ∈ qD′S , and (ii) I ∈ ModD′(Σ) (and therefore
~c 6∈ certD′q′O,Σ), thus proving that q′O is not a complete S-to-O Σ-rewriting of qS .

Since (cI1 , . . . , cIm) ∈ qIO, there is a homomorphism h from a CQ qiO of qO for
some i ∈ [1, n] to I, where qiO = {~ti | ∃~Yi.M(qiS)∧>(~xi)}. Consider now the freezing
of qiS = {~ti | ∃yi.φi(~xi, ~yi)}, i.e., the set DqiS

(here denoted by D′) of all facts over S
obtained from φi(~xi, ~yi) by replacing each variable v ∈ ~xi ∪ ~yi with a fresh constant
denoted by cv. Let, moreover, ~c′ be the freezed tuple of constants ~c′ = (c′1, . . . , c′m)
where, for each j ∈ [1,m], c′j = tj if tj is a constant, and c′j = cx if tj = x.

Let I ′ = 〈∆I , ·I′〉 be the interpretation for 〈Σ, D′〉 with the same domain of
I and the interpretation function ·I′ such that (i) cI′ = cI for each constant c
occurring in qiS ; (ii) cI

′
Y = h(Y), for each existential variable Y ∈ ~Yi occurring in

qiO; cI
′
x = h(x) for each distinguished variable x ∈ ~xi occurring in qiS ; (iv) cI

′
y is

any object of ∆I , for each existential variable y ∈ ~yi not occurring inM(qiS); and
(v) the extensions of atomic concepts and atomic roles of O is the same as in the
interpretation I. Observe that (c′1

I′ , . . . , c′m
I′) = (cI1 , . . . , cIm).

Obviously, ~c′ ∈ qiS
D′ trivially holds. Furthermore, due to the existence of the

homomorphism h from atoms occurring inM(qiS) and >(~x) to I, and by construction
of D′ and I ′, we have 〈D′, I ′〉 |= M. Notice that this implies I ′ ∈ ModD′(Σ).
Indeed, on the one hand 〈D′, I ′〉 |=M, and, on the other hand, I ′ |= O due to the
initial assumption that I ∈ ModD(Σ) and the fact that I and I ′ have the same
extensions of atomic concepts and atomic roles. But then, (cI1 , . . . , cIm) 6∈ q′O

I implies
(c′1
I′ , . . . , c′m

I′) 6∈ q′O
I′ since I and I ′ have the same extension of atomic concepts

and atomic roles and constants of qiS are interpreted in the same way in I and I ′.
Thus, (c′1

I′ , . . . , c′m
I′) 6∈ q′O

I′ for a model I ′ ∈ ModD′(Σ) implies ~c′ 6∈ certD′q′O,Σ.

It follows that, for the S-database D′ consistent with Σ, we have ~c′ ∈ qiS
D′ (and

therefore ~c′ ∈ qD′S ) and ~c′ 6∈ certD′q′O,Σ. This allows us to conclude that q′O is not a
complete S-to-O Σ-rewriting of qS , as required.

The following result is an immediate consequence of the above theorem.

Corollary 5.4. When the UNA is not adopted, the unique (up to equivalence
w.r.t.Σ) UCQ6=-minimally complete S-to-O Σ-rewriting of qS always exists and can
be expressed as a UCQ. Furthermore, if qS is a CQ, then it can be expressed as a
CQ as well.

Using techniques developed on Chapter 4, we conclude this chapter with a result
on a particular instance of the verification problem when the UNA is not adopted.
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Theorem 5.5. When the UNA is not adopted, the problem of checking whether a
CQ 6=,b qO is a complete S-to-O Σ-rewriting of a UCQ qS is NP-complete.

Proof. Observe that Theorem 5.1 holds regardless of whether the UNA is adopted or
not. Thus, NP-hardness trivially follows from the NP-hardness result of Theorem 5.1,
which holds even when qO is a CQ.

Notice that, due to Theorem 4.4, when the UNA is not adopted, for a CQ 6=,b qO
over O of arity n, the UCQ NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ over S is the perfect
O-to-S Σ-rewriting of qO, i.e., certDqO,Σ = (NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ)D for
each S-database D. So, analogously to Lemma 5.1, it is easy to see that, when
the UNA is not adopted, qO is a complete S-to-O Σ-rewriting of qS if and only if
qS v (NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ), where n = ar(qO) = ar(qS).

As for the upper bound, it is therefore sufficient to show how to check the
containment qS v (NoUNAPerfRefqO,Σ ∪ PerfRefVnO,Σ) in NP. For this, it is enough
to slightly extend the nondeterministic algorithm illustrated in the upper bound
proof of Theorem 5.1 in the following way: (i) we replace the guessed sequence ρ of
ontology assertions with the sequence ρ′, where ρ′ extends ρ by possibly including
some disjointness assertions of O used to rewrite the inequality atoms of qO; (ii)
Before of checking in polynomial time whether we can apply ρ, we preliminarily check,
again in polynomial time, whether we can rewrite inequality atoms of qO through
the additional assertions of ρ′ (obtaining so a CQ in λ(qO,O), cf. Section 4.2).
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Chapter 6

Sound Source-to-Ontology
Rewritings

In this chapter, we study both the verification, and the computation problem for
sound source-to-ontology rewritings.

6.1 Verification Problem

We recall that, for an S-database D consistent with Σ, PerfRefDqO,Σ computes exactly
certDqO,Σ. So, intuitively, checking whether qO is a sound S-to-O Σ-rewriting of qS
means checking whether for all S-databases D, either ModD(Σ) = ∅ or PerfRefDqO,Σ ⊆
qDS . From this observation, we easily derive the following characterisation.

Lemma 6.1. qO is a sound S-to-O Σ-rewriting of qS if and only if PerfRefqO,Σ v
(qS ∪ PerfRefVnO,Σ), where n = ar(qO) = ar(qS).

Proof. “Only-if part:” Suppose that qO is a sound S-to-O Σ-rewriting of qS . By
definition, we have that for every S-database D either D is not consistent with
Σ, or certDqO,Σ ⊆ qDS . In the former case, we have PerfRefDVO,Σ = {()}, which
obviously implies that PerfRefDqO,Σ ⊆ PerfRefDVnO,Σ. In the latter case, since D is
consistent with Σ, we have that certDqO,Σ = PerfRefDqO,Σ. Therefore, we have that
PerfRefDqO,Σ ⊆ (qS ∪ PerfRefVnO,Σ)D for every S-database D, as required.

“If part:” Suppose, for the sake of contradiction, that qO is not a sound S-to-O
Σ-rewriting of qS , that is, there exists an S-database D consistent with Σ such
that certDqO,Σ 6⊆ qDS . Since D is consistent with Σ, we have (i) PerfRefDVO,Σ = ∅,
which implies that (i) PerfRefDVnO,Σ = ∅ and (ii) certDqO,Σ = PerfRefDqO,Σ. Therefore,
for the S-database D, we have that PerfRefDqO,Σ 6⊆ (qS ∪ PerfRefVnO,Σ)D. Thus,
PerfRefqO,Σ 6v qS ∪ PerfRefVnO,Σ, as required.

The following theorem characterises the computational complexity of the verifi-
cation problem for sound source-to-ontology rewritings.

Theorem 6.1. The verification problem for sound source-to-ontology rewritings is
Πp

2-complete.
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Proof. As for the upper bound, by virtue of Lemma 6.1, it is sufficient to show
how to check the containment PerfRefqO,Σ v (qS ∪ PerfRefVnO,Σ) in Πp

2, where
n = ar(qO). In particular, checking whether PerfRefqO,Σ 6v (qS ∪ PerfRefVnO,Σ) can
be done in Σp

2 in the following way: (i) we guess a CQ q1 over S with the same
arity of qO and size at most σ(M)× σ(qO), and (ii) with an NP-oracle, similarly
to what described in Theorem 5.1, we first check whether q1 corresponds to, or it
is contained in, a disjunct of PerfRefqO,Σ, i.e., whether q1 v PerfRefqO,Σ, and then
whether q1 6v (qS ∪ PerfRefVnO,Σ), again using the method mentioned in Theorem 5.1.

As for the lower bound, the proof of Πp
2-hardness is by a LogSpace reduction

from the ∀∃-CNF problem, which is Πp
2-complete [Stockmeyer, 1976]. ∀∃-CNF is

the problem of deciding, given a 3-CNF formula F = c1∧ . . .∧cp on a set of variables
Y = {y1, . . . , ym} ∪X = {x1, . . . , xn} such that the variables in Y (respectively, X)
are universally (respectively, existentially) quantified, whether F is true, i.e., whether
for each truth assignment to the variables in Y , there exists a truth assignment to
the variables in X that satisfies F . Each clause ci is a disjunction of three literals,
where each literal is either a variable z ∈ Y ∪X or its negated. For i = 1, . . . , p, we
denote by zi,1, zi,2, zi,3 the first, the second, and the third, respectively, variable
appearing (either positive or negated) in clause ci.

We follow a proof strategy that is similar to [Millstein et al., 2003, Theorem 3.3],
in which the reduction can be seen as an extension of the one provided in Lemma 5.2.

In particular, we define an OBDM specification Σ = 〈O,S,M〉 with O containing
no axioms, and S and M as follows. For each clause ci of F , schema S contains
three binary predicates, namely si,1, si,2, and si,3. Intuitively, the first argument of
all three predicates represents the clause ci, while, for each j = 1, 2, 3, the second
argument of predicate si,j represents the variable zi,j . Additionally, S also contains
m unary predicates ei, one for each universally quantified variable yi, and two further
unary predicates, namely zero and one. The mappingM is composed of two parts.

The first part simply mirrors each relation si,j into the atomic role Ri,j of O
through the mapping assertion si,j(x1, x2)→ Ri,j(x1, x2), for each i = 1, . . . , n and
for each j = 1, 2, 3.

The second part of mappingM mirrors each relation ei into the atomic concept
Wi of O through the mapping assertion ei(x)→Wi(x), for each i = 1, . . . ,m. Finally,
in the second part ofM there are two further mapping assertions representing the
possible truth value (either 0 or 1) for the universally quantified variables in Y :
zero(x)→ H1(x, 0) ∧ . . . ∧Hm(x, 0), and one(x)→ H1(x, 1) ∧ . . . ∧Hm(x, 1), where
0 and 1 are constants, and, for each i = 1, . . . ,m, Hi is an atomic role of O.

We define the CQ qS as the conjunction of the atoms appearing in its body: (i)
for each clause ci of F , the body of qS contains the atoms si,1(ai, zi,1), si,2(ai, zi,2),
and si,3(ai, zi,3), where ai denotes a fresh existential variable, and (ii) for each
universally quantified variable yi ∈ Y , there is also the atom ei(yi).

Analogously, we define the CQ qO as the conjunction of the atoms appearing
in its body: (i) for each clause ci of F , and for each of the seven satisfying truth
assignments Ai,k = {v1, v2, v3} for ci (where, for each k = 1, . . . , 7, Ai,k is a constant,
and, for each j = 1, 2, 3, vj is either the constant 1 or the constant 0), the body
of qO contains the atoms Ri,1(Ai,k, v1), Ri,2(Ai,k, v2), and Ri,3(Ai,k, v3), and (ii) for
each universally quantified variable yi ∈ Y , there are also the atoms Wi(yi) and
Hi(ui, yi), where ui denotes a fresh existential variable.
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Observe that Σ = 〈O,S,M〉, qS , and qO can be constructed in LogSpace from
F , where O = ∅,M is both a GAV mapping and a LAV mapping, and both qS and
qO are boolean CQs.

To illustrate the reduction, we use the following formula: F = (x1 ∨ x2 ∨
y1)

∧
(¬x1 ∨ ¬x2 ∨ ¬y2). In this case, the reduction would produce the mappingM

composed of the following mapping assertions:

s1,1(x1, x2) → R1,1(x1, x2),
s1,2(x1, x2) → R1,2(x1, x2),
s1,3(x1, x2) → R1,3(x1, x2),
s2,1(x1, x2) → R2,1(x1, x2),
s2,2(x1, x2) → R2,2(x1, x2),
s2,3(x1, x2) → R2,3(x1, x2),

e1(x) → W1(x),
e2(x) → W2(x),

zero(x) → H1(x, 0) ∧H2(x, 0),
one(x) → H1(x, 1) ∧H2(x, 1),

and the following CQs qS and qO:

qS = {() | ∃a1, a2, x1, x2, y1, y2.s1,1(a1, x1) ∧ s1,2(a1, x2) ∧ s1,3(a1, y1)∧
s2,1(a2, x1) ∧ s2,2(a2, x2) ∧ s2,3(a2, y2)∧
e1(y1) ∧ e2(y2)};

qO = {() | ∃u1, u2, y1, y2.β1(A1,1, 0, 0, 1) ∧ β1(A1,2, 0, 1, 0) ∧ β1(A1,3, 0, 1, 1)∧
β1(A1,4, 1, 0, 0) ∧ β1(A1,5, 1, 0, 1) ∧ β1(A1,6, 1, 1, 0)∧
β1(A1,7, 1, 1, 1) ∧ β2(A2,1, 0, 0, 0) ∧ β2(A2,2, 0, 0, 1)∧
β2(A2,3, 0, 1, 0) ∧ β2(A2,4, 0, 1, 1) ∧ β2(A2,5, 1, 0, 0)∧
β2(A2,6, 1, 0, 1) ∧ β2(A2,7, 1, 1, 0)∧
W1(y1) ∧H1(u1, y1) ∧W2(y2) ∧H2(u2, y2)},

where an atom of the form βi(x, y, z, w) stands for the conjunction of atoms
Ri,1(x, y) ∧Ri,2(x, z) ∧Ri,3(x,w).

Observe that VO ≡ ⊥ and therefore, for each S-database D, we have that
certDqO,Σ = PerfRefDqO,Σ. Note, moreover, that in all the cases where F is without
universally quantified variables, i.e., a 3-CNF instance of the more general ∀∃-CNF
problem, in qS there are no atoms of the form ei(yi), and in qO there are no atoms
of the form Wi(yi) and Hi(ui, yi). In such cases, PerfRefqO,Σ corresponds to the CQ
q over S obtained from qO by unfolding atoms Ri,j(x, y) with si,j(x, y). Using the
same arguments provided in Lemma 5.2, it can be shown that F is satisfiable if and
only if q v qS , thus implying that this is a valid reduction from the 3-CNF problem
to the problem of checking whether qO is a sound S-to-O Σ-rewriting of qS .

We now address the more general case when F is a ∀∃-CNF formula, and prove
that F is true if and only if qO is a sound S-to-O Σ-rewriting of qS .

“Only-if part:” Suppose that F is true, that is, for every truth assignment
to the variables in Y , there exists a truth assignment to the variables in X that
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satisfies F . Note that every disjunct of PerfRefqO,Σ (totally, 2m) corresponds to an
assignment to the variables in Y depending on the choice done for unfolding the
atoms H1(u1, y1), . . . ,Hm(um, ym), where each Hi(ui, yi) is unfolded either with the
atom zero(ui) (thus, forcing yi = 0), or with the atom one(ui) (thus, forcing yi = 1).
This implies that in each disjunct of PerfRefqO,Σ appears either the atom ei(0) or
the atom ei(1), for each i = 1, . . . ,m.

For instance, in the running example, if the atom H1(u1, y1) is unfolded with
zero(u1)∧y1 = 0 and the atom H2(u2, y2) is unfolded with one(u1)∧y2 = 1, then the
disjunct of PerfRefqO,Σ obtained is the following CQ: {() | ∃u1, u2.β1(A1,1, 0, 0, 1) ∧
β1(A1,2, 0, 1, 0)∧β1(A1,3, 0, 1, 1)∧β1(A1,4, 1, 0, 0)∧β1(A1,5, 1, 0, 1)∧β1(A1,6, 1, 1, 0)∧
β1(A1,7, 1, 1, 1)∧β2(A2,1, 0, 0, 0)∧β2(A2,2, 0, 0, 1)∧β2(A2,3, 0, 1, 0)∧β2(A2,4, 0, 1, 1)∧
β2(A2,5, 1, 0, 0)∧β2(A2,6, 1, 0, 1)∧β2(A2,7, 1, 1, 0)∧e1(0)∧zero(u1)∧e2(1)∧one(u2)},
where an atom of the form βi(x, y, z, w) stands for the conjunction of atoms si,1(x, y)∧
si,2(x, z) ∧ si,3(x,w).

Since, however, for every possible truth assignment to the variables in Y there
exists an assignment to the variables in X that satisfies F , it can be readily seen that
this is equivalent to the fact that there is a homomorphism from qS to each possible
disjunct of PerfRefqO,Σ. It follows that PerfRefqO,Σ v qS which, due to Lemma 6.1,
implies that qO is a sound S-to-O Σ-rewriting of qS .

“If part:” Suppose that F is not true, that is, there exists a truth assignment
to the variables in Y such that every possible truth assignment to the variables in
X does not satisfy F . Let V = {v1, . . . , vm} be the assignment to the variables in
Y = {y1, . . . , ym} that makes F not satisfiable. Let, moreover, q be the disjunct
of PerfRefqO,Σ obtained by unfolding, for each i = 1, . . . ,m, the atom Hi(ui, yi)
of qO with zero(ui) ∧ yi = 0 if vi is 0, and with one(ui) ∧ yi = 1 otherwise (i.e.,
vi = 1). Since F is not satisfiable when substituting variable yi with value vi for
each i = 1, . . . ,m, this implies that there is no homomorphism from qS to q. It
follows that PerfRefqO,Σ 6v qS , and, since VO ≡ ⊥, we also have that PerfRefqO,Σ 6v
(qS ∪ PerfRefVO,Σ) which, due to Lemma 6.1, implies that qO is not a sound S-to-O
Σ-rewriting of qS .

As a last consideration, we observe that the same proof works even with a
reduction whereM is a pure GAV mapping but not a LAV mapping, rather than
both a GAV mapping and a LAV mapping as in the above case. In particular, it is
straightforward to verify that for this it is sufficient to apply the following changes
at the above reduction:

• for each i = 1, . . . ,m, now consider ei as a binary predicate;

• replace the second part of the mappingM by including, for each i = 1, . . . ,m,
the following two pure GAV mapping assertions: ei(x, 0) → Wi(x) and
ei(x, 1)→Wi(x);

• for each i = 1, . . . ,m, replace in qS the atom ei(yi) with the atom ei(ui, yi),
where ui is a fresh existential variable;

• replace in qO the conjunction of atomsWi(yi)∧Hi(ui, yi) with the atomWi(ui).
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Note that the result of Πp
2-hardness already holds when both qS and qO are

boolean CQs, and Σ = 〈O,S,M〉 is such that the ontology O contains no axioms
andM is either both a GAV mapping and a LAV mapping, or a pure GAV mapping.

It is an interesting open problem to derive the computational complexity of the
verification problem for sound source-to-ontology rewritings whenM is both a pure
GAV mapping and a LAV mapping.

6.2 Computation Problem
We now address the problem of computing UCQ-maximally sound source-to-ontology
rewritings. Our main result is that there are many cases where UCQ-maximally
sound source-to-ontology rewritings are not guaranteed to exist.

In order to illustrate the result, from the general scenario introduced in Sec-
tion 3.2, we introduce two restricted ones, namely restricted scenario for CQJFEs
and restricted scenario for UCQJFEs. In both such restrained scenarios, the setting
for OBDM specifications is obtained from the general one by limiting the DL ontology
language to DL-LiteRDFS rather than DL-LiteR, and limiting the mapping language
to follow the pure GAV approach rather than the GLAV approach.

The difference between the two restricted scenarios is in the query language LS
allowed for expressing data services, where in the former LS denotes the class of
CQJFEs, whereas in the latter LS denotes the class of UCQJFEs.

We now show that, surprisingly, as soon as we try to expand the restricted
scenario for CQJFEs either by extending its associated specific setting for OBDM
specifications, or by extending the query language LS to CQs rather than CQJFEs,
we lose the guarantee of the existence of UCQ-maximally sound source-to-ontology
rewritings of queries over S.

Theorem 6.2. UCQ-maximally sound source-to-ontology rewritings of a query qS
may not exist if we extend the restricted scenario for CQJFEs with one of the
following features:

1. qS expressed in a fragment of CQs going beyond CQJFEs.

2. disjointness assertions in the ontology;

3. inclusion assertions of the form B v ∃R in the ontology, where B is a basic
concept and R is a basic role;

4. LAV mapping assertions appearing in the mapping, even without joins involving
existential variables in the right-hand side;

5. non-pure GAV mapping assertions appearing in the mapping.

Proof. 1 This case already follows from the proof of Corollary 3.3. We now prove a
stronger version, where only one existential variable occurs in the body of the CQ qS .
Let Σ = 〈O,S,M〉 be the following OBDM specification of the restricted setting:

• O = ∅

• S = { s1, s2, s3, s4, s5 }
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• M = { m1,m2,m3,m4 }, where:
m1 : s1(x) → A1(x),
m2 : s2(x1) ∧ s3(x1, x2) → P (x1, x2),
m3 : s1(x2) ∧ s5(x1, x2) → P (x1, x2),
m4 : s2(x) ∧ s4(x) → A2(x).

Let qS be the following boolean CQ over S: qS = {() | ∃y.s1(y) ∧ s2(y)}.
Observe that the CQ q′O = {() | ∃y1, y2.A1(y1) ∧A2(y2)} is not a sound S-to-O

Σ-rewriting of qS , because the query q′S = {() | ∃y1, y2.s1(y1) ∧ s2(y2) ∧ s4(y2)} is a
disjunct of PerfRefq′O,Σ (in fact, the only one) such that q′S 6v qS (cf. Lemma 6.1).

In order to continue the proof, we now introduce a pattern for an infinite number
of CQs over O and related technical lemmata. Specifically, for every i ≥ 0, let qiO be
the following CQ over O:

• if i = 0, then
q0
O = {() | ∃y0.A1(y0) ∧A2(y0)}.

• if i ≥ 1, then

qiO = {() | ∃y0, . . . , yi.A1(y0) ∧
( j=i−1∧

j=0
P (yj , yj+1)

)
∧A2(yi)}.

Lemma 6.2. For every i ≥ 0, we have that qiO is a sound S-to-O Σ-rewriting of qS .

Proof. As for q0
O, its perfect O-to-S Σ-rewriting is the CQ PerfRefq0

O,Σ
= {() |

∃y0.s1(y0)∧s2(y0)∧s4(y0)}, which is clearly contained in qS . Thus, due to Lemma 6.1,
we can conclude that q0

O is a sound S-to-O Σ-rewriting of qS .
Consider now qiO, for each i ≥ 0. Observe that PerfRefqiO,Σ is a union of

CQs, where the body of each CQ contains: (i) the atom s1(y0) originating from
A1(y0); (ii) the conjunction of atoms s2(yi) ∧ s4(yi) originating from A2(yi); and
(iii) for every j ∈ [0, i− 1], either the conjunction of atoms s2(yj) ∧ s3(yj , yj+1) or
the conjunction of atoms s1(yj+1) ∧ s5(yj , yj+1) originating from P (yj , yj+1) using
the mapping assertions m2 and m3, respectively. It follows that each disjunct
of PerfRefqiO,Σ contains the conjunction of atoms s1(yk) ∧ s2(yk), for at least one
k ∈ [0, i]. This implies that each disjunct of PerfRefqiO,Σ is contained in qS , and
therefore PerfRefqiO,Σ v qS . Thus, due to Lemma 6.1, we can conclude that qiO is a
sound S-to-O Σ-rewriting of qS .

Lemma 6.3. For every pair of natural numbers i, k ≥ 0 with i 6= k, we have that
both certqiO,Σ 6v certqkO,Σ and certqkO,Σ 6v certqiO,Σ hold.

Proof. Let i, k > 0 (the case in which either i or k is 0 can be proven analogously)
be any pair of natural numbers such that i 6= k, and consider the CQs qiO and qkO. To
prove the claim, it is sufficient to exhibit a disjunct qiS of PerfRefqiO,Σ and a disjunct
qkS of PerfRefqkO,Σ such that both qiS 6v PerfRefqkO,Σ and qkS 6v PerfRefqiO,Σ hold. Let qiS
(respectively, qkS) be the disjunct of PerfRefqiO,Σ (respectively, PerfRefqkO,Σ) obtained
by unfolding the atom A1(y0) with s1(y0), the atom A2(yi) (respectively, A2(yk))
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with s2(yi) ∧ s4(yi) (respectively, s2(yk) ∧ s4(yk)), and all the atoms P (yj , yj+1), for
j ∈ [0, i−1] (respectively, j ∈ [0, k−1]), with s2(yj)∧s3(yj , yj+1). It is immediate to
see that each possible other disjunct qk′S (respectively, qi′S ) of PerfRefqkO,Σ (respectively,
PerfRefqiO,Σ) different from qkS (respectively, qiS) is such that qiS 6v qk

′
S (respectively,

qkS 6v qi
′
S ), because qk

′
S (respectively, qi′S ) contains at least an atom with s5 as predicate

name, whereas qiS (respectively, qkS) does not.
Thus, in order to prove that qiS 6v PerfRefqkO,Σ (respectively, qkS 6v PerfRefqiO,Σ)

hold, it is enough to show that qiS 6v qkS (respectively, qkS 6v qiS) hold. Consider the
disjuncts qiS and qkS obtained as described above, that is:

qiS = {() | ∃y0, . . . , yi.s1(y0) ∧
( j=i−1∧

j=0
s2(yj) ∧ s3(yj , yj+1)

)
∧ s2(yi) ∧ s4(yi)}

qkS = {() | ∃y0, . . . , yk.s1(y0) ∧
( j=k−1∧

j=0
s2(yj) ∧ s3(yj , yj+1)

)
∧ s2(yk) ∧ s4(yk)}

Let k > i (the case i > k is specular). Since (i) both queries are rooted at s1(y0);
and (ii) in qiS there is the conjunction of atoms s2(yi) ∧ s4(yi) whereas in qkS there
is s2(yi) but not s4(yi), one can easily verify that this implies qkS 6v qiS . On the
other hand, since (i) both queries are rooted at s1(y0); and (ii) in qkS there is the
conjunction of atoms s3(yi, yi+1) ∧ s2(yi+1) which is not occurring in qiS , one can
easily verify that this implies qiS 6v qkS . It follows that both qkS 6v qiS and qiS 6v qkS
hold, as required.

Before going further, we introduce a fair assumption. In what follows, without
loss of generality, when we say that a CQ q′O over O is (i) a sound S-to-O Σ-rewriting
of qS , and (ii) the body of q′O is a conjunction of n atoms, we implicitly assume that
all the n atoms occurring in the body of q′O are relevant, i.e., if we remove any atom
from the body of q′O, then we obtain a CQ that is not a sound S-to-O Σ-rewriting of
qS . Clearly, when seeking for (U)CQ-maximally sound source-to-ontology rewritings
of queries over the source schema, one can always limit the attention to only (unions
of) CQs whose body is the conjunction of relevant atoms. Furthermore, for the given
Σ and qS , we can limit the attention to only CQs with no constants in their body.

Lemma 6.4. For every n ≥ 2, if a CQ q′O over O is a sound S-to-O Σ-rewriting of
qS and the body of q′O is the conjunction of n atoms, then q′O ≡ qiO, where i = n− 2.

Proof. We prove the claim by induction on the number of atoms n.
Base step (n = 2): Let q′O be a sound S-to-O Σ-rewriting of qS whose body is

the conjunction of only two atoms. Since q′O is a sound S-to-O Σ-rewriting of qS ,
it must be the case that each disjunct q′ of PerfRefq′O,Σ is such that q′ v qS . This
implies that in the body of each q′ there must be at least a conjunction of atoms
of the form s1(y′) ∧ s2(y′) for some existential variable y′. Furthermore, since by
assumption the body of q′S is the conjunction of only two atoms, by inspecting the
mapping assertions inM, one can easily verify that the only possibility for q′O to be
a sound S-to-O Σ-rewriting of qS is that q′O = {() | ∃y′.A1(y′) ∧ A2(y′)} for some
existential variable y′. It follows that q′O ≡ q0

O, as required.
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Inductive step: Let q′O be a sound S-to-O Σ-rewriting of qS whose body is the
conjunction of n atoms. We now prove that q′O ≡ qiO, where i = n− 2. To start, let
qO be the CQ obtained from q′O by removing one atom F from the body of q′O. Due
to the fair assumption that the body q′O is the conjunction of only relevant atoms,
we get that qO is not a sound S-to-O Σ-rewriting of qS . Let the removed atom be
of the form F = P (z, z′) (the cases F = A(z) and F = B(z′) are easier and can be
proven following a similar line of reasoning) for some existential variables z, z′ not
necessarily distinct, and consider the two unfoldings of the atom P (z, z′), namely
s2(z) ∧ s3(z, z′) and s1(z′) ∧ s5(z, z′). Since q′O is a sound S-to-O Σ-rewriting of
qS whereas qO is not, by construction we have that each possible disjunct of both
PerfRefq′O,Σ and PerfRefqO,Σ contains both the atom s1(z) and the atom s2(z′) (if
not, we easily get a contradiction on the fact that q′O is a sound S-to-O Σ-rewriting
of qS). Consider now the following two queries:

• Let qlO be the CQ obtained from q′O by (i) removing the atom A2(z′′) (for some
existential variable z′′, such atom must occur in the body of q′O, otherwise we
easily get a contradiction on the fact that q′O is a sound S-to-O Σ-rewriting of
qS), and (ii) replacing the above discussed atom P (z, z′) with the atom A2(z).

• Let qrO be the CQ obtained from q′O by (i) removing the atom A1(z′′) (for some
existential variable z′′, such atom must occur in the body of q′O, otherwise we
easily get a contradiction on the fact that q′O is a sound S-to-O Σ-rewriting of
qS), and (ii) replacing the above discussed atom P (z, z′) with the atom A1(z′).

Since as discussed above each disjunct of PerfRefqO,Σ contains the atom s1(z)
(respectively, s2(z′)), we get that qlO (respectively, qrO) is a sound S-to-O Σ-rewriting
of qS because the unfolding of the atom A2(z) (respectively, A1(z′)) is s2(z) ∧ s4(z)
(respectively, s1(z′)), and therefore there is the join s1(z) ∧ s2(z) (respectively,
s1(z′) ∧ s2(z′)) in each disjunct of PerfRefqlO,Σ (respectively, PerfRefqrO,Σ).

Notice, however, that both qlO and qrO are CQs over O whose body is the
conjunction of at most n− 1 atoms. Since they are both sound S-to-O Σ-rewritings
of qS , by the inductive hypothesis, we derive that

qlO ≡ {() | ∃yl0, . . . , ylk+1, z.A1(yl0) ∧
( j=k∧
j=0

P (ylj , ylj+1)
)
∧ P (ylj+1, z) ∧A2(z)};

qrO ≡ {() | ∃z′, yr0, . . . , yrm+1.A1(z′) ∧ P (z′, yr0) ∧
( j=m∧
j=0

P (yr0, yrj+1)
)
∧A2(yrm+1)},

where 0 ≤ k,m ≤ i − 1 (we recall that i = n − 2). By conjoining qlO with qrO and
replacing the conjunction A2(z)∧A1(z′) with the original atom P (z, z′), we get that

q′O ≡ {() |∃yl0, . . . , ylk+1, z, z
′, yr0, . . . , y

r
m+1.A1(yl0) ∧

( j=k∧
j=0

P (ylj , ylj+1)
)
∧ P (ylj+1, z)∧

∧ P (z, z′) ∧ P (z′, yr0) ∧
( j=m∧
j=0

P (yr0, yrj+1)
)
∧A2(yrm+1)},

where, since by assumption the body of q′O is the conjunction of n relevant atoms,
one can easily verify that q′O ≡ qiO, as required.
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Using the above lemmata, we are now able to prove that no UCQ-maximally
sound S-to-O Σ-rewriting of qS exists. Suppose, for the sake of contradiction, the
existence of a UCQ q′O = q′O

1 ∪ . . . ∪ q′O
n which is a UCQ-maximally sound S-to-O

Σ-rewriting of qS . For every j ∈ [1, n], let kj be the number of atoms occurring
in the body of the CQ q′O

j . By Lemma 6.4, we derive that q′O
j ≡ q

kj−2
O , for each

j ∈ [1, n]. It follows that q′O ≡ q′′O, where q′′O =
⋃
j∈[1,n] q

kj−2
O . Consider now the

query q′′′O = q′′O ∪ qlO, where l ≥ 0 is an arbitrary number such that l 6= kj − 2 for
each j ∈ [1, n]. Observe that, by Lemma 6.3, we have that certqlO,Σ 6v cert

q
kj−2
O ,Σ

, for
each j ∈ [1, n]. This implies that certq′′O,Σ @ certq′′′O ,Σ, and therefore, since q′O ≡ q′′O,
we also have that certq′O,Σ @ certq′′′O ,Σ. Furthermore, since by Lemma 6.2 each
disjunct of q′′′O is a sound S-to-O Σ-rewriting of qS , we can finally conclude that q′′′O
is a sound S-to-O Σ-rewriting of qS such that certq′O,Σ @ certq′′′O ,Σ. Thus, following
Definition 3.4, this is clearly a contradiction on the fact that q′O is a UCQ-maximally
sound S-to-O Σ-rewriting of qS , as required.

For a more accurate characterisation about the illustrated OBDM specification
Σ and CQ qS , let us define an infinite union of CQs qO over O as follows:

qO =
⋃
i≥0

qiO.

From the foregoing lemmata and considerations, one can immediately derive that qO
is a maximally sound S-to-O Σ-rewriting of qS in the class of Datalog queries.

2 Consider the following OBDM specification Σ = 〈O,S,M〉, where:

• O = { A1 v ¬A1, A2 v ¬A2 }

• S = { s1, s2, s3, s4 }

• M = { m1,m2,m3,m4,m5,m6,m7,m8 }, where:

m1 : s1(x1, x2) → P1(x1, x2),
m2 : s2(x1, x2) → P1(x1, x2),
m3 : s2(x1, x2) → P2(x1, x2),
m4 : s3(x1, x2) → P2(x1, x2),
m5 : s3(x1, x2) → P3(x1, x2),
m6 : s4(x1, x2) → P3(x1, x2),
m7 : ∃y1, y2.s2(y1, x) ∧ s3(x, y2) → A1(x),
m8 : ∃y1, y2.s2(x, y1) ∧ s4(y2, x) → A2(x).

Let qS be the following CQJFE over S: qS = {(x1, x2) | s1(x1, x2)}.
Since O contains the disjointness assertions A1 v ¬A1 and A2 v ¬A2, the

violation query for O is VO = {() | ∃y.A1(y)} ∪ {() | ∃y.A2(y)}, and therefore
V2
O = {(x1, x2) | ∃y.A1(y)∧>(x1, x2)} ∪ {() | ∃y.A2(y)∧>(x1, x2)}. By looking at

the mapping assertions m7 and m8 occurring inM, this means that each query of
arity 2 over S that has a join either between the second component of s2 and the first
component of s3, or between the first component of s2 and the second component of
s4 is contained in PerfRefV2

O,Σ
.
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Observe that the CQ q′O = {(x1, x2) | P1(x1, x2)} is not a sound S-to-O Σ-
rewriting of qS , because the query q′S = {(x1, x2) | s2(x1, x2)} is a disjunct of
PerfRefqO,Σ such that q′S 6v (qS ∪ PerfRefV2

O,Σ
) (cf. Lemma 6.1).

In order to continue the proof, we now introduce a pattern for an infinite number
of CQs over O and related technical lemmata. Specifically, for every i ≥ 0, let qiO be
the following CQ over O:

• if i = 0, then q0
O is the following CQ:

{(x1, x2) | P1(x1, x2) ∧ P3(x2, x1)}.

• if i = 1, then q1
O is the following CQ:

{(x1, x2) | ∃y1.P1(x1, x2) ∧ P2(x2, y1) ∧ P3(y1, x1)}.

• if i ≥ 2, then qiO is the following CQ:

{(x1, x2) | ∃y1, . . . , yi.P1(x1, x2)∧P2(x2, y1)∧
( j=i−1∧

j=1
P2(yj , yj+1)

)
∧P3(yi, x1)}.

Lemma 6.5. For every i ≥ 0, we have that qiO is a sound S-to-O Σ-rewriting of qS .

Proof. Due to Lemma 6.1, it is enough to show that PerfRefqiO,Σ v (qS ∪ PerfRefV2
O,Σ

),
i.e., each disjunct q′S of PerfRefqiO,Σ is such that either q′S v qS or q′S v PerfRefV2

O,Σ
,

for every i ≥ 0.
For each i ≥ 0, the body of qiO contains the atom P1(x1, x2) which, by looking

at the mapping assertions inM, can be unfolded with either the atom s1(x1, x2)
or the atom s2(x1, x2). Half of the disjuncts of PerfRefqiO,Σ (the ones in which
P1(x1, x2) is unfolded with s1(x1, x2)) are therefore easily contained in the CQJFE
qS = {(x1, x2) | s1(x1, x2)}. To prove that PerfRefqiO,Σ v (qS ∪ PerfRefV2

O,Σ
), we

now show that the other half of the disjuncts of PerfRefqiO,Σ (the ones in which the
atom P1(x1, x2) is unfolded with s2(x1, x2)) are contained in PerfRefV2

O,Σ
.

As for q0
O, consider the disjuncts of PerfRefq0

O,Σ
in which the atom P1(x1, x2) is

unfolded with the atom s2(x1, x2), namely q′S
1 = {(x1, x2) | s2(x1, x2) ∧ s3(x2, x1)}

and q′S
2 = {(x1, x2) | s2(x1, x2) ∧ s4(x2, x1)}. Since in q′S

1 there is the join between
the second component of s2 and the first component of s3, and since in q′S

2 there
is the join between the first component of s2 and the second component of s4, we
derive that they are both contained in PerfRefV2

O,Σ
, as required.

As for q1
O, consider the disjuncts of PerfRefq1

O,Σ
in which the atom P1(x1, x2)

is unfolded with the atom s2(x1, x2), namely q′S
1 = {(x1, x2) | ∃y1.s2(x1, x2) ∧

s2(x2, y1) ∧ s3(y1, x1)}, q′S
2 = {(x1, x2) | ∃y1.s2(x1, x2) ∧ s2(x2, y1) ∧ s4(y1, x1)},

q′S
3 = {(x1, x2) | ∃y1.s2(x1, x2) ∧ s3(x2, y1) ∧ s3(y1, x1)} and q′S

4 = {(x1, x2) |
∃y1.s2(x1, x2)∧ s3(x2, y1)∧ s4(y1, x1)}. One can verify that in each disjunct q′S

i, for
i ∈ [1, 4], there is the join either between the second component of s2 and the first
component of s3, or between the first component of s2 and the second component of
s4, and therefore they are contained in PerfRefV2

O,Σ
, as required.



6.2 Computation Problem 103

Let us now consider qiO = {(x1, x2) | ∃y1, . . . , yi.P1(x1, x2) ∧ P2(x2, y1) ∧(∧j=i−1
j=1 P2(yj , yj+1)

)
∧ P3(yi, x1)}, for any i ≥ 2, and its disjuncts PerfRefqiO,Σ

over S in which the atom P1(x1, x2) is unfolded with the atom s2(x1, x2). Consider
first all the possible disjuncts where at least an atom of the form P2(z, z′) occurring
in qiO is unfolded with the atom s3(z, z′). We now prove that they are all contained
in PerfRefV2

O,Σ
. If P2(x1, y1) is unfolded with the atom s3(x2, y1), then there is the

presence of s2(x1, x2)∧s3(x2, y1) (i.e., a join between the second component of s2 and
the first component of s3). Analogously, let the atom P2(x2, y1) be unfolded with the
atom s2(x2, y1) but the atom P2(y1, y2) be unfolded with the atom s3(y1, y2). Again,
there is a join between the second component of s2 and the first component of s3,
this time on the variable y1. Now, let k ∈ [2, i−1] be the number such that the atom
P2(yk, yk+1) is unfolded with the atom s3(yk, yk+1) but all the atoms P2(yl, yl+1),
for l < k, are unfolded with s2(yl, yl+1). Once again, there is a join between the
second component of s2 and the first component of s3, this time on the variable yk.

To conclude the proof, it remains to address the case of the other disjuncts in
which all the atoms of the form P2(z, z′) occurring in qiO are unfolded with s3(z, z′).
In particular, note that such disjuncts contain both the atom s2(x1, x2) (obtained
from P1(x1, x2)) and the atom s2(yi−1, yi) (obtained from P2(yi−1, yi)). There are
two possible cases: either the atom P3(yi, x1) is unfolded with s3(yi, x1) or with
s4(yi, x1). In the former case, there is a join between the second component of s2
and the first component of s3, this time on the variable yi. In the latter case, there
is a join between the first component of s2 and the second component of s4. Thus,
we can conclude that all the disjuncts of qiO in which the atom P1(x1, x2) is unfolded
with the atom s2(x1, x2) are contained in PerfRefV2

O,Σ
, as required.

Lemma 6.6. For every pair of natural numbers i, k ≥ 0 with i 6= k, we have that
both certqiO,Σ 6v certqkO,Σ and certqkO,Σ 6v certqiO,Σ hold.

Proof. Let i, k ≥ 2 (the case in which either i or k is less than 2 can be proven
analogously) be any pair of natural numbers such that i 6= k, and consider the CQs
qiO and qkO. To prove the claim, it is sufficient to exhibit a disjunct qiS of PerfRefqiO,Σ
and a disjunct qkS of PerfRefqkO,Σ such that both qiS 6v (PerfRefqkO,Σ ∪ PerfRefV2

O,Σ
)

and qkS 6v (PerfRefqiO,Σ ∪ PerfRefV2
O,Σ

) hold. Let qiS (respectively, qkS) be the disjunct
obtained by unfolding the atom P1(x1, x2) with s1(x1, x2), the atom P3(yi, x1)
(respectively, P3(yk, x1)) with s3(yi, x1) (respectively, s3(yk, x1)), and all the atoms
P (yj , yj+1), for j ∈ [1, i − 1] (respectively, j ∈ [1, k − 1]), with s3(yj , yj+1). Some
immediate observations follow: (i) both qiS 6v PerfRefV2

O,Σ
and qkS 6v PerfRefV2

O,Σ
hold;

(ii) all the disjuncts qk′S (respectively, qi′S ) of PerfRefqkO,Σ (respectively, PerfRefqiO,Σ)
obtained by unfolding the atom P1(x1, x2) with s2(x1, x2) are such that qiS 6v qk

′
S

(respectively, qkS 6v qi
′
S ), because qk

′
S (respectively, qi′S ) contains the atom s2(x1, x2),

whereas qiS (respectively, qkS) does not; (iii) all the disjuncts qk′S (respectively, qi′S )
of PerfRefqkO,Σ (respectively, PerfRefqiO,Σ) obtained by unfolding the atom P3(yk, x1)
(respectively, P3(yi, x1)) with s2(yk, x1) (respectively, s2(yi, x1)) are such that qiS 6v
qk
′
S (respectively, qkS 6v qi

′
S ), because qk

′
S (respectively, qi′S ) contains the atom s2(yk, x1)

(respectively, s2(yi, x1)), whereas qiS (respectively, qkS) does not; (iv) all the disjuncts
qk
′
S (respectively, qi′S ) of PerfRefqkO,Σ (respectively, PerfRefqiO,Σ) obtained by unfolding
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the atom P2(yj , yj+1), for some j ∈ [1, k − 1] (respectively, j ∈ [1, i − 1]), with
s2(yj , yj+1) are such that qiS 6v qk

′
S (respectively, qkS 6v qi

′
S ), because qk

′
S (respectively,

qi
′
S ) contains the atom s2(yj , yj+1), whereas qiS (respectively, qkS) does not.

It follows that, in order to prove that qiS 6v PerfRefqkO,Σ (respectively, qkS 6v
PerfRefqiO,Σ) hold, it is enough to show that qiS 6v qkS (respectively, qkS 6v qiS) hold.
Consider the disjuncts qiS and qkS obtained as described above, that is:

qiS = {() | ∃y1, . . . , yi.s2(x1, x2) ∧ s3(x2, y1) ∧
( j=i−1∧

j=1
s2(yj , yj+1)

)
∧ s3(yi, x1)}

qkS = {() | ∃y1, . . . , yk.s2(x1, x2) ∧ s3(x2, y1) ∧
( j=k−1∧

j=1
s2(yj , yj+1)

)
∧ s3(yk, x1)}

One can easily verify that, if either i > k or k > i hold, then both qiS 6v qkS and
qkS 6v qiS hold, as required.

Lemma 6.7. If a CQ q′O over O is a sound S-to-O Σ-rewriting of qS , then q′O v qiO,
for some i ≥ 0.

Proof. Let a CQ q′O = {(t1, t2) | ∃~y′.φ(t1, t2, ~y′)} be a sound S-to-O Σ-rewriting of
qS , where the target list (t1, t2) comprises two (not necessarily distinct) terms t1 and
t2. Clearly, since q′O is a sound S-to-O Σ-rewriting of qS , by inspecting the mapping
assertions inM, it is easy to see that φ(t1, t2, ~y′) must contain the atom P1(t1, t2)
(unless φ(t1, t2, ~y′) ≡ ⊥, from which the claim trivially follows). Due to the mapping
assertion m2, however, there are disjuncts of PerfRefq′O,Σ that are not contained in
qS , because the atom P1(t1, t2) can be unfolded with s2(t1, t2). It follows that the
only possibility for q′O to be a sound S-to-O Σ-rewriting is that those disjuncts must
be contained in PerfRefV2

O,Σ
, i.e., they must have a join either between the second

component of s2 and the first component of s3, or between the first component of s2
and the second component of s4.

By inspecting again the mapping, one can verify that at least an atom of the form
P3(ti, t1), for some term ti, must occur in φ(t1, t2, ~y′) (without loss of generality, we
can assume that only one of such atom occurs in φ(t1, t2, ~y′)). Indeed, if this is not
the case, then the disjunct q′S of PerfRefq′O,Σ in which the atom P1(t1, t2) is unfolded
with s2(t1, t2), all the atoms of the form P2(z, z′) (for any pair of terms z, z′) are
unfolded with s2(z, z′), and all the atoms of the form P3(zi, z′) (for any pair of terms
zi, z

′, where z′ 6= t1) are unfolded with s4(zi, z′) is such that q′S 6v qS ∪ PerfRefV2
O,Σ

,
thus contradicting the fact that q′O is a sound S-to-O Σ-rewriting of qS . Observe
that there are two possible cases for the atom P3(ti, t1): either ti = t2 or not. In the
former case, we trivially have that q′O v q0

O, as required. Thus, in what follows, we
explore the latter case. In the case that there is also an atom of the form P2(t2, ti)
in the body φ(t1, t2, ~y′) of q′O, one can easily verify that q′O v q1

O, as required.
Let us now consider the case in which ti 6= t2 and P2(t2, ti) does not occur.

Specifically, we prove that in the body φ(t1, t2, ~y′) of q′O there must necessarily exist a
conjunction of atoms of the form P2(t2, z1)∧P2(z1, z2)∧. . .∧P2(zi−2, zi−1)∧P2(zi−1, ti)
for some terms z1, z2, . . . , zi−1 and for some number i ≥ 2. Suppose, for the sake
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of contradiction, that such conjunction of atoms does not occur in the body of q′O,
i.e., at least one of the following two conditions hold: (i) the atom P2(t2, z1) for
some term z1 is missing; (ii) for all the possible conjunction of atoms of the form
P2(t2, z1) ∧ P2(z1, z2) ∧ . . . ∧ P2(zi−2, zi−1) ∧ P2(zi−2, zi−1) for terms z1, z2, . . . , zi−1
and for a number i ≥ 2, the atom P2(zi−1, ti) is missing in φ(t1, t2, ~y′).

If (i) holds, then consider the disjunct q′S of PerfRefq′O,Σ obtained by unfolding the
atom P1(t1, t2) with s2(t1, t2), all the atoms of the form P2(z, z′) (for any pair of terms
z, z′ with z 6= t2) with s3(z, z′), and the atom P3(ti, t1) with s3(ti, t1). Obviously,
we have that q′S 6v qS and, moreover, since s3(t2, z) does not occur in the body of q′S
for any term z, we easily get that q′S 6v PerfRefV2

O,Σ
. Thus, q′S 6v qS ∪ PerfRefV2

O,Σ
,

which contradicts the fact that q′O is a sound S-to-O Σ-rewriting of qS .
If (ii) holds, then consider the disjunct q′S of PerfRefq′O,Σ obtained by unfolding

the atom P1(t1, t2) with s2(t1, t2), all the possible conjunction of atoms of the
form P2(t2, z1) ∧ P2(z1, z2) ∧ . . . ∧ P2(zi−2, zi−1), for terms z1, z2, . . . , zi−1 and for a
number i ≥ 2, with s2(t2, z1) ∧ s2(z1, z2) ∧ . . . ∧ s2(zi−2, zi−1), all the other possible
atoms P2(z, z′) (for any pair of terms z, z′) not included in the previous case with
s3(z, z′), and the atom P3(ti, t1) with s3(ti, t1). Obviously, we have that q′S 6v qS and,
moreover, since s2(z, ti) does not occur in the body of q′S for any term z, one can
easily verify that q′S 6v PerfRefV2

O,Σ
. Thus, q′S 6v qS ∪ PerfRefV2

O,Σ
, which contradicts

the fact that q′O is a sound S-to-O Σ-rewriting of qS .
As a consequence of the above considerations, we derive that the body of each

q′O that is a sound S-to-O Σ-rewriting must contains the conjunction of atoms
P1(t1, t2)∧P2(t2, z1)∧P2(z1, z2)∧ . . .∧P2(zi−2, zi−1)∧P2(zi−1, ti)∧P3(ti, t1), where
(t1, t2) is the target list of q′O and i is a number such that i ≥ 2. But then, we easily
get that q′O is such that q′O v qiO, as required.

Using the above lemmata, we are now able to prove that no UCQ-maximally
sound S-to-O Σ-rewriting of qS exists. Suppose, for the sake of contradiction, the
existence of a UCQ q′O = q′O

1 ∪ . . . ∪ q′O
n which is a UCQ-maximally sound

S-to-O Σ-rewriting of qS . For each j ∈ [1, n], by Lemma 6.7, we know the existence
of a number ij for which q′O

j v qijO . It follows that q′O v q′′O, where q′′O =
⋃
j∈[1,n] q

ij
O .

Consider now the query q′′′O = q′′O ∪ qlO, where l ≥ 0 is an arbitrary number
such that l 6= ij for each j ∈ [1, n]. Observe that, by Lemma 6.6, we have that
certqlO,Σ 6v cert

q
ij
O ,Σ

, for each j ∈ [1, n]. This implies that certq′′O,Σ @ certq′′′O ,Σ, and
therefore, since q′O v q′′O, we also have that certq′O,Σ @ certq′′′O ,Σ. Furthermore, since
by Lemma 6.5 each disjunct of q′′′O is a sound S-to-O Σ-rewriting of qS , we can
finally conclude that q′′′O is a sound S-to-O Σ-rewriting such that certq′O,Σ @ certq′′′O ,Σ.
Thus, following Definition 3.4, this is clearly a contradiction on the fact that q′O is a
UCQ-maximally sound S-to-O Σ-rewriting of qS , as required.

For a more accurate characterisation about the illustrated OBDM specification
Σ and CQJFE qS , let us define an infinite union of CQs qO over O as follows:

qO =
⋃
i≥0

qiO.

From the foregoing lemmata and considerations, one can immediately derive that qO
is a maximally sound S-to-O Σ-rewriting of qS in the class of Datalog queries.
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3 Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { A v ∃P }

• S = { s1, s2 }

• M = { m1,m2 }, where:
m1 : s1(x1, x2) → P (x1, x2),
m2 : s2(x) → A(x).

Let qS be the following CQJFE over S: qS = {(x) | ∃y.s1(x, y)}.
Observe that the CQ q′O = {(x) | ∃y.P (x, y)} is not a sound S-to-O Σ-rewriting

of qS , because the query q′S = {(x) | s2(x)} is a disjunct of PerfRefq′O,Σ (obtained by
rewriting q′O with the ontology assertion A v ∃P , thus obtaining the CQ {(x) | A(x)},
and then by unfolding this latter with respect toM) such that q′S 6v qS .

In order to continue the proof, we now introduce two patterns for an infinite
number of CQs over O and related technical lemmata. The first one ranges over
natural numbers. Specifically, for every i ≥ 0, let qiO be the following CQ over O:

• if i = 0, then
q0
O = {(x) | ∃y0, y1.P (x, y0) ∧ P (y0, y1)}

• if i ≥ 1, then

qiO = {(x) | ∃y0, . . . , y2i+1.P (x, y0) ∧
( i∧
i=1

P (y2i−1, y2i−2) ∧ P (y2i−1, y2i)
)
∧

∧ P (y2i, y2i+1)}

For instance, with i = 3, we have q3
O = {(x) | ∃y0, . . . , y7.P (x, y0) ∧ P (y1, y0) ∧

P (y1, y2) ∧ P (y3, y2) ∧ P (y3, y4) ∧ P (y5, y4) ∧ P (y5, y6) ∧ P (y6, y7)}.
The second one ranges over natural numbers and constants c ∈ Const. Specifically,

for every constant c ∈ Const and for every i ≥ 0, let qc,iO be the following CQ over O:

• if i = 0, then
qc,0O = {(x) | P (x, c)}

• if i = 1, then

qc,1O = {(x) | ∃y0, y1.P (x, y0) ∧ P (y1, y0) ∧ P (y1, c)}

• if i ≥ 2, then

qc,iO = {(x) | ∃y0, . . . , y2i−1.P (x, y0) ∧
( i−1∧
i=1

P (y2i−1, y2i−2) ∧ P (y2i−1, y2i)
)
∧

∧ P (y2i−1, y2i−2) ∧ P (y2i−1, c)}

For instance, with i = 3 and any c ∈ Const, we have qc,3O = {(x) |
∃y0, . . . , y7.P (x, y0)∧P (y1, y0)∧P (y1, y2)∧P (y3, y2)∧P (y3, y4)∧P (y5, y4)∧P (y5, c)}.
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Before delving into the technical lemmata, we introduce some considerations on
the rewriting of each of these above illustrated CQs with respect to the ontology O.
Consider q0

O (respectively, qc,0O for some constant c ∈ Const). Since the existential
variable y0 is in join because of the occurrence of the atom P (y0, y1) (respectively,
the atom P (x, c) has a constant in its second argument), when rewriting q0

O (respec-
tively, qc,0O ) with respect to O by means of the PerfectRef algorithm, the inclusion
assertion A v ∃P is not applicable to the atom P (x, y0) (respectively, P (x, c)). Thus,
PerfectRef(O, q0

O) = q0
O (respectively, PerfectRef(O, qc,0O ) = qc,0O ).

Consider now q1
O (respectively, qc,1O for some constant c ∈ Const). Here, the

existential variable y0 of the atom P (x, y0) is in join because of the occurrence of the
atom P (y1, y0), and therefore the inclusion assertion A v ∃P is not applicable to the
atom P (x, y0). Furthermore, the existential variable y2 of the atom P (y1, y2) is in
join because of the occurrence of the atom P (y2, y3) (respectively, the atom P (y1, c)
has a constant in its second argument), and therefore the inclusion assertion A v ∃P
is not applicable either to both the atoms P (y1, y2) and P (y2, y3) (respectively, to
the atom P (y1, c)). Notice, however, that when rewriting q1

O (respectively, qc,1O ) with
respect to O, the PerfectRef algorithm produces a new CQ obtained by unifying
P (x, y0) and P (y1, y0), i.e., it produces a new CQ in which x = y1. One can
easily verify that such a new CQ is logically equivalent to q0

O (respectively, qc,0O ),
and therefore the inclusion assertion A v ∃P is not applicable to this new CQ,
too. Thus, PerfectRef(O, q1

O) = q1
O ∪ PerfectRef(O, q0

O) = q1
O ∪ q0

O (respectively,
PerfectRef(O, qc,1O ) = qc,1O ∪ PerfectRef(O, qc,0O ) = qc,1O ∪ qc,0O ).

Let us consider the CQ qiO (respectively, qc,iO for some constant c ∈ Const), for
any natural number i ≥ 2. As before, the existential variable y0 of the atom P (x, y0)
is in join because of the occurrence of the atom P (y1, y0), and therefore the inclusion
assertion A v ∃P is not applicable to the atom P (x, y0). Furthermore, for each
even j ∈ [2, 2i− 2], the existential variable yj is in join because occurs in the second
argument of both the atom P (yj−1, yj) and the atom P (yj+1, yj), and therefore the
inclusion assertion A v ∃P is not applicable either to both the atoms P (yj−1, yj) and
P (yj+1, yj). Finally, the existential variable y2i of the atom P (y2i−1, y2i) is in join
because of the occurrence of the atom P (y2i, y2i+1) (respectively, the atom P (y2i−1, c)
has a constant in its second argument), and therefore, once again, the inclusion asser-
tion A v ∃P is not applicable either to both the atoms P (y2i−1, y2i) and P (y2i, y2i+1)
(respectively, to the atom P (y2i−1, c)). Note that when rewriting qiO (respectively, qc,iO )
with respect to O, the PerfectRef algorithm, by means of the unification step, consid-
ers the following set of equalities E = {x = y1, y1 = y3, y3 = y5, . . . , y2i−3 = y2i−1}.
Specifically, for each set of equalities e in the power set of E (i.e., for each e ∈ P(E)),
a new CQ is obtained from qiO in which all the equalities in e are applied. One
can easily verify that each CQ obtained in this way is logically equivalent to qi−|e|O
(respectively, qc,i−|e|O ), where |e| is the cardinality of e (i.e., the number of equalities
in e). So, with a trivial induction on i, it can be proven that the inclusion assertion
A v ∃P is not applicable to these new CQs, too. Thus, for any i ≥ 2, we have
PerfectRef(O, qiO) = qiO ∪ PerfectRef(O, qi−1

O ) = qiO ∪ qi−1
O ∪ PerfectRef(O, qi−2

O ) =
. . . = qiO ∪ qi−1

O ∪ qi−2
O ∪ . . . ∪ q0

O (respectively, PerfectRef(O, qc,iO ) =
qc,iO ∪ PerfectRef(O, qc,i−1

O ) = qc,iO ∪ qc,i−1
O ∪ PerfectRef(O, qc,i−2

O ) = . . . =
qc,iO ∪ qc,i−1

O ∪ qc,i−2
O ∪ . . . ∪ qc,0O ).
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Lemma 6.8. For every i ≥ 0 and for every constant c ∈ Const, we have that both
qiO and qc,iO are sound S-to-O Σ-rewritings of qS .

Proof. Consider any i ≥ 0 and any constant c ∈ Const. From the above consider-
ations, when rewriting the CQs qiO and qc,iO with respect to the ontology O, the
PerfectRef algorithm never applies the inclusion assertion A v ∃P . So, each possible
CQ in PerfectRef(O, qiO) and each possible CQ in PerfectRef(O, qc,iO ) will contain the
atom P (x, y0) (or the atom P (x, c) in PerfectRef(O, qc,0O ) if i = 0). By construction of
the mappingM, since any atom of the form P (z, z′) (for any pair of not necessarily
distinct terms z, z′) can be unfolded only with s1(z, z′), we derive that each possi-
ble CQ in PerfRefqiO,Σ and each possible CQ in PerfRef

qc,iO ,Σ will contain the atom
s1(x, y0) (or the atom s1(x, c) in PerfRef

qc,0O ,O if i = 0). Thus, both PerfRefqiO,Σ v qS
and PerfRef

qc,iO ,Σ v qS trivially hold, and therefore, due to Lemma 6.1, we derive
that both qiO and qc,iO are sound S-to-O Σ-rewritings of qS , as required.

Lemma 6.9. For every i ≥ 0 and for every constant c ∈ Const, we have that both
certqiO,Σ @ certqi+1

O ,Σ and cert
qc,iO ,Σ @ cert

qc,i+1
O ,Σ hold.

Proof. Let i ≥ 0 be any natural number, and consider the CQs qiO and qi+1
O (respec-

tively, the CQs qc,iO and qc,i+1
O for any constant c ∈ Const). As already observed, we

have qiO ∈ PerfectRef(O, qi+1
O ) (respectively, qc,iO ∈ PerfectRef(O, qc,i+1

O )). So, any pos-
sible disjunct of PerfRefqiO,Σ (respectively, PerfRef

qc,iO ,Σ) occurs also in PerfRefqi+1
O ,Σ

(respectively, PerfRef
qc,i+1
O ,Σ). It follows that certqiO,Σ v certqi+1

O ,Σ (respectively,
cert

qc,iO ,Σ v cert
qc,i+1
O ,Σ). In order to prove that actually certqiO,Σ @ certqi+1

O ,Σ (respec-
tively, cert

qc,iO ,Σ @ cert
qc,i+1
O ,Σ) hold, it is therefore enough to exhibit a disjunct qi+1

S of
PerfRefqi+1

O ,Σ (respectively, PerfRef
qc,i+1
O ,Σ) for which q

i+1
S 6v PerfRefqiO,Σ (respectively,

qi+1
S 6v PerfRef

qc,iO ,Σ). As already observed, all the possible CQs in PerfectRef(O, qiO)
(respectively, PerfectRef(O, qc,iO )) are obtained by applying some equalities to the
variables occurring in qiO (respectively, qc,iO ).

Consider now the CQ qi+1
O (respectively, qc,i+1

O ). From the above consideration,
one can easily verify that, for each possible CQ q′O in PerfectRef(O, qiO) (respectively,
PerfectRef(O, qc,iO )), there is no homomorphism from q′O to qi+1

O (respectively, qc,i+1
O ).

This is because the variable x occurring in both CQs under examination is a distin-
guished variable, and therefore every candidate homomorphism h must have h(x) = x.
It follows that qi+1

O 6v PerfectRef(O, qiO) (respectively, qc,i+1
O 6v PerfectRef(O, qc,iO )).

Furthermore, as already observed, the inclusion assertion A v ∃P is never
applied, and thus no atom with predicate name A occurs in the body of the
CQs of PerfectRef(O, qi+1

O ) (respectively, PerfectRef(O, qc,i+1
O )). So, all the dis-

juncts of PerfRefqi+1
O ,Σ (respectively, PerfRef

qc,i+1
O ,Σ) are obtained from the CQs in

PerfectRef(O, qi+1
O ) (respectively, PerfectRef(O, qc,i+1

O )) by just unfolding the atoms
in their body, which amounts to replace each predicate name P with s1.

It follows that the disjunct qi+1
S of PerfRefqi+1

O ,Σ (respectively, PerfRef
qc,i+1
O ,Σ)

obtained from the CQ qi+1
O (respectively, qc,i+1

O ) by unfolding each atom in its body
is such that qi+1

S 6v PerfRefqiO,Σ (respectively, qi+1
S 6v PerfRef

qc,iO ,Σ), as required.
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Lemma 6.10. If a CQ q′O is a sound S-to-O Σ-rewriting of qS , then, for some
i ≥ 0, either q′O v qiO, or q′O v q

c,i
O for some constant c ∈ Const.

Proof. Let a CQ q′O = {(t) | ∃~y′.φ(t, ~y′)} be a sound S-to-O Σ-rewriting of qS , where
the target list is composed of a single term t (i.e., either a distinguished variable or
a constant). Clearly, since q′O is a sound S-to-O Σ-rewriting of qS , by inspecting
the ontology O and the mappingM, it is easy to see that φ(t, ~y′) must contain an
atom of the form P (t, t0) for a term t0 (unless φ(t, ~y′) ≡ ⊥, from which the claim
trivially follows). Without loss of generality, we can assume that only one of such
atom occurs in φ(t, ~y′). There are three possible different cases for the term t0: (i)
t0 is a constant; (ii) t0 is an existential variable and t0 = t; (iii) t0 is an existential
variable and t0 6= t. In case (i), we trivially have that q′O v q

t0,0
O . On the other hand,

in case (ii), we trivially have that q′O v q0
O. So, in what follows we explore case (iii).

By induction on natural numbers i ≥ 1, we now prove that either one among
q′O v qiO or q′O v qc,iO for some constant c ∈ Const holds, or φ(t, ~y′) contains
a conjunction of atom of the form P (t2i−1, t2i−2) ∧ P (t2i−1, t2i) where t2i is an
existential variable and t2i 6= t2i−1.

Base step (i = 1): Observe that the variable t0 of the atom P (t, t0) must be in
join with some other atom. Indeed, if not, PerfectRef(O, q′O) can apply the inclusion
assertion A v ∃P to the atom P (t, t0) of q′O, thus producing a new CQ in which
there is the atom A(t) instead of P (t, t0), and when rewriting this new CQ with
respect toM, the result is a disjunct of PerfRefq′O,Σ that is not contained in qS , thus
contradicting the fact that q′O is a sound S-to-O Σ-rewriting of qS .

There are two possible cases: either there is an atom of the form P (t0, t1) for
some term t1, or there is a conjunction of atoms of the form P (t1, t0) ∧ P (t1, t2) for
some pair of terms t1, t2. Indeed, if otherwise only the atom P (t1, t0) occurs (and
P (t1, t2) for some term t2 does not occur), the same reasoning delineated above
applies, after that the unification step of PerfectRef(O, q′O) unifies term t1 with term
t, thus reducing the conjunction of atoms P (t, t0) ∧ P (t1, t0) to only P (t, t0).

In the former case, we trivially have that q′O v q0
O, and therefore q′O v q1

O
(observe that qlO v qmO for any pair of natural numbers l,m ≥ 0 with l ≤ m). In the
latter case, there are three possibilities: (i) t2 is a constant; (ii) t2 is an existential
variable and t2 = t1; (iii) t2 is an existential variable and t2 6= t1. In case (i),
we trivially have that q′O v qt2,1O . On the other hand, in case (ii), we have that
q′O v q1

O with the homomorphism h from q1
O to q′O in which h(x) = t, h(y0) = t0,

h(y1) = y1, and h(y2) = h(y3) = t1 = t2. In case (iii), there is the conjunction of
atoms P (t2i−1, t2i−2)∧P (t2i−1, t2i) where t2i is an existential variable and t2i 6= t2i−1.
So, the base step of the induction is verified.

Inductive step: By the inductive hypothesis, we derive that either there is a
natural number k ≤ i − 1 for which one among q′O v qkO or q′O v qc,kO for some
constant c ∈ Const holds, or φ(t, ~y′) contains a conjunction of atoms of the form∧i−1
j=1 P (t2j−1, t2j−2) ∧ P (t2j−1, t2j) where, for each j ∈ [1, i − 1], term t2j is an

existential variable and t2j 6= t2j−1. Consider the former case. As already observed,
for any i ≥ 0 and for any k ≤ i− 1, the query qkO (respectively, qc,kO for any constant
c ∈ Const) can be obtained from qiO (respectively, qc,iO ) by applying some set of
equalities between the variables in qiO (respectively, qc,iO ). This implies that qkO v qiO
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(respectively, qc,kO v qc,iO ). It follows that, if one among q′O v qkO or q′O v qc,kO for
some constant c ∈ Const holds, then, since qkO v qiO (respectively, qc,kO v qc,iO ), we
have that either one among q′O v qiO or q′O v q

c,i
O holds as well.

Consider the latter case. Observe that the variable t2i−2 of the atom
P (t2i−3, t2i−2) must be in join with some other atom. Indeed, if not, then
PerfectRef(O, q′O) can apply the inclusion assertion A v ∃P to the atom P (t, t0) of
q′O after unifying the variables t and t2j−1 for each j ∈ [1, i− 1] (i.e., after applying
the set of equalities e = {t = t1, t1 = t3, . . . , t2i−5 = t2i−3}). In this way, a new
CQ is produced in which there is the atom A(t) instead of P (t, t0) (notice that this
would happen because, for each j ∈ [0, i− 1], term t2j is an existential variable such
that t2j 6= t2j−1), and when rewriting this new CQ with respect toM, the result
is a disjunct of PerfRefq′O,Σ that is not contained in qS , thus contradicting the fact
that q′O is a sound S-to-O Σ-rewriting of qS . We can now proceed in a very similar
way to the base step case (i = 1). We write it for the sake of completeness.

There are two possible cases: either there is an atom P (t2i−2, t2i−1) for some term
t2i−1, or there is a conjunction of atoms P (t2i−1, t2i−2)∧P (t2i−1, t2i) for some pair of
terms t2i−1, t2i. In the former case, one can verify that, by construction, q′O v q

i−1
O ,

and therefore q′O v qiO. In the latter case, there are three possibilities: (i) t2i is a
constant; (ii) t2i is an existential variable and t2i = t2i−1; (iii) t2i is an existential
variable and t2i 6= t2i−1. In case (i), we trivially have that q′O v q

t2i,i
O . On the other

hand, in case (ii), we have that q′O v qiO with the homomorphism h from qiO to q′O in
which h(x) = t, h(yj) = tj for each j ∈ [0, 2i−1], and h(y2i) = h(y2i+1) = t2i−1 = t2i.
In case (iii), there is the conjunction of atoms P (t2i−1, t2i−2) ∧ P (t2i−1, t2i) where
t2i is an existential variable and t2i 6= t2i−1. So, even the induction step is verified.

Since by assumption q′O is a CQ, and so its body consists of a finite set of atoms,
from the above induction we derive that there must be a natural number i for which
one among q′O v qiO or q′O v q

c,i
O for some constant c ∈ Const holds, as required.

Using the above lemmata, we are now able to prove that no UCQ-maximally
sound S-to-O Σ-rewriting of qS exists. Suppose, for the sake of contradiction, the
existence of a UCQ q′O = q′O

1 ∪ . . . ∪ q′O
n which is a UCQ-maximally sound

S-to-O Σ-rewriting of qS . For each j ∈ [1, n], by Lemma 6.10, we know the existence
of a number ij for which either q′O

j v qijO , or q′O
j v qc,ijO for some constant c ∈ Const

holds. It follows that q′O v q′′O = q′′O
1 ∪ . . . ∪ q′′O

n, where, for each j ∈ [1, n], the
CQ q′′O

j corresponds to qijO if q′O
j v qijO , and to qc,ijO if q′O

j v qc,ijO . Consider now the
query q′′′O = q′′′O

1 ∪ . . . ∪ q′′′O
n where, for each j ∈ [1, n], the CQ q′′′O

j corresponds to
q
ij+1
O if q′O

j v qijO , and to qc,ij+1
O if q′O

j v qc,ijO . Observe that, by Lemma 6.9, we have
certq′′Oj ,Σ @ certq′′′O j ,Σ for each j ∈ [1, n]. This implies that certq′′O,Σ @ certq′′′O ,Σ, and
therefore, since q′O v q′′O, we also have that certq′O,Σ @ certq′′′O ,Σ. Furthermore, since
by Lemma 6.8 each disjunct of q′′′O is a sound S-to-O Σ-rewriting of qS , we can finally
conclude that q′′′O is a sound S-to-O Σ-rewriting of qS such that certq′O,Σ @ certq′′′O ,Σ.
Thus, following Definition 3.4, this is clearly a contradiction on the fact that q′O is a
UCQ-maximally sound S-to-O Σ-rewriting of qS , as required.

Two interesting considerations follow:
(i) For a more accurate characterisation about the illustrated OBDM specification

Σ and CQ qS , we refer the reader to Chapter 9 (specifically to Section 9.4), where
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we will see that in this case even a perfect S-to-O Σ-rewriting of qS does exist, and
can be expressed in a target query language equipped with an epistemic operator.

(ii) We point out that the same negative result applies also to CQJFEs qS
with no existential variables at all in their body (i.e., the so-called full conjunctive
queries). To see this, it is sufficient to consider a slight modification of the above
illustrated OBDM specification Σ = 〈O,S,M〉 and CQJFE qS . Specifically, let
Σf = 〈Of ,Sf ,Mf 〉 be the following OBDM specification:

• Of = O = { A v ∃P }

• Sf = { s1, s2, s3 }

• Mf = { m1,m2 }, where:
m1 : s1(x1) ∧ s3(x1, x2) → P (x1, x2),
m2 : s2(x) → A(x).

Consider now the full conjunctive query qfS = {(x) | s1(x)}. One can easily verify
that all the steps in the above proof remain valid even if we replace the OBDM
specification Σ with Σf and the query qS with qfS . Thus, the above proof also shows
that no UCQ-maximally sound Sf -to-Of Σf -rewriting of qfS exists.

4 The proof is based on the idea that an assertion of the form A v ∃P entailed
by a DL-LiteR ontology O can be simulated using LAV mapping assertions. In our
case, consider the OBDM specification Σ = 〈O,S,M〉 illustrated in the proof of
point 3, and let Σ′ = 〈O′,S,M′〉 be the OBDM specification in which O′ = ∅ (O′
and O share the same alphabet) and M′ = M∪ { m3 : s2(x) → ∃y.P (x, y) }. It
can be readily seen that Σ′ is query-preserving with respect to Σ [Calì et al., 2002;
Lenzerini, 2002], that is, certDq,Σ = certDq,Σ′ for every query q over O (equivalently,
over O′) and for every S-database D.

Therefore, a formal proof of this case can be obtained from the above proof of
point 3 by replacing the OBDM specification Σ with the OBDM specification Σ′.

Furthermore, it is clear that the same reasoning can be done with the OBDM
specification Σf , and thus also in this case the same negative result applies also
when the queries over S are full conjunctive queries.

5 Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2 }

• M = { m1,m2 }, where:
m1 : s1(x1, x2) → P (x1, x2),
m2 : s2(x) → P (x, x).

Let qS be the following boolean CQJFE over S: qS = {(x1, x2) | s1(x1, x2)}.
Observe that the CQ q′O = {(x1, x2) | P (x1, x2)} is not a sound S-to-O Σ-

rewriting of qS , because the query q′S = {(x, x) | s2(x)} is a disjunct of PerfRefq′O,Σ
such that q′S 6v qS .
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Lemma 6.11. If a CQ qO is a sound S-to-O Σ-rewriting of qS , then either qO ≡ ⊥
or the target list of qO does not include any distinguished variable.

Proof. We prove the claim by contradiction. Let qO = {(t1, t2) | ∃~y.φ(t1, t2, ~y)} be a
CQ over O such that φ(t1, t2, ~y) 6≡ ⊥, i.e., φ(t1, t2, ~y) is a conjunction of atoms with
P as predicate name, and at least one among t1 and t2 (which are not necessarily
different) is a distinguished variable. There are two possible cases: either P (t1, t2) is
an atom occurring in φ(t1, t2, ~y), or not.

In the former case, consider the disjunct q′S = {(t, t) | ∃~y.φ′(t, ~y)} of PerfRefqO,Σ
obtained by unfolding (i) each atom of the form P (z, z) for a term z with s2(z), (ii)
each atom P (t1, t2) with s2(t), thus imposing the equality t1 = t2 (where t = ti if ti
is a constant for i = 1 or i = 2, otherwise t denotes a fresh term), and (iii) each
remaining atom P (z1, z2) for distinct terms z1 and z2 such that either z1 6= t1 or
z2 6= t2 with s1(z1, z2). Observe that, since by assumption one among t1 and t2 is a
distinguished variable, such equality is never an equality between different constant.

Consider now each possible function f from terms of qS to q′S for which f(x1) = t
and f(x2) = t. By construction, in q′S there is no atom of the form s1(t, t), and
therefore s1(f(x1), f(x2)) does not occur in the body of q′S , where s1(x1, x2) is the
atom occurring in qS . It follows that there is no homomorphism from qS to q′S
which, due to [Chandra and Merlin, 1977], implies that q′S 6v qS . Since q′S is a
disjunct of PerfRefqO,Σ such that q′S 6v qS , we get that PerfRefqO,Σ 6v qS which, due
to Lemma 6.1, implies that qO is not a sound S-to-O Σ-rewriting of qS , as required.

In the latter case, consider the disjunct q′S = {(t1, t2) | ∃~y.φ′(t1, t2, ~y)} obtained
by unfolding each atom P (z1, z2) occurring in qO with s1(z1, z2). Since P (t1, t2)
never occurs in the body of qO, we have that each possible function f from terms of
qS to q′S for which f(x1) = t1 and f(x2) = t2 is such that s1(f(x1), f(x2)) does not
occur in the body of q′S . With the same arguments given in the previous case, we
obtain that qO is not a sound S-to-O Σ-rewriting of qS , as required.

From the above lemma, we easily derive that each possible candidate CQ-
maximally sound S-to-O Σ-rewriting of qS is of the form {(c1, c2) | P (c1, c2)}, where
c1, c2 are constants in Const. With this observation at hand, we are now ready to
prove that no UCQ-maximally sound S-to-O Σ-rewriting of qS exists. Suppose, for
the sake of contradiction, the existence of a UCQ q′O = q′O

1 ∪ . . . ∪ q′O
n which is a

UCQ-maximally sound S-to-O Σ-rewriting of qS . Consider now the query q′′O =
q′O ∪ q′O

n+1, where q′O
n+1 = {(c, c′) | P (c, c′)} with c, c′ being distinct fresh constants

of Const not occurring anywhere else in the disjuncts of q′O. Obviously, we have that
certq′On+1,Σ 6v certq′Oi,Σ, for each i ∈ [1, n]. This implies that certq′O,Σ @ certq′′O,Σ.
Furthermore, since q′O

n+1 is a sound S-to-O Σ-rewriting of qS , we can finally conclude
that q′′O is a sound S-to-O Σ-rewriting of qS such that certq′O,Σ @ certq′′O,Σ. Thus,
following Definition 3.4, this is clearly a contradiction on the fact that q′O is a
UCQ-maximally sound S-to-O Σ-rewriting of qS , as required.

For a more accurate characterisation about the illustrated OBDM specification
Σ and CQ qS , the CQ 6= qO = {(x1, x2) | P (x1, x2) ∧ x1 6= x2} over O is a sound
S-to-O Σ-rewriting of qS . More precisely, one can verify that qO is the (unique up
to equivalence w.r.t. Σ) UCQ 6=-maximally sound S-to-O Σ-rewriting of qS .
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Chapter 7

Perfect Source-to-Ontology
Rewritings

With the results of previous chapters at hand, we now study both the verification,
and the computation problem for perfect source-to-ontology rewritings.

7.1 Verification Problem
We remind the reader that, by definition, qO is a perfect S-to-O Σ rewriting of qS if
and only if it is both a sound, and a complete S-to-O Σ-rewriting of qS . Thus, by
combining Lemma 6.1 and Lemma 5.1, we immediately get the following.

Corollary 7.1. qO is a perfect S-to-O Σ-rewriting of qS if and only if both
PerfRefqO,Σ v (qS ∪ PerfRefVnO,Σ) and qS v (PerfRefqO,Σ ∪ PerfRefVnO,Σ) hold,
where n = ar(qO) = ar(qS).

As already discussed in Subsection 3.3.1, for OBDM specifications where incon-
sistencies can not arise, the notion of perfect source-to-ontology rewriting coincides
with the notion of realization considered in [Lutz et al., 2018]. Since the problem of
checking whether qO is a realization of qS in Σ is in general Πp

2-hard even when O
contains no assertions (i.e., O = ∅),M is a pure GAV mapping, and both qS and
qO are boolean CQs [Lutz et al., 2018, Theorem 11], and since in those cases the
two notions are equivalent, such lower bound applies also to our notion.

The following theorem characterises the computational complexity of the verifi-
cation problem for perfect source-to-ontology rewritings.

Theorem 7.1. The verification problem for perfect source-to-ontology rewritings is
Πp

2-complete.

Proof. As for the upper bound, by virtue of Corollary 7.1, it is sufficient to show
how to check the following two containments in Πp

2, where n = ar(qO) = ar(qS): (i)
PerfRefqO,Σ v (qS ∪ PerfRefVnO,Σ), which holds if and only if qO is a sound S-to-O
Σ-rewriting of qS ; and (ii) qS v (PerfRefqO,Σ ∪ PerfRefVnO,Σ), which holds if and
only if qO is a complete S-to-O Σ-rewriting of qS . By Theorem 6.1, the former can
be verified in Πp

2, and, by Theorem 5.1, the latter can be verified even in NP.
As for the lower bound, it follows from [Lutz et al., 2018, Theorem 11].
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We leave as an interesting open problem the question of whether the computa-
tional complexity of the verification problem for perfect source-to-ontology rewritings
decreases or not whenM is a LAV mapping.

7.2 Computation Problem
As for computation, consider any OBDM specification Σ = 〈O,S,M〉 and UCQ qS
over S. We have that (i) the unique (up to equivalence w.r.t. Σ) UCQ-minimally
complete S-to-O Σ-rewriting of qS always exists and can be computed by means of
the MinimallyComplete algorithm (cf. Theorem 5.2); and (ii) by construction (see
Definition 3.5), either this latter is also a sound, and therefore a perfect, S-to-O
Σ-rewriting of qS , or no UCQ-perfect S-to-O Σ-rewriting of qS exists.

With these observations at hand, we can easily derive the algorithm Perfect
together with its termination and correctness.

Algorithm 7.1 Perfect
Input:

OBDM specification Σ = 〈O,S,M〉;
UCQ qS over S of arity n

Output:
either a UCQ qO over O, or report that “no UCQ-perfect S-to-O Σ-rewriting of
qS exists”

1: qO := MinimallyComplete(Σ, qS)
2: if PerfRefqO,Σ v (qS ∪ PerfRefVnO,Σ) then
3: return qO
4: else
5: return “no UCQ-perfect S-to-O Σ-rewriting of qS exists”
6: end if

Essentially, the algorithm computes the unique (up to equivalence w.r.t. Σ)
UCQ-minimally complete S-to-O Σ-rewriting of qS using the MinimallyComplete
algorithm (cf. Section 5.2), and then checks whether this latter is also a sound, and
therefore a perfect, S-to-O Σ-rewriting of qS . Notice that this last step is always
deterministically feasible in exponential time (cf. Theorem 6.1). Finally, observe
that the overall running time of the algorithm is exponential in the size of the input.

Theorem 7.2. Perfect(Σ, qS) terminates and returns the perfect S-to-O Σ-rewriting
of qS if it exists and can be expressed as a UCQ, otherwise it reports that no
UCQ-perfect S-to-O Σ-rewriting of qS exists.

Furthermore, as a straightforward consequence of Corollary 5.1, we also get the
following interesting result.

Corollary 7.2. The UCQ-perfect S-to-O Σ-rewriting of a CQ qS either does not
exists, or it can be expressed as a CQ as well.
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Chapter 8

Sound Source-to-Ontology
Rewritings in Restricted
Scenarios

We now deal with the restricted scenarios mentioned in Section 6.2. Before delving
into the technical part, we observe that, despite their limitations, the expressive
power of these scenarios is enough for various meaningful applications. Indeed,
several popular ontologies are expressible in the DL DL-LiteRDFS, e.g., SKOS1 [Miles
and Pérez-Agüera, 2007; Miles and Bechhofer, 2009] and Dublin Core2 [Weibel et
al., 1998], and the form of pure GAV mapping is exactly the one originally defined
in the literature of data integration [Lenzerini, 2002].

Furthermore, the class of (U)CQJFEs captures data services expressible in the
famous (U)SPJ (Union, Select, Project, Join) fragment of Relational Algebra [Codd,
1970], with the only limitation that joining variables must appear in the final
projection of the USPJ Relational Algebra query, i.e., they appear in the target list
of the equivalent UCQ. Notice that (i) CQJFEs extends the class of Full Conjunctive
Queries with the possibility of having non-join existential variables occurring in their
body. This latter is a well-known class of queries studied for various optimisation in
the relational database theory (see, e.g., [Beame et al., 2014; Koutris et al., 2016;
Ketsman and Suciu, 2017]); and (ii) such fragment is precisely the one needed for
all tasks related to source profiling [Abedjan et al., 2017; Abedjan et al., 2018].

In both the restricted scenarios, observe that the DL ontology language adopted in
the restricted setting for OBDM specifications is DL-LiteRDFS, which does not allow
for disjointness axioms. It follows that, for any OBDM specification Σ = 〈O,S,M〉
in this restricted setting, since O is a DL-LiteRDFS ontology, we have that VO ≡ ⊥.
This has two further implications that are worth mentioning:

• Each S-database D is consistent with Σ, and therefore all the results we will
present hold even according to the semantics proposed in [Lutz et al., 2018];

• For each UCQ qO over O, the UCQ PerfRefqO,Σ over S is the perfect O-to-S
Σ-rewriting of qO, that is, certDqO,Σ = PerfRefDqO,Σ for each S-database D.

1Simple Knowledge Organization System: https://www.w3.org/2004/02/skos/
2http://dublincore.org/

https://www.w3.org/2004/02/skos/
http://dublincore.org/
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With the above considerations at hand, we easily get a refinement of Corollary 7.1
and Lemmata 6.1 and 5.1 in this restricted setting for OBDM specifications.

Corollary 8.1. In the setting for OBDM specifications of the restricted scenarios,
qO is a perfect (respectively, sound, complete) S-to-O Σ-rewriting of qS if and only
if qS ≡ PerfRefqO,Σ (respectively, PerfRefqO,Σ v qS , qS v PerfRefqO,Σ).

Let us now introduce some further properties of this restricted setting. Given an
OBDM specification Σ = 〈O,S,M〉 of the restricted setting and an atom β over O,
we denote by ρ(β,Σ) the disjunction of conjunctions obtained by first unfolding β
with respect to O, and then by unfolding the resulting formula with respect toM.

The unfolding of an atom β with respect to a DL-LiteRDFS ontology O is the
disjunction of atoms λ(β,O) defined as follows (see also [Cima et al., 2020b]):

λ(A(t),O) =
∨

A′: O|=A′vA
A′(t) ∨

∨
P : O|=∃PvA

(∃y.P (t, y)) ∨
∨

P : O|=∃P−vA
(∃y.P (y, t)),

λ(P (t1, t2),O) =
∨

E: O|=EvP
E(t1, t2) ∨

∨
E: O|=E−vP

E(t2, t1),

where y denotes a fresh existential variable, A and A′ denote atomic concepts, and
P and E denote atomic roles. Finally, O |= B v A for a basic role B and atomic
concept A (respectively, O |= R v P for a basic role R and atomic role P ) hold if
BI ⊆ AI (respectively, RI ⊆ P I) in each interpretation I for O such that I |= O.

The unfolding of a formula λ(β,O) for an atom β over an ontology O with respect
to a pure GAV mappingM relating a schema S to O is obtained by replacing each
atom β′ occurring in λ(β,O) with the logical disjunction of all the conjunctions
of atoms over S corresponding to the left-hand sides of mapping assertions inM
having the predicate name β′ in the right-hand side (being careful to use unique
variables in place of those variables that appear in the left-hand side of the mapping
assertions but not in the right-hand side of those).

Example 8.1. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { ∃P2 v A }

• S = { s1, s2, s3 }

• M = { m1,m2,m3,m4 }, where:

m1 : s1(x1, x2) → P1(x1, x2),
m2 : ∃y.s1(x1, y) ∧ s2(y, x2) → P1(x1, x2),
m3 : ∃y.s2(c, x) ∧ s3(x, y) → A(x),
m4 : s3(x1, x2) → P2(x1, x2).

Consider the atoms β1 = P1(y, x) and β2 = A(x) over O. We have λ(β1,O) = β1
and λ(β2,O) = β2 ∨ (∃y2.P2(x, y2)). Thus, ρ(β1,Σ) = (s1(y, x)) ∨ (∃y1.s1(y, y1) ∧
s2(y1, x)), whereas ρ(β2,Σ) = (∃y3.s2(c, x) ∧ s3(x, y3)) ∨ (∃y2.s3(x, y2)).
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Finally, since DL-LiteRDFS ontologies O contain no assertions with ∃R occurring
in the right-hand side for a basic role R, and since pure GAV mappings do not allow
for repetitions of variables or constants in the right-hand side of mapping assertions,
given an OBDM specification Σ = 〈O,S,M〉 of the restricted setting and a CQ
qO = {~t | ∃~y.φ(~x, ~y)} over O, it can be readily seen that PerfRefqO,Σ is equivalent to
turning the following logical query into an equivalent UCQ over S:

{~t | ∃~y.
∧

β∈φ(~x,~y)
ρ(β,Σ)}

Example 8.2. Let Σ = 〈O,S,M〉 be the the OBDM specification illustrated in
Example 8.1. Consider the CQ qO = {(x) | ∃y.P1(y, x) ∧ A(x)} over O, and let
β1 = P1(y, x) and β2 = A(x). Then, PerfRefqO,Σ can be obtained by turning the
logical query {(x) | ∃y.ρ(β1,Σ) ∧ ρ(β2,Σ)} = {(x) | ∃y.((s1(y, x)) ∨ (∃y1.s1(y, y1) ∧
s2(y1, x))) ∧ ((∃y3.s2(c, x) ∧ s3(x, y3)) ∨ (∃y2.s3(x, y2)))} into an equivalent UCQ
over schema S, thus obtaining PerfRefqO,Σ = q1

S ∪ q2
S ∪ q3

S ∪ q4
S , where:

• q1
S = {(x) | ∃y, y3.s1(y, x) ∧ s2(c, x) ∧ s3(x, y3)};

• q2
S = {(x) | ∃y, y2.s1(y, x) ∧ s3(x, y2)};

• q3
S = {(x) | ∃y, y1, y3.s1(y, y1) ∧ s2(y1, x) ∧ s2(c, x) ∧ s3(x, y3)};

• q4
S = {(x) | ∃y, y2.s1(y, y1) ∧ s2(y1, x) ∧ s3(x, y2)}.

Before studying sound source-to-ontology rewritings in the restricted scenarios,
we introduce some preliminary crucial notions and results for the class of queries
LS = UCQJFEs used for expressing data services. Furthermore, from now on, for
ease of exposition, we assume that all the queries over source schemas do not involve
atoms > and ⊥. We point out, however, that everything can be generalised in a
straightforward manner to include also > and ⊥ as possible atoms.

Definition 8.1. Let q = {~t | ∃~y.φ(~x, ~y)} be a CQ over a schema S, and let α1 =
s(t1,1, . . . , t1,n) and α2 = s(t2,1, . . . , t2,n) be two atoms over S, where α2 ∈ φ(~x, ~y).
We say that α1 instantiates α2, if the following holds for each i ∈ [1, n]: if t2,i is a
distinguished variable or a constant, then t2,i = t1,i.

Example 8.3. Consider the following CQs q1 = {(x) | s1(c, x, x)∧s2(c, x)} and q2 =
{(x) | ∃y.s1(c, x, y) ∧ s2(x, x)} over a schema S. Let α1 = s1(c, x, x), α2 = s2(c, x),
α3 = s1(c, x, y), and α4 = s2(x, x). We have that α1 instantiates α3, whereas α2
does not instantiate α4.

Clearly, given atoms α1 and α2 occurring in the bodies of CQs q1 and q2,
respectively, checking whether α1 instantiates α2 can be done in polynomial time.
Based on this observation, the following lemmata shows that checking whether a
UCQ q1 is contained in a UCQJFE q2 can be done in polynomial time as well.

Lemma 8.1. Let q1 and q2 be a CQ and a CQJFE, respectively, over a schema S
with the same target list. We have that q1 v q2 if and only if for each atom α2 of q2
there exists an atom α1 of q1 such that α1 instantiates α2.
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Proof. “Only-if part:” Suppose that q1 v q2, that is, there exists a homomorphism
from q2 to q1. But then, since q1 and q2 have the same target list, and since q2 is a
CQJFE, by construction it can be readily seen that for each atom α2 of q2 there is
at least an atom α1 of q1 such that α1 instantiates α2.

“If part:” Suppose that for each atom α2 of q2 there exists an atom α1 of q1
such that α1 instantiates α2. Let h be the function from the terms of q2 to the terms
of q1 such that (i) h(c) = c, for each constant c appearing in q2, (ii) h(x) = x, for
every distinguished variable x, and finally (iii) h(y) = t for every existential variable
y occurring in q2, where if y occurs as k-th argument of atom α2 (since q2 is a
CQJFE, only one occurrence of y exists), then t is the k-th argument of the atom α1
that instantiates α2 (which exists by assumption). Since q2 is a CQJFE, and since
q2 and q1 have the same target list, we derive that h consists in a homomorphism
from q2 to q1. It follows that q1 v q2, as required.

Let the containment problem for UCQJFEs be the following decision problem:
given a UCQ q′ and a UCQJFE q over the same schema S, check whether q′ v q.
Lemma 8.2. The containment problem for UCQJFEs is in PTime.
Proof. To begin, observe that for each pair of UCQs q1, q2 we have q1 v q2 if
and only if for each disjunct q′ of q1 there exists a disjunct q of q2 such that
q′ v q [Sagiv and Yannakakis, 1980]. It is therefore sufficient to show that, given a
CQ q′ = {~t′ | ∃~y′.φ′(~x′, ~y′)} and a CQJFE q = {~t | ∃~y.φ(~x, ~y)} not necessarily with
the same target lists, checking whether q′ v q can be done in polynomial time.

If q′ and q do not have the same target list, i.e., ~t′ = (t′1, . . . , t′n) 6= ~t = (t1, . . . , tn),
then consider the function f from the set of terms in the target list of q to the set
of terms in the target list of q′ with f(ti) = t′i, for each i ∈ [1, n]. Formally, since
repetitions of terms in target lists is allowed, f might give rise to a multivalued
function.3 In this case, as well as in the case that f(a) = b with a 6= b for two
constants a ∈ ~t and b ∈ ~t′, it is straightforward to verify that q′ 6v q trivially holds.
Indeed, in those cases there can be no homomorphism from q to q′ by construction.

Consider the query q′′ obtained in polynomial time from q by replacing every
occurrence of term ti in q (even in the target list) with term f(ti) = t′i, for each
i ∈ [1, n]. Observe that now q′′ is a CQJFE with target list ~t′, i.e., the same target
list of q′. By virtue of Lemma 8.1, we can now check in polynomial time whether
q′ v q′′, where, if the answer is yes, then clearly q′ v q as well; otherwise, it can be
readily seen that Dq′ (i.e., the freezing of q′) is a database witnessing that q′ 6v q.

From the above considerations, it is immediate to derive a polynomial time
algorithm for checking whether a UCQ q1 is contained in a UCQJFE q2.

In what follows in this chapter, unless otherwise stated, we assume that OBDM
specifications are expressed in the restricted setting for OBDM specifications men-
tioned in Section 6.2, i.e., the DL ontology language is DL-LiteRDFS and the mapping
language follows the pure GAV approach. Furthermore, unless otherwise stated,
we assume that the query language LS for expressing data services is the one of
UCQJFEs and CQJFEs in Section 8.1 and Section 8.2, respectively.

3In mathematics, a multivalued function (also known as multiple-valued function [Knopp, 1996])
f : A → B is similar to a function, but it may associate more than one possible element y ∈ B to
each element x ∈ A.
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8.1 Restricted Scenario for UCQJFEs
In this section, we study both the verification, and the computation problem for
sound source-to-ontology rewritings in the restricted scenario for UCQJFEs. We
recall that, while the language LS of queries over source schemas S is the one of
UCQJFEs, the language LO for queries over ontologies O remains the one of UCQs.

8.1.1 Verification Problem

The following theorem characterises the computational complexity of the verifica-
tion problem for sound source-to-ontology rewritings in the restricted scenario for
UCQJFEs.

Theorem 8.1. In the restricted scenario for UCQJFEs, the verification problem is
coNP-complete.

Proof. As for the upper bound, by virtue of Corollary 8.1, it is sufficient to show
how to check the containment PerfRefqO,Σ v qS in coNP. In particular, checking
whether PerfRefqO,Σ 6v qS can be done in NP in the following way: (i) we guess a
query q′ over O with the same arity of qO and size at most σ(qO), a sequence ρ
of ontology assertions, and a query q′′ over S with the same arity of qO and size
at most σ(M) × σ(q′), and (ii) likewise to Theorem 5.1, we check in polynomial
time first whether we can rewrite qO into q′ through ρ, and then whether q′′ is in
MapRef(q′,M). Finally, we check whether q′′ 6v qS , which, since qS is a UCQJFE,
by virtue of Lemma 8.2, this last step can be done in polynomial time as well.

As for the lower bound, the proof of coNP-hardness is by a LogSpace reduction
from the validity problem, which is coNP-complete (see, e.g., [Papadimitriou, 1994]).
validity is the problem of deciding, given a 3-DNF formula F = c1 ∨ . . . ∨ cm on a
set of variables X = {x1, . . . , xn}, whether F is valid, i.e., whether F is satisfied by
every possible truth assignment to the variables in X. Each clause ci is a conjunction
of three literals, where each literal is either a variable xi ∈ X or its negated.

We define an OBDM specification Σ = 〈O,S,M〉 with O containing no axioms,
and S andM as follows: for each variable xi ∈ X, schema S comprises two unary
relations siT and siF , and a further unary relation s′i. Finally, for each variable
xi ∈ X, the mappingM includes the following three mapping assertions:

• siT (x)→ Ai(x),

• siF (x)→ Ai(x),

• s′i(x)→ Bi(x),

where each Ai and Bi are fresh atomic concepts, for each i ∈ [1, n].
Intuitively, while each s′i is simply mirrored to Bi, the possible unfoldings of an

atom Ai(xi) (which are siT (xi) and siF (xi), respectively) correspond to the possible
truth values (true and false, respectively) for the variable xi.

We define the UCQJFE over S as qS = q1 ∪ . . . ∪ qm, where, for each i ∈ [1,m],
the target list of qi is ~x = (x1, . . . , xn) and the body of qi has the conjunction of
atoms s′1(x1) ∧ . . . ∧ s′n(xn) in conjunction to the conjunction of atoms associated
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to the clause ci of F , where a positive literal xi is replaced with the atom siT (xi),
whereas a negative literal ¬xi is replaced with the atom siF (xi).

Finally, we define the CQJFE over O as qO = {~x | B1(x1) ∧ . . . ∧ Bn(xn) ∧
A1(x1) ∧ . . . ∧An(xn)}.

Observe that Σ = 〈O,S,M〉, qS , and qO can be constructed in LogSpace from
F , where O = ∅ andM is both a pure GAV and a LAV mapping.

To illustrate the reduction, we use the following formula: F = (x1 ∧ x2 ∧
¬x3)

∨
(¬x1 ∧ x2 ∧ ¬x4). In this case, the reduction would produce the mappingM

composed of the following mapping assertions:

s1T (x) → A1(x),
s1F (x) → A1(x),
s2T (x) → A2(x),
s2F (x) → A2(x),
s3T (x) → A3(x),
s3F (x) → A3(x),
s4T (x) → A4(x),
s4F (x) → A4(x),
s′1(x) → B1(x),
s′2(x) → B2(x),
s′3(x) → B3(x),
s′4(x) → B4(x),

the following UCQJFE qS = {(x1, x2, x3, x4) | s′1(x1) ∧ s′2(x2) ∧ s′3(x3) ∧ s′4(x4) ∧
s1T (x1)∧ s2T (x2)∧ s3F (x3)} ∪ {(x1, x2, x3, x4) | s′1(x1)∧ s′2(x2)∧ s′3(x3)∧ s′4(x4)∧
s1F (x1)∧s2T (x2)∧s4F (x4)} over S, and the following CQJFE qO = {(x1, x2, x3, x4) |
B1(x1) ∧B2(x2) ∧B3(x3) ∧B4(x4) ∧A1(x1) ∧A2(x2) ∧A3(x3) ∧A4(x4)} over O.

We now prove that formula F is valid if and only if qO is a sound S-to-O
Σ-rewriting of qS .

“Only-if part:” Suppose that formula F is valid, that is, F is satisfied by every
possible truth assignment to the variables in X. It follows that, for any possible
choice for unfolding the atoms Ai(xi) for i = 1, . . . , n (which can be equivalently
seen as an assignment V = {v1, . . . , vn} to the variables in X = {x1, . . . , xn}), the
query over S obtained is such that all the atoms also appear in a disjunct qj of
qS for some j ∈ [1,m] (equivalently, at least one clause cj for some j ∈ [1,m] is
satisfied under the truth assignment V ). It follows that PerfRefqO,Σ v qS which, due
to Corollary 8.1, implies that qO is a sound S-to-O Σ-rewriting of qS .
“If part:” Suppose that formula F is not valid, that is, there exists a truth assignment
V = {v1, . . . , vn} to the variables in X = {x1, . . . , xn} that does not satisfy F .
Consider now the disjunct q of PerfRefqO,Σ obtained by unfolding atom Ai(xi) of
qO with atom siT (xi) if vi = 1, and with atom siF (xi) otherwise (i.e., vi = 0), for
each i ∈ [1, n]. As a result, for each disjunct q′ of qS , there is at least one atom
of q′ not occurring in q. In proof, if there exists some disjunct qj of qS such that
every atom of qj appears also in q, then the clause cj corresponding to disjunct qj is
satisfied under the truth assignment V , which would contradict the fact that F is
not satisfied under such truth assignment.

This implies that, for each disjunct qj of qS , there is no homomorphism from qj
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to q. It follows that PerfRefqO,Σ 6v qS which, due to Corollary 8.1, implies that qO is
not a sound S-to-O Σ-rewriting of qS .

Note that (i) the coNP upper bound holds even when ontologies O are expressed
in a fragment of DL-LiteR that does not admit disjointness assertions (thus, a more
expressive language of DL-LiteRDFS) and mappingsM are GLAV mappings (rather
than pure GAV mappings), and (ii) the coNP lower bound already holds when qO
is a CQJFE, both qS and qO do not have existential variables, and Σ = 〈O,S,M〉
is such that O contains no axioms, andM is both a pure GAV mapping and a LAV
mapping. In the following section, we will see that the computational complexity of
the verification problem further decreases when qS is restricted to be a CQJFE.

8.1.2 Computation Problem

We now address the computation problem by providing an algorithm to com-
pute UCQ-maximally sound source-to-ontology rewritings, thus proving that UCQ-
maximally sound source-to-ontology rewritings are guaranteed to exist in the re-
stricted scenario for UCQJFEs.

Let us first introduce some preliminary notions. For a mappingM, we denote
by γ(M) the number of mapping assertions occurring in M. For a UCQ qS , we
denote by η(qS) the sum of the number of atoms occurring in the body of the various
disjuncts of qS . Then, for a mappingM and a UCQ qS , we define bound(M, qS) as:

bound(M, qS) =
η(qS)∑
i=0

γ(M)i

The next crucial lemma shows that, given any OBDM specification Σ = 〈O,S,M〉
and any UCQJFE qS over S, we can always limit our attention to CQs over O
having at most bound(M, qS) atoms occurring in their bodies when seeking for
CQ-maximally sound S-to-O Σ-rewritings of qS .

Lemma 8.3. Let Σ = 〈O,S,M〉 be an OBDM specification, and let qS be a UCQJFE
over S. If a CQ qO over O is a sound S-to-O Σ-rewriting of qS , then there exists
a CQ q′O over O with same target list of qO such that ( i) the body of q′O is the
conjunction of at most bound(M, qS) atoms occurring in the body of qO (and therefore,
certqO,Σ v certq′O,Σ), and ( ii) q′O is a sound S-to-O Σ-rewriting of qS as well.

Proof. Since qO is a sound S-to-O Σ-rewriting of qS , due to Corollary 8.1, we have
that PerfRefqO,Σ v qS , that is, each disjunct of PerfRefqO,Σ is contained in some
disjunct of qS . In particular, without loss of generality, we can assume that each
disjunct q of qS is such that there is some disjunct r of PerfRefqO,Σ for which r v q.
In fact, the other disjuncts of qS that do not satisfy the above condition can simply
be discarded, and the resulting qS will remain such that PerfRefqO,Σ v qS .

Let n denote the arity of qO and qS , and let the target list of qO be ~t = (t1, . . . , tn).
Without loss of generality, we can assume that the target list of each disjunct q
of qS is the same as qO, i.e., ~t = (t1, . . . , tn). Indeed, if this is not the case, then
each disjunct q′ of qS with target list t′ = (t′1, . . . , t′n) 6= ~t can be replaced with the
(equivalent or more specific) disjunct q obtained from q′ by replacing everywhere
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(even in the target list) term t′i with term ti, for i ∈ [1, n]. Notice that, since the
target list of each disjunct in PerfRefqO,Σ is the same as qO (this is because M
is composed of pure GAV mapping assertions), i.e., ~t, and since by assumption
there exists some disjunct r of PerfRefqO,Σ for which r v q′, when applying this
replacement it is never the case that for some pair of numbers j, k ∈ [1, n] with j 6= k
we have t′j = t′k but tj 6= tk, or that t′j is a constant whereas tj is a distinguished
variable for some number j ∈ [1, n] (otherwise, this would be easily a contradiction
to the fact that r v q′).

We now show by induction on η(qS) (i.e., the sum of the number of atoms occur-
ring in the body of the various disjuncts of qS) the existence of m ≤ bound(M, qS)
atoms β1, . . . , βm occurring in the body of qO for which the CQ q′O = {~t |
∃~y.β1 ∧ . . . ∧ βm} is a sound S-to-O Σ-rewriting of qS , thus proving the claim.
We do this by exploiting Lemma 8.1. Specifically, consider each CQ r that is a
disjunct of PerfRefqO,Σ. We know that there is a CQJFE q that is a disjunct of
qS for which r v q, and, moreover, since r and q have the same target list, by
Lemma 8.1 we know that for each atom α2 of q there exists an atom α1 of r such
that α1 instantiates α2.

Base step (η(qS) = 1): In this case, qS is a single CQJFE whose body consists
of only one atom α. So, there must exists at least an atom β in the body of qO for
which every possible disjunct of ρ(β,Σ) contains at least an atom that instantiates
α. Indeed, if this is not the case, then the disjunct r of PerfRefqO,Σ obtained by
unfolding each atom β′ of qO with a disjunct of ρ(β′,Σ) which contains no atom
that instantiates α would be such that r 6v qS , because, as a result, there would
be no atom in r that instantiates α (cf. Lemma 8.1). Clearly, the fact that r 6v qS
for a disjunct r of PerfRefqO,Σ would also imply that PerfRefqO,Σ 6v qS which, by
Corollary 8.1, in turn would imply that qO is not a sound S-to-O Σ-rewriting of qS ,
which would be a contradiction on the initial assumption.

Thus, such atom β in the body of qO must exists. But then, by exploiting
Lemma 8.1, it is trivial to see that the CQ q′O = {~t | ∃~y.β} is a sound S-to-O
Σ-rewriting of qS , as required.

Inductive step: We start with the following observation. Since each disjunct
r of PerfRefqO,Σ is such that there exists a disjunct q of qS for which r v q (or
equivalently, by Lemma 8.1, there exists a disjunct q of qS for which for each atom
α of q there is an atom of r that instantiates α), there must exists at least one
atom β of qO such that in every disjunct of ρ(β,Σ) there is at least an atom that
instantiates some atom occurring in the various disjuncts of qS . Indeed, if this is
not the case, then the disjunct r of PerfRefqO,Σ obtained by unfolding each atom
β′ of qO with a disjunct of ρ(β′,Σ) which contains no atom that instantiates some
atom of qS would be trivially such that r 6v qS due to Lemma 8.1. As explained
previously, the fact that r 6v qS for a disjunct r of PerfRefqO,Σ would also imply that
PerfRefqO,Σ 6v qS which, by Corollary 8.1, in turn would imply that qO is not a sound
S-to-O Σ-rewriting of qS , which would be a contradiction on the initial assumption.

So, there must be (at least) one atom β in the body of qO such that in every
disjunct of ρ(β,Σ) there is at least one atom that instantiates some atom occurring
in the various disjuncts of qS . In particular, consider ρ(β,Σ) for such atom β. For
each disjunct θi of ρ(β,Σ), let qθiS be the UCQJFE obtained from qS by removing
all the atoms α such that an atom of θi instantiates α. Notice that, since each
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disjunct θi of ρ(β,Σ) instantiates some atom of qS , each UCQJFE qθiS is such that
(i) η(qθiS ) ≤ η(qS)− 1 (i.e., there is at least an atom of qS not occurring anymore in
qθiS ), and (ii) qO is a sound S-to-O Σ-rewriting of qθiS , due to the facts that qS v qθiS
clearly holds and the initial assumption that qO is a sound S-to-O Σ-rewriting of qS .

By the inductive hypothesis, for each disjunct θi of ρ(β,Σ), there are atoms
βθi1 , β

θi
2 , . . . , β

θi
pi for which qθiO = {~t | ∃ ~yθi.β

θi
1 ∧ β

θi
2 ∧ . . . ∧ βθipi} is a sound S-to-O

Σ-rewriting of qθiS , where pi ≤ bound(M, qθiS ), i.e., pi ≤ 1 + λ(M)1 + λ(M)2 + . . .+
λ(M)η(qS)−1. But then, consider the following CQ:

q′O = {~t | ∃~y.β
∧
βθ1

1 ∧β
θ1
2 ∧. . .∧β

θ1
p1

∧
βθ2

1 ∧β
θ2
2 ∧. . .∧β

θ2
p2

∧
. . .
∧
βθk1 ∧β

θk
2 ∧. . .∧β

θk
pk
}

It is not hard to ascertain that q′O is a sound S-to-O Σ-rewriting of qS , where k is
the number of disjuncts in ρ(β,Σ), and pi ≤ 1+λ(M)1 +λ(M)2 + . . .+λ(M)η(qS)−1

for each i ∈ [1, k]. In proof, consider each disjunct θi of ρ(β,Σ) for i ∈ [1, k]. Since
the CQ qθiO is a sound S-to-O Σ-rewriting of qθiS , by Lemma 8.1, we derive that
for each possible disjunct rθi obtained by turning in disjunctive normal form the
formula ρ(βθi1 ,Σ) ∧ ρ(βθi2 ,Σ) ∧ . . . ∧ ρ(βθipi ,Σ) there is a disjunct qθi of qθiS for which
for each atom α of qθi there is an atom of rθi that instantiates α. This, together
with the fact that all the atoms α occurring in qS and not occurring in qθiS are such
that there is an atom of θi that instantiates α, allows us to derive that each disjunct
rθi∧ in the formula θi ∧ ρ(βθi1 ,Σ) ∧ ρ(βθi2 ,Σ) ∧ . . . ∧ ρ(βθipi ,Σ) turned in disjunctive
normal form is such that there is a disjunct q of qS for which for each atom α of q
there is an atom of rθi∧ that instantiates α. Since this is true for each disjunct θi of
ρ(β,Σ), and since for each i ∈ [1, k] the conjunction of atoms βθi1 ∧ β

θi
2 ∧ . . . ∧ βθipi

occurs in the body of the CQ q′O, we easily derive that for each possible disjunct r′
of q′O there is a disjunct q of qS for which for each atom α of q there is an atom of
r′ that instantiates α. Thus, by Lemma 8.1, it follows that q′O is a sound S-to-O
Σ-rewriting of qS , as required.

To conclude the proof, observe that the number of disjuncts in ρ(β,Σ) is at most
k ≤ λ(M), and therefore, since pi ≤ 1 + λ(M)1 + λ(M)2 + . . .+ λ(M)η(qS)−1 for
each i ∈ [1, k], we derive that the number of atoms occurring in the body of the CQ
q′O is at most 1 + λ(M)1 + λ(M)2 + . . .+ λ(M)η(qS), as required.

By relying on the above lemma, we immediately derive the following enumerative
algorithm MaximallySoundUCQJFEs for computing UCQ-maximally sound source-
to-ontology rewritings in the restricted scenario for UCQJFEs.

Informally, the algorithm simply enumerates all the possible CQs over O with at
most bound(M, qS) atoms occurring in their bodies and possibly involving constants
occurring in qS and M as terms. Then, it returns the union of all and only the
ones that are sound S-to-O Σ-rewritings of qS . Notice that checking whether a
CQ qO is a sound S-to-O Σ-rewriting of qS can be always done deterministically in
exponential time (cf. Theorem 8.1).

Example 8.4. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2, s3, s4, s5 }
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Algorithm 8.1 MaximallySoundUCQJFEs
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-LiteRDFS ontology andM
is a pure GAV mapping;
UCQJFE qS over S

Output:
UCQ qO

1: qO := ⊥
2: for each CQ q over O having at most bound(M, qS) atoms in its body and

possibly involving constants occurring in qS andM as terms do
3: if q is a sound S-to-O Σ-rewriting of qS then
4: qO := qO ∪ q
5: end if
6: end for
7: return qO

• M = { m1,m2,m3,m4,m5,m6,m7,m8 }, where:
m1 : s1(x1, x2) → P1(x1, x2),
m2 : s3(x1, x2) → P1(x1, x2),
m3 : ∃y.s2(x, y) → A1(x),
m4 : s4(x, c3) → A1(x),
m5 : s1(x1, x2) ∧ s3(x1, x2) → P2(x1, x2),
m6 : ∃y.s5(x1, x2) ∧ s2(x2, y) ∧ s4(x2, y) → P2(x1, x2),
m7 : s1(x, x) ∧ s2(x, c2) → A2(x),
m8 : s3(x1, c1) ∧ s4(c1, x2) → P3(x1, x2).

For the UCQJFE qS = {(x1, x2) | ∃y.s1(x1, x2) ∧ s2(x2, y)} ∪ {(x1, x2) |
∃y.s3(x1, x2) ∧ s4(x2, y)}, the unique (up to equivalence w.r.t. Σ) UCQ-maximally
sound S-to-O Σ-rewriting of qS is the query qO = {(x1, x2) | P1(x1, x2) ∧A1(x2) ∧
P2(x1, x2)} ∪ {(x, x) | A2(x)} ∪ {(x, c1) | ∃y.P3(x, y)}. Indeed one can verify that,
on the one hand, each disjunct of qO is a sound S-to-O Σ-rewriting of qS , and, on
the other hand, each possible CQ q′ over O being a sound S-to-O Σ-rewriting of qS
is such that certq′,Σ v certq,Σ for some disjunct q of qO.

Furthermore, one can easily check that MaximallySoundUCQJFEs(Σ, qS) returns
a UCQ which is equivalent (w.r.t. Σ) to qO, in fact it contains all disjuncts of qO.

The following theorem establishes termination and correctness of the Maxi-
mallySoundUCQJFEs algorithm.

Theorem 8.2. In the restricted scenario for UCQJFEs, MaximallySoundUCQJFEs
(Σ, qS) terminates and returns the unique (up to equivalence w.r.t.Σ) UCQ-maximally
sound S-to-O Σ-rewriting of qS .

Proof. Termination of the algorithm easily follows from the fact that it just enumer-
ates all possible CQs over O with a certain bound on the number of atoms occurring
in their bodies, and involving only constants occurring in qS andM.
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As for the correctness, we first point out that the computed UCQ qO is clearly
a sound S-to-O Σ-rewriting of qS . Indeed, by construction, qO is a UCQ whose
disjuncts are sound S-to-O Σ-rewritings of qS . We now show that qO is actually
the unique (up to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting
of qS , that is, each UCQ q′O that is a sound S-to-O Σ-rewriting of qS is such that
certq′O,Σ v certqO,Σ (cf. Definition 3.6). We do this by way of contradiction.

Let q′O be a UCQ such that certq′O,Σ 6v certqO,Σ, that is, there exists an S-
database D consistent with Σ such that certDq′O,Σ 6⊆ certDqO,Σ. It follows that there is
a tuple of constants ~c = (c1, . . . , cn) such that ~c ∈ certDq′O,Σ but, at the same time,

~c 6∈ certDqO,Σ. Consider now CM(D)
O , i.e., the canonical structure of O with respect

toM and D (cf. Subsection 2.6.3). Notice that, sinceM is a GAV mapping and
O is a DL-LiteRDFS ontology, we have that: (i) CM(D)

O does not introduce variables,
and therefore we can see it as a set of facts CM(D)

O = {β1, . . . , βm} over O; and (ii)

certDqO,Σ = q
CM(D)
O
O for each S-database D. We now exhibit an S-database D′ for

which (i) ~c 6∈ qD′S , and (ii) CM(D)
O ⊆ CM(D′)

O . To this aim, we exploit the boolean
query qβ over O associated to CM(D)

O , i.e., the following boolean CQ:

qβ = {() | β1 ∧ . . . ∧ βm},

and all its possible unfoldings r over S. In particular, there are two possible cases:
either every disjunct r of PerfRefqβ ,Σ is such that ~c ∈ qDrS , or not. We recall that,
for a CQ r over S, Dr denotes the S-database associated to r, i.e., the set of facts
over S occurring in the body of r in which each existential variable v is replaced by
a different fresh constant cv.

In the former case, let q be the CQ over O in which the target list is initially
~c = (c1, . . . , cn) and the body is the same as qβ, i.e., q = {~c | β1 ∧ . . . ∧ βn}. Then,
consider the following changes to q: for each constant c occurring in q (either in the
body or in the target list) but occurring neither in qS nor inM, replace c everywhere
(even in the target list) by a distinguished variable xc if ci = c for some i ∈ [1, n]
(i.e., if c occurs in the target list of q), and by an existential variable yc otherwise.

Obviously, by construction, we have ~c ∈ qC
M(D)
O . Furthermore, due to the fact

thatM is a pure GAV mapping and the fact that O contains no assertions with ∃R
in the right-hand side for a basic role R, each possible disjunct rq of PerfRefq,Σ has a
corresponding disjunct r of PerfRefqβ ,Σ in which the body of r is obtained from the
body of rq by replacing the distinguished variables xc (respectively, the existential
variable yc) occurring in q with constant c. Notice that, by assumption, each disjunct
r of PerfRefqβ ,Σ is such that ~c ∈ qDrS , i.e., for each disjunct r of PerfRefqβ ,Σ there
is a disjunct q′S of qS for which ~c ∈ q′S

Dr . Since qS is a UCQJFE, by exploiting
Lemma 8.1, it is not hard to ascertain that this implies that for each disjunct r of
PerfRefqβ ,Σ there is a disjunct q′S of qS for which for each atom α of q′S there is an
atom of r that instantiates α. By construction of q, however, the above property
holds even if we replace qβ with q, i.e., for each disjunct rq of PerfRefq,Σ there is
a disjunct q′S of qS for which for each atom α of q′S there is an atom of rq that
instantiates α. Thus, by Lemma 8.1, we derive that q is a sound S-to-O Σ-rewriting
of qS . But then, due to Lemma 8.3, from q it is possible to derive a CQ q′ with same
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target list as q but whose body is the conjunction of at most bound(M, qS) atoms
occurring in q and such that q′ is a sound S-to-O Σ-rewriting of qS . By construction
of the algorithm, however, it can be readily seen that such a CQ q′ is a disjunct
of qO. Two considerations are now in order: (i) since q′ has the same target list
as q, and since its body is constituted only by a subset of the atoms of q, the fact
that ~c ∈ qC

M(D)
O implies ~c ∈ q′C

M(D)
O as well, and (ii) since ~c ∈ q′C

M(D)
O and since q′

is a disjunct of qO, we have ~c ∈ qOC
M(D)
O . Thus, since in this setting for OBDM

specifications certDqO,Σ = q
CM(D)
O
O for each UCQ qO and S-database D, we derive that

~c ∈ certDqO,Σ, which is a contradiction on the initial assumption that ~c 6∈ certDqO,Σ.
It follows that the former case just considered is not possible because it leads to a
contradiction. Therefore, we consider only the latter case.

Consider the latter case, that is, there is a disjunct r of PerfRefqβ ,Σ for which
~c 6∈ qDrS . Observe that the S-database D′ that we are seeking is D′ = Dr. Indeed,
sinceM is a pure GAV mapping and O is a DL-LiteRDFS ontology, and thus contains
no assertions with ∃R in the right-hand side for a basic role R, and since r is a
disjunct of PerfRefqβ ,Σ (i.e., the body of r is a way for unfolding all the facts occurring
in CM(D)

O ), it is easy to verify that CM(D′)
O is such that CM(D)

O ⊆ CM(D′)
O , where

D′ = Dr. Notice that ~c ∈ certDq′O,Σ holds by assumption, and therefore ~c ∈ q′O
CM(D)
O .

Furthermore, since CM(D)
O ⊆ CM(D′)

O and qO is a UCQ, we trivially derive that

~c ∈ q′O
CM(D′)
O as well, which, in turn, implies that ~c ∈ certD′q′O,Σ.

To complete the proof, consider the S-database D′. We have that, on the one
hand, ~c 6∈ qD′S , and, on the other hand, ~c ∈ certD′q′O,Σ. It follows that q′O is not a
sound S-to-O Σ-rewriting of qS , as required.

Regarding the cost of the algorithm, we observe that the overall running time is
exponential in the size of the input. Notice, moreover, that CQs over O may have an
exponential number of atoms with respect to η(qS). Next we prove that (i) unless
PTime = NP, the computation problem for sound source-to-ontology rewritings can
not be solved in polynomial time, even in the restricted scenario for UCQJFEs; and
(ii) there exists OBDM specifications Σ and UCQJFEs qS for which the unique (up
to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting of qS is a CQ
whose number of atoms is necessarily exponential with respect to η(qS).

Proposition 8.1. Assuming PTime ( NP, the computation problem for sound
source-to-ontology rewritings in the restricted scenario for UCQJFEs can not be
solved in polynomial time.

Proof. Let F be a 3-DNF formula on a set of variables X = {x1, . . . , xn}. Consider
the OBDM specification Σ = 〈O,S,M〉, the UCQJFE qS , and the CQ qO constructed
from F as illustrated in the reduction of the lower bound proof of Theorem 8.1.

In this case, it is straightforward to verify that the unique (up to equivalence
w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting of qS is either the CQ qO if it
is a sound S-to-O Σ-rewriting of qS , or the CQ q′O = {(x1, . . . , xn) | ⊥(x1, . . . , xn)}
otherwise. Specifically, as shown in that coNP-hardness proof of Theorem 8.1, qO is
a sound S-to-O Σ-rewriting of qS if and only formula F is valid, and therefore, due to
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the above observation, qO is the unique (up to equivalence w.r.t. Σ) UCQ-maximally
sound S-to-O Σ-rewriting of qS if and only if formula F is valid.

We have therefore reduced the problem of checking the validity of a 3-DNF
formula F to the problem of computing the unique (up to equivalence w.r.t. Σ) UCQ-
maximally sound S-to-O Σ-rewriting of a UCQJFE qS , where both Σ = 〈O,S,M〉
and qS can be constructed in LogSpace from F .

Thus, even in the restricted scenario for UCQJFEs, a polynomial time algorithm
for computing UCQ-maximally sound source-to-ontology rewritings of UCQJFEs
would imply a polynomial time algorithm for checking whether a 3-DNF formula
is valid. Since this latter problem is known to be in general coNP-hard, it follows
that, unless PTime = NP, the computation problem for sound source-to-ontology
rewritings can not be solved in polynomial time, even in the restricted scenario for
UCQJFEs.

Proposition 8.2. In the restricted scenario for UCQJFEs, there are OBDM spec-
ifications Σ and UCQJFEs qS for which the unique (up to equivalence w.r.t.Σ)
UCQ-maximally sound S-to-O Σ-rewriting of qS is a CQ whose number of atoms in
its body is necessarily exponential with respect to η(qS).

Proof. We provide here a small example showing the main reason of why the number
of atoms in the body of the unique (up to equivalence w.r.t. the OBDM specification
Σ = 〈O,S,M〉) UCQ-maximally sound S-to-O Σ-rewriting of a UCQJFE qS may
be exponential with respect to η(qS).

Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s2, s3, s4 }

• M = { m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12 }, where:
m1 : s1(x) → A1(x),
m2 : s2(x) → A1(x),
m3 : s1(x) → A2(x),
m4 : s3(x) → A2(x),
m5 : s1(x) → A3(x),
m6 : s4(x) → A3(x),
m7 : s2(x) → A4(x),
m8 : s3(x) → A4(x),
m9 : s2(x) → A5(x),
m10 : s4(x) → A5(x),
m11 : s3(x) → A6(x),
m12 : s4(x) → A6(x).

Let qS be the following UCQJFE over S: qS = {(x) | s1(x)∧s2(x)∧s3(x)} ∪ {(x) |
s1(x)∧ s2(x)∧ s4(x)} ∪ {(x) | s1(x)∧ s3(x)∧ s4(x)} ∪ {(x) | s2(x)∧ s3(x)∧ s4(x)}.
One can verify that the CQ qO = {(x) | A1(x)∧A2(x)∧A3(x)∧A4(x)∧A5(x)∧A6(x)}
is a sound S-to-O Σ-rewriting of qS , and, moreover, every possible CQ q′O whose
body contains only a strict subset of the atoms occurring in the body of qO is such
that q′O is not a sound S-to-O Σ-rewriting of qS . Thus, it follows that qO is the
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unique (up to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting of
qS (in fact, one can verify that qO is the output of MaximallySoundUCQJFEs(Σ, qS)).
More precisely, one can verify that qO is the perfect S-to-O Σ-rewriting of qS .

Let denote by |S| the number of source predicates occurring in the source
schema S, and by χ(M) the number of times that an atomic concept Ai in the
alphabet of the ontology O appears in the right-hand side of mapping assertions in
M. By generalising the above construction, one can see that it is always possible
to compose OBDM specifications Σ = 〈O,S,M〉 and UCQJFEs qS for which (i)
η(qS) = |S|2 − |S|, and (ii) the number of atoms occurring in the body of the CQ
corresponding to the unique (up to equivalence w.r.t. Σ) UCQ-maximally sound
S-to-O Σ-rewriting of qS is necessarily equal to |S|!

(|S|−χ(M))! ·χ(M)! (and therefore, an
exponential number of atoms with respect to η(qS)).

In the next section, we will see that the bound on the number of atoms of
Lemma 8.3 becomes polynomial (rather than exponential) with respect to η(qS)
when queries qS are CQJFEs (rather than unions thereof).

8.2 Restricted Scenario for CQJFEs

In this section, we study both the verification, and the computation problem for
sound source-to-ontology rewritings in the restricted scenario for CQJFEs. We recall
that, while the language LS of queries over source schemas S is the one of CQJFEs,
the language LO for queries over ontologies O remains the one of UCQs.

Before going into details, we introduce the notion of covering.

Definition 8.2. Let Σ = 〈O,S,M〉 be an OBDM specification, β be an atom over
O, and α be an atom occurring in the body of a CQ qS = {~t | ∃~y.φ(~x, ~y)} over S.
We say that β Σ-covers α, if the following holds: in each disjunct of ρ(β,Σ) there is
at least an atom α′ such that α′ instantiates α.

Example 8.5. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { P1 v P2 }

• S = { s1, s2 }

• M = { m1,m2 }, where:
m1 : s1(x1, x2, x1) ∧ s2(x1, x2) → P1(x1, x2),
m2 : s1(x1, x2, c1) ∧ s2(x2, x2) → P2(x1, x2).

Consider the query qS = {(x) | ∃y.s1(c2, x, y) ∧ s2(x, x)} over S, and the atom
β = P2(c2, x) over O. Let α1 = s1(c2, x, y) and α2 = s2(x, x). Note that ρ(β,Σ) =
(s1(c2, x, c1)∧ s2(x, x))∨ (s1(c2, x, c2)∧ s2(c2, x)). Thus, we have that β Σ-covers α1,
whereas β does not Σ-cover α2. This latter is because in the disjunct (s1(c2, x, c2) ∧
s2(c2, x)) of ρ(β,Σ) there is no atom α′ such that α′ instantiates α2.

Obviously, for an OBDM specification Σ = 〈O,S,M〉, an atom β over O, and
an atom α over S, checking whether β Σ-covers α can be done in polynomial time.
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8.2.1 Verification Problem

We start by proving the following lemma, which will be used to prove that the
verification problem in this setting can be solved in polynomial time.

Lemma 8.4. Let Σ = 〈O,S,M〉 be an OBDM specification, and let qS and qO be a
CQJFE over S and a CQ over O, respectively, with the same target list. We have
that qO is a sound S-to-O Σ-rewriting of qS if and only if it is the case that for each
atom α of qS there exists an atom β of qO such that β Σ-covers α.

Proof. “Only-if part:” Suppose, for the sake of contradiction, that there exists an
atom α of qS such that for no atom β of qO it is the case that β Σ-covers α. Let q′ be
the disjunct of PerfRefqO,Σ obtained by unfolding each atom β of qO with the disjunct
of ρ(β,Σ) in which there is no atom α′ that instantiates α. For each atom β of qO,
there is at least one disjunct among the ones of ρ(β,Σ) that satisfies this condition,
otherwise, following Definition 8.2, we would trivially derive a contradiction on the
fact that β does not Σ-cover α.

Thus, the disjunct q′ of PerfRefqO,Σ contains no atom that instantiates the atom
α of qS , and therefore, due to Lemma 8.1, this implies that q′ 6v qS . It follows that
PerfRefqO,Σ 6v qS , which, due to Corollary 8.1, in turn implies that qO is not a sound
S-to-O Σ-rewriting of qS , as required.

“If part:” Since for each atom α of qS there is an atom β such that β Σ-covers α,
we trivially derive that each possible disjunct q′ of PerfRefqO,Σ satisfies the following
condition: for each atom α of qS , there is an atom α′ of q′ such that α′ instantiates
α. Due to Lemma 8.1, it follows that that q′ v q. Since this is true for each possible
disjunct q′ of PerfRefqO,Σ, we further derive that PerfRefqO,Σ v qS , which, due to
Corollary 8.1, implies that qO is a sound S-to-O Σ-rewriting of qS , as required.

Based on the above lemma, the following theorem proves that, in the restricted
scenario for CQJFEs, the verification problem for sound source-to-ontology rewritings
can be solved in polynomial time.

Theorem 8.3. In the restricted scenario for CQJFEs, the verification problem is
in PTime.

Proof. Due to Corollary 8.1, it is sufficient to show how to check the containment
PerfRefqO,Σ v qS in polynomial time, where qO and qS are a UCQ over O and a
CQJFE over S, respectively. To start, note that by construction qO is a sound S-to-O
Σ-rewriting of qS if and only if each disjunct q of qO is a sound S-to-O Σ-rewriting
of qS , i.e., PerfRefqO,Σ v qS if and only if PerfRefq,Σ v qS for each disjunct q of qO.
It is therefore enough to show that, given a CQ q = {~t′ | ∃~y′.φ′(~x′, ~y′)} over O and a
CQJFE qS = {~t | ∃~y.φ(~x, ~y)} over S, checking whether PerfRefq,Σ v qS can be done
in polynomial time.

We assume that every atom β of q appears in the right-hand side of some mapping
assertion inM, otherwise we trivially have that PerfRefq,Σ ≡ ⊥, and therefore q is
a sound S-to-O Σ-rewriting of qS . Furthermore, if q and qS do not have the same
target list, i.e., ~t′ = (t′1, . . . , t′n) 6= ~t = (t1, . . . , tn), then consider the function f from
the set of terms in the target list of q to the set of terms in the target list of qS with
f(ti) = t′i, for each i ∈ [1, n]. Formally, since repetitions of terms in target lists is
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allowed, f might give rise to a multivalued function. In this case, as well as in the
case that f(a) = b with a 6= b for two constants a ∈ ~t and b ∈ ~t′, it is straightforward
to verify that PerfRefq,Σ 6v qS trivially holds. Indeed, in those cases there can be no
homomorphism from qS to the disjuncts of PerfRefq,Σ by construction.

Consider the query q′S obtained in polynomial time from qS by replacing every
occurrence of the term ti in qS (even in the target list) with the term f(ti) = t′i, for
each i ∈ [1, n]. Observe that now q′S is a CQJFE having the same target list ~t′ of q.
By virtue of Lemma 8.4, we can now check whether q is a sound S-to-O Σ-rewriting
of q′S by checking whether it is the case that for each atom α of q′ there exists an
atom β of q such that β Σ-covers α. This can be clearly done in polynomial time.

Obviously, if q is a sound S-to-O Σ-rewriting of q′S , then we trivially have that q
is sound S-to-O Σ-rewriting of qS as well. Conversely, if q is not a sound S-to-O
Σ-rewriting of q′S , then there is a disjunct r of PerfRefq,Σ such that r 6v q′. But then,
it can be readily seen that Dr (i.e., the freezing of r) is the database witnessing that
r 6v qS . It follows that, for the S-database Dr, we have certDrq,Σ 6⊆ q

Dr
S , which implies

that q is not a sound S-to-O Σ-rewriting of qS as well.
From the above considerations, it is immediate to derive a polynomial time

algorithm for checking whether a UCQ qO over O is a sound S-to-O Σ-rewriting of
a CQJFE qS over S.

8.2.2 Computation Problem

As for the computation problem, we now provide an algorithm for computing UCQ-
maximally sound source-to-ontology rewritings which avoids the enumeration of all
possible CQs over O of a certain bound as algorithm MaximallySoundUCQJFEs in
the previous section does. The computation of the returned UCQ over O is rather
guided by the atoms occurring in the input query qS , in a very similar fashion to
the bucket algorithm [Levy et al., 1996] used for rewriting queries using views.

Specifically, by exploiting Lemma 8.4, the idea is as follows: for each atom αi
occurring in the body of qS , we compute a set Bi containing all the atoms β over O
such that β Σ-cover α. Then, disjuncts of the final UCQ qO over O are constructed
by simply selecting atoms from each set Bi and conjoining them.

There is, however, a preliminary issue to solve in order to apply this simple
idea: let Σ = 〈O,S,M〉 be an OBDM specification, and let α be an atom of a CQ
qS = {~t | ∃~y.φ(~x, ~y)} over S. It might happen that an atom β over O does not
Σ-cover α, but β Σ-covers α′ if some equalities are applied in the target list of qS ,
where α′ denotes the atom obtained from α after applying such equalities. The next
example shows this complication:

Example 8.6. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s }

• M = { m1,m2 }, where:
m1 : s(x, x) → A(x),
m2 : s(x, c1) → A′(x).
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Consider the CQJFE qS = {(x1, x2) | s(x1, x2)} over S. Observe that there is no
atom β over O such that β Σ-covers s(x1, x2).

Notice that, however, if we consider more specific queries obtained by applying
some equalities to the query qS , such as q1

S = {(x1, x1) | s(x1, x1)} (obtained by
applying the equality x1 = x2) and q2

S = {(x1, c1) | s(x1, c1)} (obtained by applying
the equality x2 = c1), then we get that atom A(x1) Σ-covers s(x1, x1) and atom A′(x1)
Σ-covers s(x1, c1). As a result, due to Lemma 8.4, queries q1

O = {(x1, x1) | A(x1)} and
q2
O = {(x1, c1) | A′(x1)} are a sound S-to-O Σ-rewriting of q1

S and q2
S , respectively.

It follows that, since by construction qiS v qS for both i = 1 and i = 2, both q1
O and

q2
O are sound S-to-O Σ-rewritings of qS as well.

Furthermore, when applying equalities, we have to take into account not only
constants occurring in mapping assertionsM, but also constants occurring in the
body of the input query. Consider indeed the CQJFE q′S = {(x) | s(x, c2)} over
S. Observe that there is no atom β over O such that β Σ-covers s(x, c2). Notice,
however, that if we consider the query q3

S = {(c2) | s(c2, c2)} (obtained by applying
the equality x = c2 to q′S), then we get that atom A(c2) Σ-covers s(c2, c2). As a result,
due to Lemma 8.4, the query q3

O = {(c2) | A(c2)} is a sound S-to-O Σ-rewriting of
q3
S , and therefore a sound S-to-O Σ-rewriting of q′S since q3

S v q′S .

Therefore, before of applying the idea described above for computing UCQ-
maximally sound source-to-ontology rewritings, we first have to compute the head
completion of qS with respect to conM ∪ conqS , where conM (respectively, conqS )
denote the set of all constants occurring inM (respectively, qS).

Roughly speaking, the head completion of a CQ qS = {~t | ∃~y.φ(~x, ~y)} with respect
to a set of constants con is an equivalent UCQ in which each disjunct is computed
by considering a possible unification between the terms in ~t ∪ con.

We now present the algorithm HeadCompletion that, given a CQ q and a set of
constants con, returns a logically equivalent UCQ representing the head completion
of q with respect to con.

In the algorithm, two terms t1 and t2 are compatible if t1 and t2 denote distinct
terms and at least one of them is a variable. Furthermore, for a query q, q[t1/t2]
denotes the query obtained from q by replacing every occurrence (even in the target
list) of the term t1 in q with the term t2 (obviously, if one of the two terms is a
constant, then we always assume that t2 is the constant and t1 is the variable).

For a CQ q and a set of constants con, HeadCompletion(q, con) computes the
equivalent UCQ Q obtained by unifying compatible terms of the target list of q, and
of the set of constants con, in all possible ways.

The following example illustrates an execution of the HeadCompletion algorithm.

Example 8.7. Let qS be the following CQ qS = {(x1, x2) | ∃y.s1(x1, c2, y) ∧
s2(x1, x2)}, and let con be the following set of constants con = {c1, c2}. One can
verify that HeadCompletion(qS , con) returns the UCQ Q =

⋃
1≤i≤10 q

i
S , where:

• q1
S = {(x1, x2) | ∃y.s1(x1, c2, y) ∧ s2(x1, x2)};

• q2
S = {(x1, x1) | ∃y.s1(x1, c2, y) ∧ s2(x1, x1)};

• q3
S = {(x1, c1) | ∃y.s1(x1, c2, y) ∧ s2(x1, c1)};
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Algorithm 8.2 HeadCompletion
Input:

CQ q;
set of constants con

Output:
UCQ Q

1: Q := q
2: repeat
3: Q′ := Q
4: for each CQ q′ ∈ Q′ do
5: Let q′ = {~t | ∃~y.φ(~x, ~y)}
6: for each pair of compatible terms t1, t2 in ~t ∪ con do
7: Q := Q ∪ q′[t1/t2]
8: end for
9: end for

10: until Q′ = Q
11: return Q

• q4
S = {(x1, c2) | ∃y.s1(x1, c2, y) ∧ s2(x1, c2)};

• q5
S = {(c1, x2) | ∃y.s1(c1, c2, y) ∧ s2(c1, x2)};

• q6
S = {(c2, x2) | ∃y.s1(c2, c2, y) ∧ s2(c2, x2)};

• q7
S = {(c1, c2) | ∃y.s1(c1, c2, y) ∧ s2(c1, c2)};

• q8
S = {(c1, c1) | ∃y.s1(c1, c2, y) ∧ s2(c1, c1)};

• q9
S = {(c2, c1) | ∃y.s1(c2, c2, y) ∧ s2(c2, c1)};

• q10
S = {(c2, c2) | ∃y.s1(c2, c2, y) ∧ s2(c2, c2)};

We are now ready to focus on the problem of computing UCQ-maximally sound
source-to-ontology rewritings in the restricted scenario for CQJFEs, and present
algorithm MaximallySoundCQJFEs.

Informally, the algorithm first computes the head completion of qS with re-
spect to con, where con = conM ∪ conqS . Subsequently, for each possible CQ
q ∈ HeadCompletion(qS , con), the algorithm proceeds in two main steps. In the first
step, for each atom αi occurring in the body of q, it is computed the set Bi of
relevant atoms over O, where β Σ-covers αi for each β ∈ Bi.

In the second step, for each possible combination which includes a single atom
from every set Bi (i.e., for each possible tuple of the Cartesian product B1 × . . .×
Bη(qS)), the CQ with the same target list of q and body the conjunction of those
atoms is added as a disjunct of the final returned UCQ qO over O.

Example 8.8. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅
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Algorithm 8.3 MaximallySoundCQJFEs
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-LiteRDFS ontology andM
is a pure GAV mapping;
CQJFE qS over S

Output:
UCQ qO

1: qO := ⊥
2: con := conM ∪ conqS
3: for each CQ q ∈ HeadCompletion(qS , con) do
4: Let q = {~t | ∃~y.φ(~x, ~y)}, where φ(~x, ~y) = α1 ∧ . . . ∧ αη(qS)
5: for i ← 1 to η(qS) do
6: Bi := ∅
7: for each possible atom β over O having as arguments the terms occurring

in αi and possibly fresh existential variables do
8: if β Σ-covers αi then
9: Bi := Bi ∪ β

10: end if
11: end for
12: end for
13: for each combinations of atoms (β1, . . . , βη(qS)) ∈ B1 × . . .×Bη(qS) do
14: qO := qO ∪ {~t | ∃~y′.φ′(~x, ~y′)}, where φ′(~x, ~y′) = β1 ∧ . . . ∧ βη(qS)
15: end for
16: end for
17: return qO

• S = { s1, s2, s3, s4, s5, s6 }

• M = { m1,m2,m3,m4,m5,m6 }
m1 : ∃y.s1(x1, x2, y) → P1(x1, x2),
m2 : s2(x1, x2) → P2(x1, x2),
m3 : s3(x1, x2) → P2(x1, x2),
m4 : ∃y.s2(x, x) ∧ s4(x, y) → A1(x),
m5 : ∃y.s2(x, x) ∧ s4(x, y) → A2(x),
m6 : s2(x1, c1) ∧ s6(x1, x2) → P3(x1, x2)

Let qS be the CQJFE illustrated in Example 8.7. As a first step, the algorithm
computes HeadCompletion(qS , con) which, since conM = {c1} and conqS = {c2},
it turns out to be the UCQ Q =

⋃
1≤i≤10 q

i
S illustrated in Example 8.7, where

con = conM ∪ conqS = {c1, c2}.
Then, for each i ∈ [1, 10], the algorithm processes query qiS to add possible CQs

that are sound S-to-O Σ-rewritings of qiS (and therefore of qS). We point out that,
for every j = [1, 4, 5, 6, 7], the resulting atom αj2 with predicate name s2 in the body
of qjS is such that Bj

2 = ∅, i.e., there is no atom β for which β Σ-covers αj2, and
therefore no disjunct is added for those queries.
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As for the query q2
S = {(x1, x1) | ∃y.s1(x1, c2, y) ∧ s2(x1, x1)}, we have B2

1 =
{P1(x1, c2)} and B2

2 = {A1(x1), A2(x1)}. Thus, the CQs q1
O = {(x1, x1) | P1(x1, c2)∧

A1(x1)} and q2
O = {(x1, x1) | P1(x1, c2) ∧A1(x1)} are disjuncts of the final UCQ qO.

As for the query q3
S = {(x1, c1) | ∃y.s1(x1, c2, y) ∧ s2(x1, c1)}, we have B3

1 =
{P1(x1, c2)} and B3

2 = {P3(x, y′)}. Thus, the CQ q3
O = {(x1, c1) | ∃y′.P1(x1, c1) ∧

P3(x1, y
′)} is a disjunct of the final UCQ qO.

For the queries qjS with j = [8, 9, 10], we observe that all disjuncts over O
generated by the algorithm are subsumed (w.r.t. Σ) by qiO for some i = [1, 2, 3]. As a
conclusion, one can verify that MaximallySoundCQJFEs(Σ, qS) returns a UCQ that
is equivalent (w.r.t. Σ) to qO = q1

O ∪ q2
O ∪ q3

O, which is the unique (up to equivalence
w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting of qS .

The following theorem establishes termination and correctness of the Maxi-
mallySoundCQJFEs algorithm.

Theorem 8.4. In the restricted scenario for CQJFEs, MaximallySoundCQJFEs
(Σ, qS) terminates and returns the unique (up to equivalence w.r.t.Σ) UCQ-maximally
sound S-to-O Σ-rewriting of qS .

Proof. Termination of the algorithm easily follows from the termination of the
HeadCompletion algorithm, and the fact that checking whether an atom β over O
Σ-covers an atom α over S can be done in finite time (actually, in polynomial time).

As for the correctness, we first show that the computed qO is a sound S-to-O
Σ-rewriting of qS . By construction, each disjunct {~t | ∃~y′.φ′(~x, ~y′)} of qO satisfies
the following condition: there is a query q ∈ HeadCompletion(qS , con) with target
list ~t such that for each atom αi of q there is an atom βi of φ(~x, ~y′) that Σ-covers αi,
where con = conM ∪ conqS . Due to Lemma 8.4, this implies that {~t | ∃~y′.φ′(~x, ~y′)} is
a sound S-to-O Σ-rewriting of a query q ∈ HeadCompletion(qS , con). Since for each
query q ∈ HeadCompletion(qS , con) we trivially have that q v qS , we derive that
{~t | ∃~y′.φ′(~x, ~y′)} is a sound S-to-O Σ-rewriting of qS as well. Furthermore, since the
above condition is true for each disjunct {~t | ∃~y′.φ′(~x, ~y′)} of qO, it follows that the
computed qO is a sound S-to-O Σ-rewriting of qS . We now show that qO is actually
the unique (up to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting
of qS , that is, each UCQ q′O that is a sound S-to-O Σ-rewriting of qS is such that
certq′O,Σ v certqO,Σ (cf. Definition 3.6). We do this by way of contradiction.

Let q′O be a UCQ such that certq′O,Σ 6v certqO,Σ, that is, there exists an S-
database D consistent with Σ such that certDq′O,Σ 6⊆ certDqO,Σ. It follows that there is
a tuple of constants ~c = (c1, . . . , cn) such that ~c ∈ certDq′O,Σ but, at the same time,
~c 6∈ certDqO,Σ. If ~c 6∈ qDS , then q′O is trivially not a sound S-to-O Σ-rewriting of qS ,
and we are done. Therefore, we assume that ~c ∈ qDS . Specifically, let H the set of all
homomorphisms h from qS to D with h(~t′) = ~c (where ~t′ is the target list of qS), and
let Γ be the set of all facts in D that partecipate in some homomorphism h ∈ H, i.e:

Γ =
⋃
h∈H

h(qS)

Consider now the S-database ∆ = D \ Γ. Obviously, since ∆ ⊆ D, and since
the left-hand side of mapping assertions are CQs, we have that CM(∆)

O ⊆ CM(D)
O . In
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particular, let Λ = {β1, . . . , βk} be the set composed of all the facts in CM(D)
O that

are not in CM(∆)
O , i.e., Λ = CM(D)

O \CM(∆)
O (sinceM is a pure GAV mapping and O is

a DL-LiteRDFS ontology, clearly, both CM(D)
O and CM(∆)

O do not introduce variables).
We now exhibit an S-database D′ for which (i) ~c 6∈ qD′S , and CM(D)

O ⊆ CM(D′)
O . To

this aim, we exploit the following things:

• Let q = {~t | ∃~y.φ(~x, ~y)} = {~t | ∃~y.α1 ∧ . . . ∧ αη(qS)} ∈ HeadCompletion(qS , con)
be the most specific query over S for which ~c = (c1, . . . , cn) ∈ qD still holds, i.e.,
the CQ whose target list ~t = (t1, . . . , tn) is such that (i) for each i ∈ [1, n], if ci
is a constant occurring either in conqS or in conM, then ti = ci (otherwise term
ti is a distinguished variable), and (ii) for each pair of numbers i, j ∈ [1, n],
ci = cj if and only if ti = tj .

• Consider the target list ~t = (t1, . . . , tn) of q and the tuple of constants ~c =
(c1, . . . , cn). Let Λ′ = {β′1, . . . , β′k} be the set of atoms over O obtained from
the set of facts Λ = {β1, . . . , βk} by (i) replacing everywhere the constant
ci ∈ ~c with the term ti ∈ ~t (either a distinguished variable, or the constant
ci itself), for each i ∈ [1, n], and (ii) replacing everywhere each constant c
occurring neither in qS nor inM with a fresh existential variable yc.

In particular, there are two possible cases: either for each i ∈ [1, η(qS)] there is an
atom β′i ∈ Λ′ such that β′i Σ-covers αi, or not.

In the former case, since for each atom αi of q there is an atom β′i ∈ Λ′ such that
β′i Σ-covers αi, by construction of the algorithm, it can be readily seen that the CQ
q′ = {~t | ∃~y′.β′1∧ . . .∧β′η(qS)} over O is a disjunct of qO. Furthermore, it is clear that
~c ∈ q′Λ. Two considerations are now in order: (i) due to the facts that ~c ∈ q′Λ and
Λ ⊆ CM(D)

O , and since q′ is a CQ, we derive that ~c ∈ q′C
M(D)
O as well, and (ii) since

~c ∈ q′C
M(D)
O and since q′ is a disjunct of qO, we have ~c ∈ qOC

M(D)
O . Thus, as already

observed, since in this setting for OBDM specifications certDqO,Σ = q
CM(D)
O
O for each

UCQ qO and S-database D, we derive that ~c ∈ certDqO,Σ, which is a contradiction
on the initial assumption that ~c 6∈ certDqO,Σ. It follows that the former case just
considered is not possible because it leads to a contradiction. Therefore, we consider
only the latter case.

Consider the latter case, that is, there exists at least an atom αi of q for which
no atom β′ ∈ Λ′ is such that β′ Σ-covers αi. It is not hard to ascertain that this
implies that there is at least an atom α′i of qS(~c) for which no atom β ∈ Λ is such
that β Σ-covers α′i, where we recall that qS(~c) = {() | ∃~y.α′1 ∧ . . . ∧ α′η(qS)} is the
boolean CQ obtained from qS by replacing each occurrence of term t′i in the body of
qS with constant ci, for each i ∈ [1, n] (where ~t′ = (t1, . . . , tn) is the target list of qS).
But then, consider the set of facts Ω obtained by unfolding each fact β ∈ Λ with a
disjunct of ρ(β,Σ) such that there is no atom over S that instantiates α′ (clearly,
since by assumption β does not Σ-cover α′, following Definition 8.2, at least one
of such disjunct must exists). As a result, we trivially have that Ω 6|= qS(~c), which
implies that ~c 6∈ qΩ

S .
We now prove that the S-database we are seeking is D′ = ∆ ∪ Ω. Observe

that: (i) qS is a CQJFE, and therefore it does not have existential variables in join
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occurring in its body, (ii) from (i) and by construction of ∆, we know that there
are no facts that may partecipate in a possible homomorphism from qS to D with
h(~t′) = ~c (where ~t′ is the target list of qS) in ∆, (iii) ~c 6∈ qΩ

S . Putting together the
above three observations, one can easily verify that they imply that ~c 6∈ qD′S , where
D′ = ∆∪Ω. Furthermore, sinceM is a pure GAV mapping and O is a DL-LiteRDFS
ontology, and thus contains no assertions with ∃R in the right-hand side for a basic
role R, and since Ω is obtained by unfolding each atom β ∈ Λ with a disjunct of
ρ(β,Σ), it is easy to verify that CM(Ω)

O is such that CM(D)
O ⊆ CM(Ω)

O , which obviously
implies that CM(D)

O ⊆ CM(D′)
O because Ω ⊆ D′ and the left-hand side of mapping

assertions are CQs. Notice that ~c ∈ certDq′O,Σ holds by assumption, and therefore

~c ∈ q′O
CM(D)
O . Furthermore, since CM(D)

O ⊆ CM(D′)
O and qO is a UCQ, we trivially

derive that ~c ∈ q′O
CM(D′)
O as well, which, in turn, implies that ~c ∈ certD′q′O,Σ.

To complete the proof, consider the S-database D′. We have that, on the one
hand, ~c 6∈ qD′S , and, on the other hand, ~c ∈ certD′q′O,Σ. It follows that q′O is not a
sound S-to-O Σ-rewriting of qS , as required.

As a specialisation of Lemma 8.3 in the restricted scenario for CQJFEs, we have
the following result which straightforward follows from the above theorem.

Corollary 8.2. Let Σ = 〈O,S,M〉 be an OBDM specification, and let qS be a
CQJFE over S. If a CQ qO over O is a sound S-to-O Σ-rewriting of qS , then there
exists a CQ q′O over O with same target list of qO such that ( i) the body of q′O is
the conjunction of at most η(qS) atoms occurring in the body of qO (and therefore,
certqO,Σ v certq′O,Σ), and ( ii) q′O is a sound S-to-O Σ-rewriting of qS as well.

Regarding the cost of the algorithm, we observe that the overall running time is
exponential in the size of the input. Indeed, the computation of the head completion
of qS with respect to con = conM ∪ conqS is, in general, exponential with respect to
the size of the target list of qS , even when con = ∅. Furthermore, for each possible
q ∈ HeadCompletion(qS , con), the generated disjuncts added to the final UCQ qO
are, potentially, exponentially many with respect to η(qS).

The next proposition shows that there exists OBDM specifications Σ and CQJFEs
qS for which the unique (up to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O
Σ-rewriting of qS necessarily consists of an exponential number of disjuncts with
respect to η(qS) for exponentially many source queries with respect to the size of
the target list of qS .

Proposition 8.3. In the restricted scenario for CQJFEs, there are OBDM spec-
ifications Σ and CQJFEs qS for which the unique (up to equivalence w.r.t.Σ)
UCQ-maximally sound S-to-O Σ-rewriting of qS is a UCQ having necessarily an
exponential number of disjuncts with respect to η(qS), for exponentially many source
queries with respect to the size of the target list of qS .

Proof. We provide here a small example showing the main reason of why the unique
(up to equivalence w.r.t. the OBDM specification Σ = 〈O,S,M〉) UCQ-maximally
sound S-to-O Σ-rewriting of a CQJFE qS may contain an exponential number of
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disjuncts with respect to η(qS), for exponentially many source queries with respect
to the size of the target list of qS .

Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s1, s1,1, s1,2, s
′
1,1, s

′
1,2, s2, s2,1, s2,2, s

′
2,1, s

′
2,2, s3, s3,1, s3,2, s

′
3,1, s

′
3,2 }

• M = { m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12 }, where:
m1 : s1,1(x1, x2) ∧ s1(x1, x2) → P1,1(x1, x2),
m2 : s1,2(x1, x2) ∧ s1(x1, x2) → P1,2(x1, x2),
m3 : s′1,1(x) ∧ s1(x, x) → A1,1(x),
m4 : s′1,2(x) ∧ s1(x, x) → A1,2(x),
m5 : s2,1(x1, x2) ∧ s2(x1, x2) → P2,1(x1, x2),
m6 : s2,2(x1, x2) ∧ s2(x1, x2) → P2,2(x1, x2),
m7 : s′2,1(x) ∧ s2(x, x) → A2,1(x),
m8 : s′2,2(x) ∧ s2(x, x) → A2,2(x),
m9 : s3,1(x1, x2) ∧ s3(x1, x2) → P3,1(x1, x2),
m10 : s3,2(x1, x2) ∧ s3(x1, x2) → P3,2(x1, x2),
m11 : s′3,1(x) ∧ s3(x, x) → A3,1(x),
m12 : s′3,2(x) ∧ s3(x, x) → A3,2(x).

Let qS be the following CQJFE over S: qS = {(x1, x2, x3, x4, x5, x6) |
s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x6)}. Consider the following CQs occurring in
HeadCompletion(qS , {}):

1. q1
S = qS = {(x1, x2, x3, x4, x5, x6) | s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x6)};

2. q2
S = {(x1, x1, x3, x4, x5, x6) | s1(x1, x1) ∧ s2(x3, x4) ∧ s3(x5, x6)};

3. q3
S = {(x1, x2, x3, x3, x5, x6) | s1(x1, x2) ∧ s2(x3, x3) ∧ s3(x5, x6)};

4. q4
S = {(x1, x2, x3, x4, x5, x5) | s1(x1, x2) ∧ s2(x3, x4) ∧ s3(x5, x5)};

5. q5
S = {(x1, x1, x3, x3, x5, x6) | s1(x1, x1) ∧ s2(x3, x3) ∧ s3(x5, x6)};

6. q6
S = {(x1, x1, x3, x4, x5, x5) | s1(x1, x1) ∧ s2(x3, x4) ∧ s3(x5, x5)};

7. q7
S = {(x1, x2, x3, x3, x5, x5) | s1(x1, x2) ∧ s2(x3, x3) ∧ s3(x5, x5)};

8. q8
S = {(x1, x1, x3, x3, x5, x5) | s1(x1, x1) ∧ s2(x3, x3) ∧ s3(x5, x5)}.

One can verify that for each of the CQs illustrated above there are at least eight
CQs over O that must necessarily appear in the unique (up to equivalence w.r.t. Σ)
UCQ-maximally sound S-to-O Σ-rewriting of qS . For instance, consider the query
q6
S in case 6. We have that B1 = {P1,1(x1, x1), P1,2(x1, x1), A1,1(x1), A1,2(x1)}, B2 =
{P2,1(x3, x4), P2,2(x3, x4)}, and B3 = {P3,1(x5, x5), P3,2(x5, x5), A3,1(x5), A3,2(x5)}
are the set of all the atoms that Σ-cover s1(x1, x1), s2(x1, x2), and s3(x5, x5), re-
spectively. In particular, if we consider the subsets B′1 = {A1,1(x1), A1,2(x1)} and
B′3 = {A3,1(x1), A3,2(x5)} of B1 and B3, respectively, then it is easy to verify that for
each possible combination of atoms (β1, β2, β3) occurring in the Cartesian Product
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B′1 × B2 × B′3, we have that the CQ {(x1, x1, x3, x4, x5, x5) | ∃~y′.β1 ∧ β2 ∧ β3} is
necessarily a disjunct of the unique (up to equivalence w.r.t. Σ) UCQ-maximally
sound S-to-O Σ-rewriting of qS , and, moreover, each of these CQs will not be
produced when considering any other query in HeadCompletion(qS , {}).

By generalising the above construction, one can see that it is always possible
to compose OBDM specifications Σ = 〈O,S,M〉 and CQJFEs qS for which the
number of source queries to consider when computing the UCQ corresponding to
the unique (up to equivalence w.r.t. Σ) UCQ-maximally sound S-to-O Σ-rewriting
of qS is equal to 2

η(qS )
2 (and therefore, an exponential number of source queries with

respect to the size of the target list of qS). Furthermore, for each of these source
queries, the number of disjuncts occurring in the unique (up to equivalence w.r.t. Σ)
UCQ-maximally sound S-to-O Σ-rewriting of qS is at least 2η(qS) (and therefore, an
exponential number of disjuncts with respect to η(qS)).

8.3 View-based Query Processing in the presence of
Disjunctive Views

In Subsection 3.3.3, we have figured out the relationship between the notion of source-
to-ontology rewriting and the view-based query processing approach. Specifically,
for OBDM specifications Σ = 〈O,S,M〉 withM being a pure GAV mapping and
O = ∅, the problem of computing a perfect (respectively, UCQ-maximally sound)
S-to-O Σ-rewriting of a UCQ qS is equivalent to the problem of computing an exact
(respectively, UCQ-maximally sound) rewriting of qS with respect to VM, where VM
denotes the set of UCQ view definitions associated to mappingM (cf. Theorem 3.2
and Corollary 3.1).

We are now ready to focus on the problem of computing UCQ-maximally sound
rewritings of UCQs qS with respect to sets of UCQ view definitions V. Using
results proven so far, in this section we delineate the precise dividing line between
the existence and the non-existence cases along the dimension of join existential
variables occurring in the bodies of the various disjuncts of qS .

As already sketched in Example 3.10 and formally proven in [Duschka and
Genesereth, 1998; Afrati and Chirkova, 2019], there are pairs of sets of UCQ view
definitions V and CQs qS for which no UCQ-maximally sound rewriting of qS with
respect to V exists. However, each CQ qS occurring in these pairs used to prove such
a negative result has more than one join existential variable occurring in its body.
We can strengthen this negative result. Indeed, by combining the proof of point 1 of
Theorem 6.2 and Corollary 3.1, we immediately obtain the following corollary.

Corollary 8.3. There exists a set of UCQ view definitions V over a schema S and
a boolean CQ qS over S with only one variable occurring in its body for which no
UCQ-maximally sound rewriting of qS with respect to V exists. Furthermore, both V
and S use only predicates with arity at most two, and all view definitions in V are
single CQs except one view definition which is the union of only two CQs.

On the contrary, using results presented in this chapter, we are able to show that
having no join existential variables occurring in the body of queries qS is a sufficient
condition that guarantees the existence of UCQ-maximally sound rewritings of
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UCQs qS with respect to set of UCQ view definitions V , i.e., UCQ-maximally sound
rewritings of UCQJFEs qS with respect to sets UCQ view definitions V always exist.

Towards this goal, we consider OBDM specifications Σ = 〈O,S,M〉 whereM
is a pure GAV mapping and O = ∅ is not a usual ontology, but it is simply a
schema (without assertions) whose predicates have arity possibly greater than 2. It
is straightforward to argue that Algorithm MaximallySoundUCQJFEs (respectively,
Algorithm MaximallySoundCQJFEs) can be used for computing UCQ-maximally
sound S-to-O Σ-rewritings of UCQJFEs (respectively, CQJFEs) qS also for this
kind of OBDM specifications Σ = 〈O,S,M〉.

Let V = {V1, . . . , Vn} be a set of UCQ view definitions over a schema S. We
denote by ΣV = 〈OV ,S,MV〉 the OBDM specification where: (i) for each i ∈ [1, n],
the schema OV comprises a predicate Vi of the same arity of the UCQ associated
to symbol Vi in the view definitions V; (ii)MV is the pure GAV mapping relating
schema S to schema OV obtained by including, for each i ∈ [1, n] and for each
disjunct {~x | ∃~y.φ(~x, ~y)} occurring in the UCQ associated to the symbol Vi, the
mapping assertion ∃~y.φ(~x, ~y)→ Vi(~x).

Example 8.9. Let V = {V1, V2} be the set of UCQ view definitions over schema
S = {s1, s2, s3, s4}, where:

• V1 = {(x1, x2, x3) | s3(x1, x2, x3)} ∪ {(x1, x2, x3) | ∃y.s1(x1, y) ∧
s2(y, x2, x3)} ∪ {(x1, x2, x3) | ∃y1, y2.s1(x1, y1) ∧ s4(x1, x2, x3, y2)}

• V2 = {(x1, x2, x3, x4) | s1(x1, x2) ∧ s3(x2, x3, x4)} ∪ {(x1, x2, x3, x4) |
∃y.s2(x1, x2, y) ∧ s4(y, x3, x3, x4)}

Then, the OBDM specification ΣV = 〈OV ,S,MV〉 is such that OV is a
schema with a ternary predicate V1 and a quaternary predicate V2, and MV =
{m1,m2,m3,m4,m5} is a pure GAV mapping relating S to OV , where:

m1 : s3(x1, x2, x3) → V1(x1, x2, x3),
m2 : ∃y.s1(x1, y) ∧ s2(y, x2, x3) → V1(x1, x2, x3),
m3 : ∃y1, y2.s1(x1, y1) ∧ s4(x1, x2, x3, y2) → V1(x1, x2, x3),
m4 : s1(x1, x2) ∧ s3(x2, x3, x4) → V2(x1, x2, x3, x4),
m5 : ∃y.s2(x1, x2, y) ∧ s4(y, x3, x3, x4) → V2(x1, x2, x3, x4).

We now provide the following theorem, which can be seen as the dual of Theo-
rem 3.2 and can be shown using exactly the same arguments used in that proof.

Theorem 8.5. Let V be a set of UCQ view definitions over a schema S, and let
qS and qV be two UCQs over S and over the view alphabet V (equivalently, OV),
respectively. We have that qV is an exact (respectively, a sound) rewriting of qS with
respect to V if and only if qV is a perfect (respectively, sound) S-to-OV ΣV -rewriting
of qS .

Proof. As already observed in the proof of Theorem 3.2:

1. By [Levy et al., 1995], a UCQ qV is an exact (respectively, a sound) rewriting
of a UCQ qS with respect to a set of UCQ view definitions V if and only if
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expV(qV) ≡ qS (respectively, expV(qV) v qS), where expV(·) is the function
that, given a UCQ qV over the view alphabet, replace each atom occurring in
qV by the definition of the views (being careful to use unique variables in place
of those variables that appear in the bodies of the view but not in the heads
of those), and then turning the resulting formula into an equivalent UCQ.

2. For OBDM specifications Σ = 〈O,S,M〉 with O = ∅ and M a pure GAV
mapping, a UCQ q is a perfect (respectively, sound) S-to-O Σ-rewriting of a
UCQ qS if and only if MapRef(q,M) ≡ qS (respectively, MapRef(q,M) v qS),
where MapRef(q,M) in this case is equivalent to unfolding the query q with
respect toM [Poggi et al., 2008], i.e., replacing each atom α occurring in q by
the logical disjunction of all the left-hand sides of mapping assertions inM
having the predicate name α in the right-hand side (being careful to use unique
variables in place of those variables that appear in the left-hand side of the
mapping assertions but not in the right-hand side of those), and then turning
the resulting formula into an equivalent UCQ. Technically speaking, in [Poggi
et al., 2008] the unfolding is specified for ontologies O, and thus whose schema
comprises only unary and binary predicates (i.e., atomic concepts and atomic
roles, respectively). We point out that, however, it can be straightforwardly
generalised in the data integration context when O is any schema whose
predicates have also arity greater than 2, see, e.g., [Lenzerini, 2002].

3. By construction, expV(qV) = MapRef(qV ,MV) for any set of UCQ view defini-
tions V and for any UCQ qV over the view alphabet V (equivalently, OV).

Thus, qV is an exact (respectively, a sound) rewriting of qS if and only
if expV(qV) ≡ qS (respectively, expV(qV) v qS), which, since expV(qV) =
MapRef(qV ,MV), it is so if and only if MapRef(qV ,MV) ≡ qS (respectively,
MapRef(qV ,MV) v qS), and therefore if and only if qV is a perfect (respectively,
sound) S-to-OV ΣV -rewriting of qS , as required.

From the sound part of the above theorem, we derive the following corollary,
which can be seen as the dual of Corollary 3.1.

Corollary 8.4. Let V be a set of UCQ view definitions over a schema S, and let
qS and qV be two UCQs over S and over the view alphabet V (equivalently, OV),
respectively. We have that qV is a UCQ-maximally sound rewriting of qS with respect
to V if and only if qV is the unique (up to equivalence w.r.t.ΣV) UCQ-maximally
sound S-to-OV ΣV-rewriting of qS .

This, together with what illustrated in the previous sections, allow us to derive
a technique to compute UCQ-maximally sound rewritings of UCQJFEs qS with
respect to sets of UCQ view definitions V , thus proving that, for each pair composed
by a set of UCQ view definitions V over a schema S and a UCQJFE qS over S, a
UCQ-maximally sound rewriting of qS with respect to V is guaranteed to exists.

In particular, given a set of UCQ view definitions V over a schema S and a
UCQJFE (respectively, CQJFE) qS over S, we can first construct ΣV and then run
the MaximallySoundUCQJFEs (respectively, MaximallySoundCQJFEs) algorithm on
ΣV and qS . Due to Theorem 8.2 (respectively, Theorem 8.4), the UCQ returned
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by MaximallySoundUCQJFEs(ΣV , qS) (respectively, MaximallySoundCQJFEs(ΣV , qS))
is the unique (up to equivalence w.r.t. ΣV) UCQ-maximally sound S-to-OV ΣV -
rewriting of qS , and then, by Corollary 8.4, it is also a UCQ-maximally sound
rewriting of qS with respect to V.

By combining the above discussion with Theorem 3.3, we can easily obtain the
main result of this section.

Theorem 8.6. Let V be a set of UCQ view definitions over a schema S, and let qS be
a UCQJFE (respectively, CQJFE) over S. Let denote by qV the UCQ over the schema
OV (equivalently, view alphabet V) returned by MaximallySoundUCQJFEs(ΣV , qS)
(respectively, MaximallySoundCQJFEs(ΣV , qS)). We have that:

• qV is a UCQ-maximally sound rewriting of qS with respect to V;

• qV is a perfect rewriting of qS with respect to V;

• qV is a UCQ-exact rewriting of qS wih respect to V, if this latter exists.

As an interesting implication observe that, given any set of UCQ view definitions
V over a schema S and any UCQJFE qS over S, a perfect rewriting of qS with
respect to V can be always expressed as a UCQ in which the body of each disjunct
is the conjunction of at most bound(MV , qS) atoms (cf. Lemma 8.3). Furthermore,
when qS is a CQJFE, the body of each disjunct is the conjunction of at most η(qS)
atoms (cf. Corollary 8.2), exactly as in the case of CQ view definitions V and UCQs
qS [Levy et al., 1995].

We conclude with the following curious observations: the assumption that the
target list of each disjunct of the various UCQ view definitions in V does not have
repeated variables or constants is essential for the above theorem to hold. In fact,
when removing this assumption, by the proof of point 5 of Theorem 6.2 we can
easily construct a set of UCQ view definitions V and a CQJFE qS for which no
UCQ-maximally sound rewriting of qS exists. Furthermore, when removing this
assumption, there are cases where a UCQ-maximally sound rewriting of a CQJFE
qS with respect to a set of CQ view definitions V exists but it does not correspond
to a perfect rewriting of qS with respect to V (cf. Example 3.9).
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Chapter 9

Non-Monotonic
Source-to-Ontology Rewritings

In this chapter, we investigate the notion of abstraction in the case where source-to-
ontology rewritings can be expressed in a non-monotonic query language. One basic
issue to address in this endeavour is selecting the non-monotonic query language.

Our choice in this chapter is to use EQL-Lite(UCQ) [Calvanese et al., 2007a],1
which is a language equipped with a single modal operator K. The modal operator
is used to formalise the epistemic state of the current OBDM system according to
the minimal knowledge semantics (see later). Informally, the formula K% is read
as “% is known to hold in the OBDM system”. Queries in EQL-Lite(UCQ) can
use conjunction, negation, and existential quantification, and have atoms that are
expressed exactly as K%, where % is a UCQ. With this combination of operators, it
is possible to ask for those x such that a given φ(x) is not known to hold, and this
is crucial for characterising a set of tuples that are not certain answers to a given
source query qS . The epistemic operator enables also other interesting features. For
instance, we can distinguish between asking for those x such that it is known that
there is y for which P (x, y) holds (where y can be unknown), and asking for those x
such that there is y for which P (x, y) is known to hold (and therefore y is known).

EQL-Lite(UCQ) is a particularly well-behaved fragment of EQL, a variant of
the well-known First-Order Modal Logic of knowledge/belief [Levesque, 1984; Reiter,
1992; Levesque and Lakemeyer, 2000] (see also [Chellas, 1980]). Before exploring
EQL-Lite(UCQ) source-to-ontology rewritings, we first recall the basis of EQL.

An epistemic interpretation for an ontology O is a pair 〈E, I〉, where E is a
possibly infinite set of FOL interpretations forO, and I = 〈∆I , ·I〉 is an interpretation
in E. We inductively define when an EQL sentence ψ is true in an epistemic
interpretation 〈E, I〉, written 〈E, I〉 |= ψ, as follows:

〈E, I〉 |= A(c) iff I |= A(c),
〈E, I〉 |= P (c1, c2) iff I |= P (c1, c2),
〈E, I〉 |= ψ1 ∧ ψ2 iff 〈E, I〉 |= ψ1 and 〈E, I〉 |= ψ2,
〈E, I〉 |= ¬ψ iff 〈E, I〉 6|= ψ,
〈E, I〉 |= ∃x.ψ iff 〈E, I〉 |= ψxc for some constant c ∈ ∆I ,
〈E, I〉 |= Kψ iff 〈E, I ′〉 |= ψ for every I ′ ∈ E,

1In fact, we consider a restricted version of EQL-Lite(UCQ), in which (in)equalities are disallowed.
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where ψ, x, and ψxc denote an arbitrary EQL sentence, a variable, and the EQL
sentence obtained by replacing the variable x with the constant c, respectively.

As in knowledge base scenarios, in OBDM, among the various epistemic inter-
pretations, the interest is in the specific ones representing the minimal epistemic
state of the OBDM system, i.e., the state in which the OBDM system has minimal
knowledge. Namely: let Σ = 〈O,S,M〉 be an OBDM specification and D be an
S-database. Then, a 〈Σ, D〉-EQL-interpretation is an epistemic interpretation 〈E, I〉
for which E = ModD(Σ). Finally, we say that an EQL sentence ψ is EQL-logically
implied by 〈Σ, D〉, denoted by 〈Σ, D〉 |=EQL ψ, if for every 〈Σ, D〉-EQL-interpretation
〈E, I〉 we have 〈E, I〉 |= ψI , where ψI is obtained from ψ by replacing each constant
c occurring in ψ with the domain object cI ∈ ∆I (if defined, i.e., if c ∈ dom(D)).

This led us to naturally define the certain answers of EQL queries in OBDM
systems. First, we need to define EQL queries: an EQL query is a query of the form
q = {~t | ψ(~x)}, where the target list ~t is an n-tuple of terms, and the body ψ(~x) is
an EQL formula in which the free variables are exactly the variables occurring in ~t.
For an EQL query q = {(t1, . . . , tn) | ψ(~x)} of arity n and an n-tuple of constants
~c = (c1, . . . , cn), we denote by q(~c) = {() | ψ(~x/~c)} the boolean EQL query in which
the EQL sentence ψ(~x/~c) corresponds to ⊥ in the case that there is some i ∈ [1, n]
for which ti 6= ci and ti is a constant, otherwise ψ(~x/~c) is obtained from ψ(~x) by
replacing all the occurrences of the term ti with the constant ci, for each i ∈ [1, n].
Given an OBDM specification Σ = 〈O,S,M〉, an S-database D, and an EQL query
qO over O of arity n, the certain answers of qO with respect to Σ and D, denoted as
always by certDqO,Σ, is the set certDqO,Σ = {~c ∈ dom(D)n | 〈Σ, D〉 |=EQL qO(~c)}.

9.1 Towards EQL-Lite(UCQ) Abstractions
We start by recalling the EQL-Lite(UCQ) query language, and show how queries
in such a language can be rewritten as FOL queries over the source schema to
compute certain answers with respect to OBDM systems. We then show how the
EQL-Lite(UCQ) query language allows to obtain better abstractions of data services,
compared to the usual language of UCQs.

9.1.1 The EQL-Lite(UCQ) Query Language

The EQL-Lite(UCQ) query language, introduced in [Calvanese et al., 2007a],2 is
an epistemic query language whose epistemic atoms are formulas of the form K%,
where % is a UCQ. Such a query language is a particularly well-behaved fragment of
EQL queries. Formally, an EQL-Lite(UCQ) query over a DL ontology O is a query
of the form qO = {~t | ψ(~x)}, where the target list ~t is an n-tuple of terms, and the
body ψ(~x) is a formula built according to the following syntax (we recall that the
free variables occurring in formula ψ(~x) are exactly the variables occurring in ~t):

ψ ::= K% | ∃x.ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ,

where % is a disjunction of existentially quantified conjunction of atoms over O
sharing the same free variables.

2In fact, we consider a restricted version of EQL-Lite(UCQ), in which (in)equalities are disallowed.
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Example 9.1. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { Professor v ∃Teaches,Teaches v Likes,∃WorksFor v ∃Likes }

• S = { s1, s2, s3, s4 }

• M = { m1,m2,m3,m4 }, where:
m1 : ∃y.s1(x1, x2, y) → Teaches(x1, x2),
m2 : s2(x) → Professor(x),
m3 : ∃y1, y2.s3(x1, x2, y1, y2) → Likes(x1, x2),
m4 : ∃y1, y2.s4(x, y1, y2) → ∃z.WorksFor(x, z).

Consider the following EQL-Lite(UCQ) queries over the ontology O:

• q1
O = {(x) | ∃y.K(Teaches(x, y))};

• q2
O = {(x) | ∃y.K(Likes(x, y))};

• q3
O = {(x) | ∃y.K(Likes(x, y)) ∧ ¬K(Teaches(x, y))}.

Intuitively, q1
O retrieves all the people for whom at least one subject is known

they teach, q2
O retrieves all the people for whom at least one subject is known they

like, and finally q3
O retrieves all the people for whom at least one subject is known

they like and is not known they teach this subject.

Each EQL-Lite(UCQ) query qO over O can be associated with a FOL query over
a new schema. Formally, let qO be an EQL-Lite(UCQ) query over O whose epistemic
atoms are K%1, . . . ,K%m. For each i ∈ [1,m], we denote by q%iO the UCQ over O
associated to %i, i.e., the UCQ q%iO = {~z | ∃~y1.φ1(~z, ~y1)} ∪ . . . ∪ {~z | ∃~yl.φl(~z, ~yl)},
where ~z = (z1, . . . , zar(%i)) is the tuple of all free variables occurring %i (we recall
that each free variable zi ∈ ~z of %i occurs also in the target list of qO), and
%i = ∃~y1.φ1(~z, ~y1)∨ . . .∨∃~yl.φl(~z, ~yl). Finally, we denote by qFOL

O the FOL query over
the schemaRqO = {RK%1 , . . . , RK%m} obtained from qO in the following way: for each
i ∈ [1,m], the epistemic atom K%i is replaced with the atom RK%i(z1, . . . , zar(%i)).

In order to reduce query answering of EQL-Lite(UCQ) queries to the standard
evaluation of Relational Algebra queries, and therefore of SQL queries (thus taking
advantage of optimisation strategies provided by DBMSs), we have to introduce
the notion of “domain independence”, which is the semantical restriction on FOL
queries needed to get equivalence with Relational Algebra queries [Codd, 1972].

In the DL context, an FOL query qO of arity n over an ontology O is domain
independent if {~c ∈ Constn | I1 |= qO(~c)} = {~c ∈ Constn | I2 |= qO(~c)} for each pair
of FOL interpretations I1 = 〈∆I1 , ·I1〉 and I2 = 〈∆I2 , ·I2〉 for O such that ·I1 ≡ ·I2 ,
where ·I1 ≡ ·I2 if AI1 = AI2 (respectively, P I1 = P I2) for each atomic concept A
(respectively, atomic role P ) in the alphabet of O. We say that an EQL-Lite(UCQ)
query qO over an ontology O is domain independent if its associated qFOL

O is so.
Several syntactic sufficient conditions have been devised to guarantee domain

independence of FOL queries, see, e.g., [Abiteboul et al., 1995]. Such syntactic condi-
tions can be directly translated into syntactic conditions on EQL-Lite(UCQ) queries.
As in relational database scenarios, where one allows only for FOL queries that
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are domain independent, in the sequel, whenever we speak about EQL-Lite(UCQ)
queries, we will always mean domain independent EQL-Lite(UCQ) queries.

EQL-Lite(UCQ) queries enjoy a very interesting computational property: one
can decouple the reasoning needed for answering the epistemic atoms, which can be
delegated to the underlying OBDM service for answering UCQs, from the reasoning
needed for dealing with the other operators of the whole query. Formally, let
Σ = 〈O,S,M〉 be an OBDM specification, D be an S-database, and qO be an
EQL-Lite(UCQ) query over O whose epistemic atoms are K%1, . . . ,K%m. We denote
by IDqO,Σ the set of facts over the schema RqO = {RK%1 , . . . , RK%m} obtained by
including, for each i ∈ [1,m] and for each ~c ∈ certD

q
%i
O ,Σ

, the fact RK%i(~c). By
using [Calvanese et al., 2007a, Theorem 6], we easily get the following property.

Proposition 9.1. Let Σ = 〈O,S,M〉 be an OBDM specification and qO be an
EQL-Lite(UCQ) query over O of arity n. Then, for each S-database D consistent
with Σ, we have that certDqO,Σ = {~c ∈ dom(D) | IDqO,Σ |= qFOL

O (~c)}.

The above proposition tells us that, in order to compute the certain answers of
an EQL-Lite(UCQ) query qO, we can compute the certain answers of the UCQs q%iO
associated to the epistemic atoms K%i of qO, and then consider qO as an FOL query,
where such certain answers are regarded as the extensions of the epistemic atoms.

In the setting for OBDM specifications Σ = 〈O,S,M〉 considered in this thesis
(i.e., DL-LiteR as ontology language and the GLAV approach for the mapping
language), the certain answers of the UCQs q%iO over O associated to the epistemic
atoms K%i of an EQL-Lite(UCQ) qO over O can be computed by means of a suitable
query over the schema S, which is PerfRefq%iO ,Σ. Specifically, let Σ = 〈O,S,M〉 be
an OBDM specification and qO be an EQL-Lite(UCQ) query over O. We denote by
EQLPerfRefqO,Σ the FOL query over the schema S obtained from qO by replacing
each of its epistemic atoms K%i with the logical body of the UCQ PerfRefq%iO ,Σ.

Example 9.2. Refer to Example 9.1, and let %1 = Teaches(x, y) and %2 = Likes(x, y).
Then, q%1

O = {(x, y) | Teaches(x, y)} and q%2
O = {(x, y) | Likes(x, y)}. Therefore:

• EQLPerfRefq1
O,Σ

= {(x) | ∃y.PerfRefq%1
O ,Σ} = {(x) | ∃y.(∃y′.s1(x, y, y′))};

• EQLPerfRefq2
O,Σ

= {(x) | ∃y.PerfRefq%2
O ,Σ} = {(x) | ∃y.(∃y′1, y′2.s3(x, y, y′1, y′2) ∨

∃y′.s1(x, y, y′))};

• EQLPerfRefq3
O,Σ

= {(x) | ∃y.(PerfRefq%2
O ,Σ ∧ ¬PerfRefq%1

O ,Σ)} = {(x) |
∃y.((∃y′1, y′2.s3(x, y, y′1, y′2) ∨ ∃y′.s1(x, y, y′)) ∧ ¬∃y′.s1(x, y, y′))}.

As a consequence of Proposition 9.1 and the above discussion, we can easily
obtain the following theorem, which can be seen as the analogous of [Calvanese et
al., 2007a, Theorem 12] in the OBDM context.

Theorem 9.1. Let Σ = 〈O,S,M〉 be an OBDM specification and qO be an
EQL-Lite(UCQ) query over O. Then, for each S-database D consistent with Σ,
we have that certDqO,Σ = EQLPerfRefDqO,Σ.
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From the above theorem, we can derive the following observation for OBDM
specifications Σ = 〈O,S,M〉 where O is a DL-LiteR ontology andM is a GLAV
mapping, which generalises the one given at the end of Chapter 2 for the sublanguage
of UCQs: if qO is an EQL-Lite(UCQ) query qO over O of arity n, then the FOL
query EQLPerfRefqO,Σ ∨ PerfRefVnO,Σ is the perfect O-to-S Σ-rewriting of qO, i.e.,
(EQLPerfRefqO,Σ ∨ PerfRefVnO,Σ)D = certDqO,Σ for every S-database D.

This allows us to generalise also Lemmata 5.1 and 6.1 and Corollary 7.1 when
the class LO of queries over ontologies O is the one of EQL-Lite(UCQ) queries, and
thus is more general than the one of UCQs considered in the mentioned results.

Corollary 9.1. Let n = ar(qO) = ar(qS). We have that:

• qO is a complete S-to-O Σ-rewriting of qS if and only if the following sub-
sumption between queries hold: qS v (EQLPerfRefqO,Σ ∨ PerfRefVnO,Σ);

• qO is a sound S-to-O Σ-rewriting of qS if and only if the following subsumption
between queries hold: EQLPerfRefqO,Σ v (qS ∨ PerfRefVnO,Σ);

• qO is a perfect S-to-O Σ-rewriting of qS if and only if both the following
subsumptions between queries hold: qS v (EQLPerfRefqO,Σ ∨ PerfRefVnO,Σ) and
EQLPerfRefqO,Σ v (qS ∨ PerfRefVnO,Σ).

9.1.2 EQL-Lite(UCQ) Source-to-Ontology Rewritings

As anticipated in the beginning of this section, we next show that considering
EQL-Lite(UCQ) queries as target query language provides more expressivity in
finding source-to-ontology rewritings, compared to UCQs. In particular, the next
example shows that there are cases where no perfect S-to-O Σ-rewriting exists in
the class of UCQ 6=s, whereas it exists in the class of EQL-Lite(UCQ) queries.

Example 9.3. Consider the OBDM specification Σ = 〈O,S,M〉 illustrated in
Example 9.1, and let the data service be expressed as the CQJFE qS = {(x) |
∃y, y′.s1(x, y, y′)} over S. From results presented in Chapter 5, one can see that
the query qcO = {(x) | ∃y.Teaches(x, y)} is the UCQ6=-minimally complete S-to-O
Σ-rewriting of qS . Notice, however, that due to the presence of the ontology assertion
Professor v ∃Teaches and of the mapping assertion m2, the certain answers of qcO
with respect to Σ and a given S-database D include the values stored both in the
first component of s1 and in s2. Thus, qcO is not a sound S-to-O Σ-rewriting of qS ,
which allows us to conclude that no UCQ 6=-perfect S-to-O Σ-rewriting of qS exists.

On the other hand, consider the EQL-Lite(UCQ) query q1
O illustrated in Exam-

ple 9.1. One can verify that q1
O is a perfect S-to-O Σ-rewriting of qS (indeed, observe

that EQLPerfRefq1
O,Σ
≡ qS , where EQLPerfRefq1

O,Σ
is the FOL query illustrated in

Example 9.2 corresponding to the perfect O-to-S Σ-rewriting of q1
O).

Unfortunately, exactly as in the case of UCQ6=s as target query language, the
next example shows that there are pairs of OBDM specifications Σ = 〈O,S,M〉 and
CQJFEs qS over S for which no perfect S-to-O Σ-rewriting of qS exists in the class
of EQL-Lite(UCQ) queries.
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Example 9.4. Let Σ = 〈O,S,M〉 be again the OBDM specification illustrated
in Example 9.1, and let the data service be expressed as the CQJFE qS = {(x) |
∃y, y′, y′′.s3(x, y, y′, y′′)} over S. Consider the EQL-Lite(UCQ) queries q2

O and q3
O

illustrated in Example 9.1. One can see that, because of the presence of the ontology
assertion Teaches v Likes and of the mapping assertion m1, the query q2

O is too
general to be a perfect S-to-O Σ-rewriting. Indeed, its certain answers with respect
to Σ and a given S-database D include the values stored in the first component of
both s1 and s3. On the other hand, the query q3

O is too specific to be a perfect S-to-O
Σ-rewriting of qS . Indeed, there are S-databases D for which its certain answers
with respect to Σ and D do not include the values stored in the first component of
s3. The above observations allow us to conclude that no perfect S-to-O Σ-rewriting
of qS exists in the class of EQL-Lite(UCQ) queries.

Clearly, as always, when perfect source-to-ontology rewritings in the class of
EQL-Lite(UCQ) queries do not exist, the goal is to find queries in such a class that
provide the best approximations of qS . By developing on the above example, we
show that the class of EQL-Lite(UCQ) queries allows to find better approximations
of source-to-ontology rewritings compared to the UCQ query language.

Example 9.5. Refer to Example 9.4, where Σ = 〈O,S,M〉 is the OBDM specifi-
cation illustrated in Example 9.1 and the data service is expressed as the CQJFE
qS = {(x) | ∃y, y′, y′′.s3(x, y, y′, y′′)} over S. From results of previous chapters, one
can verify that the queries qcO = {(x) | ∃y.Likes(x, y)} and qsO = {(x) | ⊥(x)} are,
respectively, the (unique up to equivalence w.r.t. Σ) UCQ6=-minimally complete S-to-
O Σ-rewriting of qS and the (unique up to equivalence w.r.t. Σ) UCQ 6=-maximally
sound S-to-O Σ-rewriting of qS .

As for the best approximations of qS (w.r.t. Σ) in the class of EQL-Lite(UCQ)
queries, one can verify that the EQL-Lite(UCQ) queries q2

O and q3
O illustrated in

Example 9.1 are, respectively, the (unique up to equivalence w.r.t. Σ) minimally
complete S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries and the
unique (up to equivalence w.r.t. Σ) maximally sound S-to-O Σ-rewriting of qS in
the class of EQL-Lite(UCQ) queries. It is also clear that q2

O and q3
O are better

approximations of qS (w.r.t. Σ) compared to qcO and qsO, respectively.

In the next sections, we carry out a study on the problem of computing the best
abstractions of data services, expressed as queries over the source schema, in the
class of EQL-Lite(UCQ) queries and also in a fragment of it.

Interestingly, for the class of EQL-Lite(UCQ) queries we have the following result,
which is the analogous of Proposition 3.2 for the EQL-Lite(UCQ) query language,
and can be easily proven by following exactly the same line of arguments used in
the proof of that proposition.

Proposition 9.2. If q1 and q2 are minimally complete (respectively, maximally
sound) S-to-O Σ-rewritings of qS in the class of EQL-Lite(UCQ) queries, then they
are equivalent w.r.t.Σ.
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9.2 On the non-existence of EQL-Lite(UCQ) Source-to-
Ontology Rewritings

Surprisingly, we now prove that neither minimally complete, nor maximally sound
source-to-ontology rewritings in the class of EQL-Lite(UCQ) queries are guaranteed
to exist, even in the case of OBDM specifications Σ = 〈O,S,M〉 and data services
qS where O = ∅,M is a pure GAV mapping, and qS is a CQJFE over S.

We start by looking at the minimally complete case.

Theorem 9.2. There exists an OBDM specification Σ = 〈O,S,M〉 with O = ∅ and
M being a pure GAV mapping and a CQJFE qS for which no minimally complete
S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries exists.

Proof. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s, s1, s2, s3, s4, s5 }

• M = { m1,m2,m3,m4 }, where:

m1 : s(x) → B(x),
m2 : s1(x) ∧ s2(x) → B(x),
m3 : s1(x) → A1(x),
m4 : s2(x1) ∧ s3(x1, x2) → P (x1, x2),
m5 : s1(x2) ∧ s5(x1, x2) → P (x1, x2),
m6 : s2(x) ∧ s4(x) → A2(x),
m7 : s(x1) ∧ s1(x2) ∧ s2(x2) → R(x1, x2).

Let qS be the following boolean CQJFE over S: qS = {() | ∃y.s(y)}.
From results of Chapter 5, we know that the UCQ-minimally complete S-to-O

Σ-rewriting of qS is the query qcO = {() | ∃y.B(y)}. Observe that, however, qcO is
not a sound S-to-O Σ-rewriting of qS . This is because there are S-databases D for
which (i) there are no facts of the form s(c) (i.e., the extension of source predicate
s in D is empty) and (ii) D contains both the facts s1(c) and s2(c) for a certain
constant c ∈ Const, thus resulting in qDS = ∅ whereas certDqO,Σ = {}.

With the ability of the EQL-Lite(UCQ) query language of expressing epistemic
forms of negations, we can detect some of those cases by adding ¬K(%) in conjunction
to the epistemic atom K(∃y.B(y)), where % is the body of a CQ being a sound
S-to-O Σ-rewriting of {() | ∃y.s1(y) ∧ s2(y)}. At the same time, however, we need
to ensure the fact that such new EQL-Lite(UCQ) query that we are building is still
a complete S-to-O Σ-rewriting of qS . In other words, we want that whenever an
S-database D contains a fact s(c) for a constant c ∈ Const, the certain answers of
the new query are not empty, even if K(%) is true in the current OBDM system. By
looking at the mappingM, we can ensure this by simply adding the epistemic atom
K(∃y, y′.R(y, y′)) in disjunction to the new EQL-Lite(UCQ) query.

With the above discussion at hand, we now introduce a pattern for an infinite
number of EQL-Lite(UCQ) queries over O and related technical lemmata. Specifi-
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cally, for every i ≥ 0, let qiO be the following EQL-Lite(UCQ) query over O:

qiO = {() |
(
K(∃y.B(y)) ∧ (

k=i∧
k=0
¬K(%k))

)
∨K(∃y, y′.R(y, y′))},where

• %0 = ∃y0.A1(y0) ∧A2(y0).

• %k = ∃y0, . . . , yk.A1(y0) ∧
(∧j=k−1

j=0 P (yj , yj+1)
)
∧A2(yk), for each k ∈ [1, i].

For instance, with i = 2, we have q2
O = {() |

(
K(∃y.B(y)) ∧ ¬K(∃y0.A1(y0) ∧

A2(y0))∧¬K(∃y0, y1.A1(y0)∧P (y0, y1)∧A2(y1))∧¬K(∃y0, y1, y2.A1(y0)∧P (y0, y1)∧
P (y1, y2) ∧A2(y2))

)
∨K(∃y, y′.R(y, y′))}.

Observe that, for each k ∈ [0, i], the body %k in the epistemic atom K(%k)
is exactly the body of the CQ qkO = {() | %k} illustrated in the proof of point 1
of Theorem 6.2, which we recall that is a sound S-to-O Σ-rewriting of the query
{() | ∃y.s1(y) ∧ s2(y)} (note that the mapping assertions m3,m4,m5, and m6 are
identical to the mapping assertions m1,m2,m3, and m4, respectively, of the mapping
illustrated in the proof of point 1 of Theorem 6.2).

Lemma 9.1. For every natural number i ≥ 0, we have that qiO is a complete S-to-O
Σ-rewriting of qS .

Proof. Consider any i ≥ 0 and the associated EQL-Lite(UCQ) query qiO. Let D be
any S-database D for which qDS = {}, which is equivalent to say that s(c) ∈ D for
some constant c ∈ Const. There are two possible cases: either for all k ∈ [0, i] the
epistemic atom K(%k) is false in the OBDM system 〈Σ, D〉, or not.

In the former case, due to the mapping assertion m1 and the fact that s(c) ∈ D,
we trivially have that the epistemic atom K(∃y.B(y)) is true in 〈Σ, D〉. It follows
that the formula

(
K(∃y.B(y)) ∧ ¬K(%0) ∧ . . . ∧ ¬K(%i)

)
is as well true in 〈Σ, D〉,

thus implying that certD
qiO,Σ

= {}.
In the latter case, there is some k ∈ [0, i] for which K(%k) is true in 〈Σ, D〉.

Notice that, since %k is the body of a CQ that is a sound S-to-O Σ-rewriting of
{() | ∃y.s1(y) ∧ s2(y)} (cf. Lemma 6.2), we derive that D contains both the facts
s1(c′) and s2(c′) for some constant c′ ∈ Const. This, together with the fact that
s(c) ∈ D for some constant c ∈ Const, and by looking at the m7 mapping assertion
ofM, allows us to easily derive that the epistemic atom K(∃y, y′.R(y, y′)) is true in
〈Σ, D〉, thus implying that certD

qiO,Σ
= {} also in this case.

Thus, for any S-database D, if qDS = {}, then certD
qiO,Σ

= {}. This clearly implies
that qiO is a complete S-to-O Σ-rewriting of qS , as required.

Lemma 9.2. For every natural number i ≥ 0, we have that certqi+1
O ,Σ @ certqiO,Σ.

Proof. The proof immediately follows from the proof of Lemma 6.3, which implies
that, for any pair of natural numbers l,m ≥ 0 with l 6= m, the CQs qlO = {() | %l}
and qmO = {() | %m} illustrated in the proof of point 1 of Theorem 6.2 are such
that both certqlO,Σ 6v certqmO ,Σ and certqmO ,Σ 6v certqlO,Σ hold. Consider any natural
number i ≥ 0 and the EQL-Lite(UCQ) queries qiO and qi+1

O . Since the body of qi+1
O

contains also ¬K(%i+1) whereas qiO does not, from the above observation, we trivially
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derive that certqi+1
O ,Σ @ certqiO,Σ. Indeed, there is at least an S-database D (which

contains both the facts s1(c) and s2(c) for some constant c ∈ Const) in which the
epistemic atom K(%i+1) is true in 〈Σ, D〉 whereas K(%j) is false in 〈Σ, D〉 for any
j ∈ [0, i], thus implying that certD

qi+1
O ,Σ = ∅ whereas certD

qiO,Σ
= {}, as required.

Furthermore, due to Lemma 6.4, we know that each possible sound S-to-O Σ-
rewriting of {() | ∃y.s1(y)∧ s2(y)} is equivalent to the query {() | %i}, for some i ≥ 0.
Thus, using similar arguments as the ones given in the proof of Lemma 6.4, it is not
difficult to see that each possible EQL-Lite(UCQ) query q′O that is a complete S-to-
O Σ-rewriting of qS is such that there exists an i ≥ 0 for which certqiO,Σ @ certq′O,Σ
(including qcO = {() | ∃y.B(y)}, i.e., the UCQ-minimally complete S-to-O Σ-rewriting
of qS , which is clearly such that certqiO,Σ @ certq′O,Σ for any i ≥ 0).

With this observation and the above lemmata at hand, we are now able to prove
that no minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ)
queries exists. Indeed, since each possible EQL-Lite(UCQ) query q′O that is a
complete S-to-O Σ-rewriting of qS is such that there exists an i ≥ 0 for which
certqiO,Σ @ certq′O,Σ, and since by Lemma 9.1 qiO is a complete S-to-O Σ-rewriting
of qS for any i ≥ 0, when seeking for a minimally complete S-to-O Σ-rewriting of
qS in the class of EQL-Lite(UCQ) queries one can limit the attention to only the
illustrated queries qiO for i ≥ 0. Notice that, however, by Lemma 9.2, for any natural
number i ≥ 0, the query qi+1

O is a better complete approximation of the S-to-O
Σ-rewriting of qS compared to the query qiO (i.e., certqi+1

O ,Σ @ certqiO,Σ). Thus, since
in any EQL-Lite(UCQ) query there are only a finite set of epistemic atoms, we
can conclude that no minimally complete S-to-O Σ-rewriting of qS in the class of
EQL-Lite(UCQ) queries exists, as required.

We now turn to the maximally sound case.

Theorem 9.3. There exists an OBDM specification Σ = 〈O,S,M〉 with O = ∅ and
M being a pure GAV mapping and a CQJFE qS for which no maximally sound
S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries exists.

Proof. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅

• S = { s, s′, s1, s2, s3, s4, s5 }

• M = { m1,m2,m3,m4 }, where:
m1 : s(x) → B(x),
m2 : s′(x) → B(x),
m3 : s1(x) → A1(x),
m4 : s2(x1) ∧ s3(x1, x2) → P (x1, x2),
m5 : s1(x2) ∧ s5(x1, x2) → P (x1, x2),
m6 : s2(x) ∧ s4(x) → A2(x),
m7 : s′(x1) ∧ s1(x2) ∧ s2(x2) → R(x1, x2).

Let qS be the following boolean CQJFE over S: qS = {() | ∃y.s(y)}.
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From results of Chapter 8, we know that the UCQ-maximally sound S-to-O
Σ-rewriting of qS is the CQ qsO = {() | ⊥}. Informally, this is because the CQ
qcO = {() | ∃y.B(y)} is not a sound S-to-O Σ-rewriting of qS , since the query
q′S = {() | ∃y.s′(y)} is a disjunct of PerfRefqcO,Σ such that q′S 6v qS (cf. Lemma 6.1).

With the ability of the EQL-Lite(UCQ) query language of expressing epistemic
forms of negations, we can detect some of the cases where the epistemic atom
K(∃y.B(y)) is true in 〈Σ, D〉 for a certain S-database D and, nevertheless, it is sure
that there are no facts of the form s′(c) in D (i.e., the extension of source predicate
s′ in D is empty). Observe that, by looking at the mapping assertions in M (in
particular, to the m7 mapping assertion), this latter requirement can be achieved by
the following EQL-Lite(UCQ) formula: ¬K(∃y, y′.R(y, y′)) ∧K(%), where % is the
body of a UCQ being a sound S-to-O Σ-rewriting of the CQ {() | ∃y.s1(y) ∧ s2(y)}.

With the above discussion at hand, we now introduce a pattern for an infinite
number of EQL-Lite(UCQ) queries over O and related technical lemmata. Specifi-
cally, for every i ≥ 0, let qiO be the following EQL-Lite(UCQ) query over O:

qiO = {() | K(∃y.B(y)) ∧ ¬K(∃y, y′.R(y, y′)) ∧K
( k=i⋃
k=0

%k
)
},where

• %0 = ∃y0.A1(y0) ∧A2(y0).

• %k = ∃y0, . . . , yk.A1(y0) ∧
(∧j=k−1

j=0 P (yj , yj+1)
)
∧A2(yk), for each k ∈ [1, i].

For instance, with i = 2, we have q2
O = {() | K(∃y.B(y)) ∧ ¬K(∃y, y′.R(y, y′)) ∧

K
(
(∃y0.A1(y0)∧A2(y0)) ∪ (∃y0, y1.A1(y0)∧P (y0, y1)∧A2(y1)) ∪ (∃y0, y1, y2.A1(y0)∧

P (y0, y1) ∧ P (y1, y2) ∧A2(y2))
)
}.

Observe that, for each k ∈ [0, i], the disjunct %k in the last epistemic atom
is exactly the body of the CQ qkO = {() | %k} illustrated in the proof of point 1
of Theorem 6.2, which we recall that is a sound S-to-O Σ-rewriting of the query
{() | ∃y.s1(y) ∧ s2(y)} (note that the mapping assertions m3,m4,m5, and m6 are
identical to the mapping assertions m1,m2,m3, and m4, respectively, of the mapping
illustrated in the proof of point 1 of Theorem 6.2).

Lemma 9.3. For every natural number i ≥ 0, we have that qiO is a sound S-to-O
Σ-rewriting of qS .

Proof. Consider any i ≥ 0 and the associated EQL-Lite(UCQ) query qiO. Let D be
any S-database for which certD

qiO,Σ
= {}. Since certD

qiO,Σ
= {}, we derive the following

implications: (i) the epistemic atom K
(⋃k=i

k=0 %k
)
of qiO is true in 〈Σ, D〉; (ii) the

epistemic atom K(∃y, y′.R(y, y′)) of qiO is false in 〈Σ, D〉; and (iii) the epistemic
atom K(∃y.B(y)) of qiO is true in 〈Σ, D〉.

From (i), since ⋃k=i
k=0 %k is the body of a UCQ that is a sound S-to-O Σ-rewriting

of {() | ∃y.s1(y) ∧ s2(y)} (indeed, by Lemma 6.2, for each k ∈ [0, i], %k is the body
of a CQ that is a S-to-O Σ-rewriting of {() | ∃y.s1(y) ∧ s2(y)}), we derive that the
S-database D contains both the facts s1(c) and s2(c) for some constant c ∈ Const.
This, together with (ii), and by looking at the m7 mapping assertion ofM, allows
us to easily derive that there are no facts of the form s′(c′) in D (i.e., the extension
of the source predicate s′ in D is empty). But then, since (iii) holds, by looking at
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the mappingM, we derive that the S-database D necessarily contains a fact of the
form s(c′′) for some constant c′′ ∈ Const, thus implying that qDS = {}.

Thus, for any S-database D, if certD
qiO,Σ

= {}, then qDS = {}. This clearly implies
that qiO is a sound S-to-O Σ-rewriting of qS , as required.

Lemma 9.4. For every natural number i ≥ 0, we have that certqiO,Σ @ certqi+1
O ,Σ.

Proof. The proof immediately follows from the proof of Lemma 6.3, which implies
that, for any pair of natural numbers l,m ≥ 0 with l 6= m, the CQs qlO = {() | %l}
and qmO = {() | %m} illustrated in the proof of point 1 of Theorem 6.2 are such
that both certqlO,Σ 6v certqmO ,Σ and certqmO ,Σ 6v certqlO,Σ hold. Consider any natural
number i ≥ 0 and the EQL-Lite(UCQ) queries qiO and qi+1

O . Since the disjunct
%i+1 occurs in the epistemic atom K

(⋃k=i+1
k=0 %k

)
whereas it does not occur in the

epistemic atom K
(⋃k=i

k=0 %k
)
, from the above observation, we trivially derive that

certqiO,Σ @ certqi+1
O ,Σ. Indeed, there is at least an S-database D (which contains

both the facts s1(c) and s2(c) for some constant c ∈ Const) in which the formula
%i+1 is true in 〈Σ, D〉 (and therefore, the epistemic atom K

(⋃k=i+1
k=0 %k

)
is true in

〈Σ, D〉) whereas formula %j is false in 〈Σ, D〉 for any j ∈ [0, i] (and therefore, the
epistemic atom K

(⋃k=i
k=0 %k

)
is false in 〈Σ, D〉), thus implying that certD

qi+1
O ,Σ = {}

whereas certD
qiO,Σ

= ∅, as required.

Furthermore, due to Lemma 6.4, we know that each possible sound S-to-O Σ-
rewriting of {() | ∃y.s1(y)∧ s2(y)} is equivalent to the query {() | %i}, for some i ≥ 0.
Thus, using similar arguments as the ones given in the proof of Lemma 6.4, it is not
difficult to see that each possible EQL-Lite(UCQ) query q′O that is a sound S-to-O
Σ-rewriting of qS is such that there exists an i ≥ 0 for which certq′O,Σ @ certqiO,Σ.

With this observation and the above lemmata at hand, we are now able to prove
that no maximally sound S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ)
queries exists. Indeed, since each possible EQL-Lite(UCQ) query q′O that is a sound S-
to-O Σ-rewriting of qS is such that there exists an i ≥ 0 for which certq′O,Σ @ certqiO,Σ,
and since by Lemma 9.3 qiO is a sound S-to-O Σ-rewriting of qS for any i ≥ 0,
when seeking for a maximally sound S-to-O Σ-rewriting of qS in the class of
EQL-Lite(UCQ) queries one can limit the attention to only the illustrated queries
qiO for i ≥ 0. Notice that, however, by Lemma 9.4, for any natural number i ≥ 0, the
query qi+1

O is a better sound approximation of the S-to-O Σ-rewriting of qS compared
to the query qiO (i.e., certqiO,Σ @ certqi+1

O ,Σ). Thus, since in any EQL-Lite(UCQ)
query there are only a finite set of epistemic atoms, and since each of its epistemic
atoms K(%) must be such that % is the body of a UCQ (and therefore, in % there are
only a finite set of bodies of CQs), we can conclude that no maximally sound S-to-O
Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries exists, as required.

In the light of the above inexpressibility results, we explore two alternative
special scenarios. In what follows, we will limit our attention to the DL ontology
language DL-Lite−R, which is the fragment of DL-LiteR where disjointness assertions
are disallowed. Observe that, for each OBDM specification Σ = 〈O,S,M〉 where O
is a DL-Lite−R ontology andM is a GLAV mapping, since inconsistencies can not
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arise, every S-database D is consistent with Σ. Thus, all the results we will present
in the following hold even according to the semantics proposed in [Lutz et al., 2018].

More specifically, in Section 9.3 we weaken the target query language by consid-
ering a fragment of the EQL-Lite(UCQ) query language that, notwithstanding, still
enjoys a non-monotonic feature. In Section 9.4, instead, we weaken the mapping
language by considering a special case of the GLAV approach that is incomparable
with both the GAV, and the LAV approach.

9.3 Source-to-Ontology Rewritings in a fragment of
EQL-Lite(UCQ)

In this section, we explore the possibility of expressing source-to-ontology rewrit-
ings where the target query language is a fragment, still non-monotonic, of the
EQL-Lite(UCQ) query language considered so far.

In particular, while the proof of Theorem 9.3 shows that epistemic negation (even
when not nested) already suffices to prevent the existence of maximally sound source-
to-ontology rewritings in the class of EQL-Lite(UCQ) queries (even with empty
ontologies and pure GAV mappings), the proof of Theorem 9.2 suggests to remove
the union (i.e., the rule ψ ::= ψ1 ∨ ψ2) from the syntax of the EQL-Lite(UCQ)
query language, in order to get a target query language LO ensuring the existence
of minimally complete source-to-ontology rewritings in LO. Thus, based on the
observation that union can be expressed by means of conjunction and nested negation,
we next consider the fragment of the EQL-Lite(UCQ) query language where both
nested negation and union operator are disallowed.

Formally, an EQL-Lite−(UCQ) query over a DL ontology O is a query of the
form qO = {~t | ψ(~x)}, where the target list ~t is an n-tuple of terms, and the body
ψ(~x) is a formula built according to the following syntax (we recall that the free
variables occurring in formula ψ(~x) are exactly the variables occurring in ~t):

ψ ::= K% | ∃y.ψ | ψ1 ∧ ψ2 | ¬δ
δ ::= K% | ∃y.δ

The following example illustrates the EQL-Lite−(UCQ) query language.

Example 9.6. The queries qiO, for i ≥ 0, used in the proof of Theorem 9.3, as well as
the queries q1

O, q2
O, and q3

O illustrated in Example 9.1, are EQL-Lite−(UCQ) queries.
On the contrary, for any i ≥ 0, the query qiO = {() | K(%) ∧ ¬K(%0) ∧ ¬K(%1) ∧
. . .∧¬K(%i)∨K(%′)} introduced in the proof of Theorem 9.2 is an EQL-Lite(UCQ)
query but not an EQL-Lite−(UCQ) query.

Observe that, since all the queries over the ontology involved in the proof of
Theorem 9.3 are EQL-Lite−(UCQ) queries, such proof in fact shows a stronger result
than the one stated in the theorem: maximally sound source-to-ontology rewritings
are not guaranteed to exist even in the class of EQL-Lite−(UCQ) queries (and even
for OBDM specifications Σ = 〈O,S,M〉 and data services qS where O = ∅,M is a
pure GAV mapping, and qS is a CQJFE over S).
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It thus remains to study the minimally complete case. Specifically, we now provide
the algorithm MinimallyCompleteEpistemic for computing minimally complete source-
to-ontology rewritings of CQs over the source schema when the target query language
is the class of EQL-Lite−(UCQ) queries. Thus proving that, for each pair composed
by an OBDM specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM
is a GLAV mapping and a CQ qS over S, the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ) queries
is guaranteed to exists.

Algorithm 9.1 MinimallyCompleteEpistemic
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is
a GLAV mapping;
CQ qS = {~t | ∃~y.φ(~x, ~y)} over S

Output:
EQL-Lite−(UCQ) query qO over O

1: qO := {~t | ∃~Y.K(∃~z.M(qS)∧>(~x))}, where ~Y ⊆ ~y denotes the subset of existential
variables of qS occurring inM(qS), whereas ~z denotes the set of fresh existential
variables introduced byM(qS)

2: return qO

Roughly speaking, the algorithm computes an EQL-Lite−(UCQ) query qO by
first chasing (the incomplete S-database associated to) qS with respect toM, using
> to bind possible distinguished variables of qS that are not involved inM(qS), and
then using the epistemic operator to bind existential variables coming from qS . Note,
in particular, that the latter is achieved by pushing the subset ~Y of the existential
variables ~y of qS occurring inM(qS) inside the K operator. Finally, ~z denotes the
set of fresh existential variables introduced by the chase.

Example 9.7. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅;

• S = { s1, s2, s3 };

• M = { m1,m2,m3 }, where:

m1 : ∃y.s1(x1, x2) ∧ s2(x2, y) → ∃z.P (x1, z) ∧ P (z, x2),
m2 : ∃y1, y2, y3.s2(x, y1) ∧ s3(y1, y2, y3) → ∃z.P ′(x, z),
m3 : ∃y.s3(y, x, c1) → A(x).

Let the data service be the CQ qS = {(x1, x2) | ∃y1, y2.s1(x1, y1) ∧ s2(y1, y2) ∧
s3(y2, x2, c2)} over S. One can verify that MinimallyCompleteEpistemic(Σ, qS) returns
the EQL-Lite−(UCQ) query qO = {(x1, x2) | ∃y1.K(∃z1, z2.P (x1, z1) ∧ P (z1, y1) ∧
P ′(y1, z2) ∧ >(x2))}, which corresponds to the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting in the class of EQL-Lite−(UCQ) queries.
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It is worth noting that, even though the “¬” operator is available in the
EQL-Lite−(UCQ) query language, the queries returned by the MinimallyCompleteEp-
istemic algorithm are free from this operator. The EQL-Lite(UCQ) queries without
occurrences of the “¬” operator enjoy the following interesting and useful property:

Proposition 9.3. Let Σ = 〈O,S,M〉 be an OBDM specification, and let qO be an
EQL-Lite(UCQ) query over O without occurrences of the “¬” operator. Then, the
query EQLPerfRefqO,Σ over S can be always expressed as an equivalent UCQ.
Proof. As illustrated in Subsection 9.1.1, the query EQLPerfRefqO,Σ is obtained from
qO by replacing each of its epistemic atoms K%i with the logical body of the UCQ
PerfRefq%iO ,Σ over S, where %i and q%iO are the body of a UCQ over O and the UCQ
over O associated to %i, respectively. Thus, since by assumption in qO there are
no occurrences of the “¬” operator, and since it is so even in PerfRefq%iO ,Σ for each
epistemic atom K%i occurring in qO, we have that EQLPerfRefqO,Σ is a FOL query
whose operators occurring in its body are only ∧, ∨, and ∃. But then, it is trivial to
see that a FOL query with only such operators occurring in its body can be always
expressed as an equivalent UCQ, as required.

Moreover, the EQL-Lite−(UCQ) queries of the same shape as those returned by
the MinimallyCompleteEpistemic algorithm further enjoy the following property:

Proposition 9.4. Let Σ = 〈O,S,M〉 be an OBDM specification, D be an S-database
consistent with Σ, and qO be an EQL-Lite−(UCQ) query qO over O of the form
qO = {~t | ∃~Y.K(φ)}, where φ is the body of a CQ. We have that ~c ∈ certDqO,Σ if and
only if there is a function h from the set of terms occurring in φ to the set of terms
occurring in CM(D)

O for which ( i) h(Y) is a constant, for each Y ∈ ~Y; ( ii) h(c) = c,
for each constant c; ( iii) h(φ) ⊆ CM(D)

O , where h(φ) is the image of φ under h; and
finally (vi) h(~t) = ~c (h is also called a homomorphism from qO to CM(D)

O for which
h(Y) is a constant, for each Y ∈ ~Y, and h(~t) = ~c).
Proof. We observe that (ii), (iii), and (vi) are the necessary and sufficient conditions
that a CQ q over O of the form q = {~t | φ} (where φ is the body of a CQ) must
satisfy to be such that ~c ∈ certDq,Σ for a tuple of constants ~c (cf. Chapter 2).

We further observe that, by combining results of [Fagin et al., 2005a, Proposi-
tion 4.2] with [Calvanese et al., 2007b, Theorem 29], it is well-known that there is a
homomorphism from CM(D)

O to I (where this latter seen as a set of facts over O),
for each model I = 〈∆I , ·I〉 of 〈Σ, D〉 (i.e., for each interpretation I ∈ ModD(Σ)).

From the above observations, and due to the semantic meaning of the existential
variables occurring outside the epistemic operator K of an EQL formula, the claim
of the proposition can be easily verified.

By exploiting the above results, we are now ready to establish termination and
correctness of the MinimallyCompleteEpistemic algorithm.

Theorem 9.4. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a GLAV mapping, and let qS be a CQ over S. We have
that MinimallyCompleteEpistemic(Σ, qS) terminates and returns the unique (up to
equivalence w.r.t.Σ) minimally complete S-to-O Σ-rewriting of qS in the class of
EQL-Lite−(UCQ) queries.
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Proof. Analogously to the MinimallyComplete algorithm illustrated in Chapter 5,
the termination of the MinimallyCompleteEpistemic algorithm easily follows from the
termination of the chase of a source instance (possibly containing variables) with
respect to a GLAV mapping, or, equivalently, with respect to a set of source-to-target
tgds [Fagin et al., 2005a].

As for the correctness, we first show that the query qO = {~t | ∃~Y.K(∃~z.M(qS) ∧
>(~x))} returned by the algorithm is a complete S-to-O Σ-rewriting of qS . Observe
that the possibly introduced fresh existential variables in ~z do not appear outside
the epistemic operator K, and therefore the CQ qS corresponds to, or it is contained
in, a disjunct of EQLPerfRefqO,Σ (observe that, due to Proposition 9.3, the query
EQLPerfRefqO,Σ can be expressed as an equivalent UCQ). Thus, due to Corollary 9.1,
the fact that qS v EQLPerfRefqO,Σ implies that qO is a complete S-to-O Σ-rewriting
of qS . We now show that qO is actually the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ)
queries, that is, each EQL-Lite−(UCQ) query q′O that is a complete S-to-O Σ-
rewriting of qS is such that certqO,Σ v certq′O,Σ (cf. Definition 3.7). We do this by
way of contradiction.

Let q′O be an EQL-Lite−(UCQ) query such that certqO,Σ 6v certq′O,Σ, that is,
there exists an S-database D consistent with Σ such that certDqO,Σ 6⊆ certDq′O,Σ. It
follows that there is a tuple of constant ~c = (c1, . . . , cn) such that ~c 6∈ certDq′O,Σ, but
~c ∈ certDqO,Σ. Since q

′
O is an EQL-Lite−(UCQ), there are two possible cases: either

q′O contains a part of the form ¬δ (with δ 6≡ ⊥) in its body, or not.
In the former case, consider the S-databaseD′ ⊇ D in which each source predicate

s ∈ S contains all possible tuples of constants occurring in D whose arity is the one
of s. Obviously, we have that ~c ∈ qD′S , and, since O is a DL-Lite−R ontology, D′ is
consistent with Σ (i.e., ModD(Σ) 6= ∅). Furthermore, by construction of D′ and the
fact that in the EQL-Lite−(UCQ) query language nested negation is disallowed (i.e.,
the EQL formula δ occurring in the body of q′O must be of the form ∃~y.K(%), where
% is the body of a UCQ), we have that the formula δ occurring in the body of q′O is
EQL-logically implied by 〈Σ, D′〉 (and thus, formula ¬δ is not EQL-logically implied
by 〈Σ, D′〉) when replacing the free variables of q′O with any tuple of constants. Since
by construction of the EQL-Lite−(UCQ) query language formula ¬δ in q′O occurs
either alone or in conjunction to a subformula of q′O, this clearly implies that q′O is
not EQL-logically implied by 〈Σ, D′〉 when replacing the free variables of q′O with
any tuple of constants, and therefore also for the tuple of constants ~c. As a result,
we have that ~c 6∈ certD′q′O,Σ. But then, the facts that ~c ∈ qD′S and ~c 6∈ certD′q′O,Σ imply
that q′O is not a complete S-to-O Σ-rewriting of qS , as required.

Consider the latter case, that is, the EQL-Lite−(UCQ) query q′O is of the form
q′O = {~t′ | ∃~y′.K(%1) ∧ . . . ∧K(%m)} with %i being the body of a UCQ, for each
i ∈ [1,m]. In this case, it is possible to proceed in a similar way to the proof of
Theorem 5.2. Consider the freezing of qS = {~t | ∃~y.φ(~x, ~y)}, i.e., the set D′ of
all facts over S obtained from φ(~x, ~y) by replacing each variable v ∈ ~x ∪ ~y with a
different fresh constant denoted by cv. Let, moreover, ~c′ = (c′1, . . . , c′n) be the freezed
tuple of constants where, for each i ∈ [1, n], c′i = ti if ti is a constant, and c′i = cx
if ti = x (i.e., ti ∈ ~x is a distinguished variable). Obviously, we have that ~c′ ∈ qD′S



158 9. Non-Monotonic Source-to-Ontology Rewritings

holds by construction, and, since O is a DL-Lite−R ontology, D′ is consistent with Σ
(i.e., ModD′(Σ) 6= ∅). We now prove that ~c′ 6∈ certD′q′O,Σ.

Consider CM(D)
O , i.e., the canonical structure ofO with respect toM andD. Since

~c ∈ certDqO,Σ, due to Proposition 9.4, we derive that there exists a homomorphism h

from qO to CM(D)
O for which (i) h(Y) is a constant, for each Y ∈ ~Y, and (ii) h(~t) = ~c.

Due to the facts thatM is a GLAV mapping and O is a DL-Lite−R ontology, and
due to the existence of such homomorphism h, by construction of qO and D′ it
is easy to see the existence of a function f from CM(D′)

O to CM(D)
O for which (i)

f(cY) = h(Y), for each Y ∈ ~Y (recall that ~Y ⊆ ~y is the subset of existential variables
of qS occurring inM(qS)), (ii) f(c) = h(c) = c, for each constant c occurring in qO,
(iii) f(cx) = h(x), for each distinguished variable x ∈ ~x of qS occurring inM(qS),
and (vi) f(CM(D′)

O ) ⊆ CM(D)
O , where f(CM(D′)

O ) is the image of CM(D′)
O under f .

Observe that f(~c′) = ~c by construction.
Furthermore, by exploiting again Proposition 9.4, it is easy to verify that, since

~c 6∈ certDq′O,Σ by assumption, then there is some epistemic atom K(%i) in the body
of q′O such that for no disjunct φ in %i there is a homomorphism h from φ to
CM(D)
O for which (i) h(y′) is a constant, for each y′ ∈ ~y′ occurring in φ, and (ii)
h(~t′) = ~c. But then, due to the existence of the function f , and due to the above
consideration, we derive that there there is no disjunct φ in %i such that that there
is a homomorphism h′ from φ to CM(D′)

O for which (i) h′(y′) is a constant, for each
y′ ∈ ~y′ occurring in φ, and (ii) h′(~t′) = ~c′ (otherwise, the composition function
f ◦ h′ would result in a homomorphism from φ to CM(D)

O for which (i) f(h(y′)) is
a constant, for each y′ ∈ ~y′ occurring in φ, and (ii) f(h′(~t′)) = ~c, and therefore
this would contradict the assumption that for no disjunct φ in %i there is such a
homomorphism). Using Proposition 9.4, it can be easily proven that this implies that
~c′ 6∈ certD′q′O,Σ. To conclude the proof, observe that D′ is an S-database consistent
with Σ for which ~c′ ∈ qD′S and ~c′ 6∈ certD′q′O,Σ, thus implying that q′O is not a complete
S-to-O Σ-rewriting of qS , as required.

As for the running time of the MinimallyCompleteEpistemic algorithm, we observe
that it is independent of both the size of O and S, and, due to the application of
the chase, it is polynomial in the size of qS and exponential in the size ofM.

It remains to address the case of perfect source-to-ontology rewritings in the class
of EQL-Lite−(UCQ) queries. Consider any pair composed by an OBDM specification
Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is a GLAV mapping and a
CQ qS over S. Clearly, by definition, either the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ) queries
is also a sound, and therefore a perfect, S-to-O Σ-rewriting of qS , or no perfect
S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ) queries exists.

With this observation at hand, we can easily derive the algorithm PerfectEpistemic
together with its termination and correctness.

Essentially, the algorithm first computes the query qO which is the unique
(up to equivalence w.r.t. Σ) minimally complete S-to-O Σ-rewriting of qS in the
class of EQL-Lite−(UCQ) queries, and then, by exploiting Corollary 9.1, checks
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Algorithm 9.2 PerfectEpistemic
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is
a GLAV mapping;
CQ qS over S

Output:
either an EQL-Lite−(UCQ) qO over O, or report that “no perfect S-to-O Σ-
rewriting of qS in the class of EQL-Lite−(UCQ) queries exists”

1: qO := MinimallyCompleteEpistemic(Σ, qS)
2: if EQLPerfRefqO,Σ v qS then
3: return qO
4: else
5: return “no perfect S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ)

queries exists”
6: end if

whether qO is also a sound, and therefore a perfect, S-to-O Σ-rewriting of qS via
the following query containment check: EQLPerfRefqO,Σ v qS (note that VO ≡ ⊥ for
each DL-Lite−R ontology O). We point out that the above containment is actually
a containment of UCQs. Indeed, on the one hand, the query qS is a CQ, and, on
the other hand, for each OBDM specification Σ = 〈O,S,M〉 and EQL-Lite(UCQ)
query qO over O without any occurrence of the “¬” operator (as all those returned
by the MinimallyCompleteEpistemic algorithm), the FOL query EQLPerfRefqO,Σ can
be in fact expressed as a UCQ. This allows us to conclude that the overall running
time of the PerfectEpistemic algorithm is exponential in the size of the input.

Theorem 9.5. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a GLAV mapping, and let qS be a CQ over S. We have that
PerfectEpistemic(Σ, qS) terminates and returns the perfect S-to-O Σ-rewriting of qS
if it exists and can be expressed as an EQL-Lite−(UCQ) query, otherwise it reports
that no perfect S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ) queries
exists.

9.4 The case of One-To-One Mappings

In this section, we study the problem of computing source-to-ontology rewritings in
the class of EQL-Lite(UCQ) queries, for the case of OBDM specifications where the
mapping assertions are a special case of GLAV mapping assertions considered so far.

Specifically, we consider OBDM specifications where the mapping language
follows the “One-to-One approach”. A One-To-One mapping assertion is a GLAV
mapping assertion ∀~x.(∃~y.φ(~x, ~y) → ∃~z.ϕ(~x, ~z)) in which both φ(~x, ~y) and ϕ(~x, ~z)
are simply atoms without constants or repeated variables. We say that a mapping
M is a One-To-One mapping if it consists of a finite set of One-To-One mapping
assertions. Observe that GAV (respectively, pure GAV), LAV, and One-To-One are
pairwise incomparable approaches for specifying mappings.
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Example 9.8. The mappingM defined in Example 9.1 is a One-To-One mapping.
Observe that the mapping assertion m4 ∈M is neither a GAV, nor a LAV mapping
assertion. The pure GAV mapping assertion s1(x) ∧ s2(x)→ A(x) is neither a One-
To-One, nor a LAV mapping assertion, whereas the LAV mapping assertion s1(x)→
∃z.P (x, z) ∧A(z) is neither a One-To-One, nor a GAV mapping assertion.

We now present a property for One-To-One mappings, which is crucial for the
technical treatment of this section.3

Proposition 9.5. Let M be a One-To-One mapping relating a schema S to an
ontology O. For each S-database D, we have thatM(D) =

⋃
α∈DM(α).

Proof. The claim trivially follows by considering that the left-hand side of each
One-to-One mapping assertion is constituted simply by a single atom. Thus, in
order to computeM(D) for a One-To-One mappingM and an S-database D, it is
sufficient to consider separately each fact α ∈ D and take the union of the sets of
atomsM(α), as required.

In what follows in this section, we implicitly assume that each mapping M
relating a schema S to an ontology O is a One-To-One mapping.

9.4.1 Complete Source-to-Ontology Rewritings

Interestingly, we now prove that, when the mapping language follows the One-To-One
approach, one can use the MinimallyCompleteEpistemic algorithm to compute also
minimally complete source-to-ontology rewritings of CQs over the source schema
when the target query language is the class of EQL-Lite(UCQ) queries, rather than
its fragment of EQL-Lite−(UCQ) queries considered in the previous section. Thus
proving that, for each pair composed by an OBDM specification Σ = 〈O,S,M〉
where O is a DL-Lite−R ontology andM is a One-To-One mapping and a CQ qS over
S, the unique (up to equivalence w.r.t. Σ) minimally complete S-to-O Σ-rewriting
of qS in the class of EQL-Lite(UCQ) queries is guaranteed to exists and, moreover,
it can be expressed as an EQL-Lite−(UCQ) query. Before delving into the technical
part, we now illustrate its application within a scenario with a One-To-One mapping.

Example 9.9. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = ∅;

• S = { s1, s2, s3 };

• M = { m1,m2,m3,m4,m5,m6 }, where:

m1 : s1(x1, x2) → P1(x1, x2),
m2 : ∃y.s2(x, y) → ∃z.P2(x, z),
m3 : ∃y1, y2.s3(x, y1, y2) → A(x),
m4 : ∃y1, y2, y3.s3(y1, y2, y3) → ∃z1, z2.P3(z1, z2).

3Note that Proposition 9.5 is valid not only for One-To-One mapping, but also for LAV mapping.
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Let the data service be the CQ qS = {(x) | ∃y1, y2.s1(x, y1) ∧ s2(x, y2) ∧
s3(y1, y1, y2)} over S. One can verify that MinimallyCompleteEpistemic(Σ, qS) returns
the EQL-Lite−(UCQ) query qO = {(x) | ∃y1.K(∃z1, z2, z3.P1(x, y1) ∧ P2(x, z1) ∧
A(y1) ∧ P3(z2, z3))}, which corresponds to the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting in the class of EQL-Lite(UCQ) queries.
Theorem 9.6. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a One-To-One mapping, and let qS be a CQ over S. We have
that MinimallyCompleteEpistemic(Σ, qS) terminates and returns the unique (up to
equivalence w.r.t.Σ) minimally complete S-to-O Σ-rewriting of qS in the class of
EQL-Lite(UCQ) queries.
Proof. Termination of the algorithm, as well as the fact that it returns a complete
S-to-O Σ-rewriting of qS (in fact, the unique (up to equivalence w.r.t. Σ) minimally
complete S-to-O Σ-rewriting of qS in the class of EQL-Lite−(UCQ) queries), has
already been discussed in the proof of Theorem 9.4 for the more general case of when
M is a GLAV mapping rather than a One-To-One mapping. We now show that, when
M is a One-To-One mapping, the computed EQL-Lite−(UCQ) query qO is actually
the unique (up to equivalence w.r.t. Σ) minimally complete S-to-O Σ-rewriting of
qS even in the class of EQL-Lite(UCQ) queries, that is, each EQL-Lite(UCQ) query
q′O that is a complete S-to-O Σ-rewriting of qS is such that certqO,Σ v certq′O,Σ
(cf. Definition 3.7). We do this by way of contradiction.

Let q′O be an EQL-Lite(UCQ) query such that certqO,Σ 6v certq′O,Σ, that is, there
exists an S-database D consistent with Σ such that certDqO,Σ 6⊆ certDq′O,Σ. It follows
that there is a tuple of constant ~c such that ~c 6∈ certDq′O,Σ, but ~c ∈ certDqO,Σ. We now

exhibit an S-database D′ consistent with Σ for which (i) ~c ∈ qD′S , and (ii) CM(D′)
O

and CM(D)
O are homomorphically equivalent, i.e., there is a homomorphism from

CM(D′)
O to CM(D)

O and vice versa.
Since ~c ∈ certDqO,Σ, due to Proposition 9.4, we derive that there is a homomorphism

h from qO to CM(D)
O for which (i) h(Y) is a constant, for each Y ∈ ~Y, and (ii) h(~t) = ~c.

Let h′ be the function extending h by assigning a different fresh constant cy to
each existential variable y ∈ ~y \ ~Y (i.e., to each existential variable y ∈ ~y of qS
not occurring inM(qS)). Consider now h′(qS) and h(qO) ⊆ CM(D)

O , i.e., the set of
facts corresponding to the image of (the body of) qS under h′ and the set of atoms
corresponding to the image of (the body of) qO under h, respectively (this latter can
be a set of atoms because, for some existential variable z ∈ ~z of qO, h(z) is allowed
to be a variable of CM(D)

O ). Since the left-hand side of each mapping assertion inM
is a single atom without constants or repeated variables, and since h(qO) ⊆ CM(D)

O
with h(Y) being a constant for each Y ∈ ~Y, by construction of qS and qO, it is not
hard to ascertain that, for each fact α ∈ h′(qS), the chase of fact α with respect to
M, i.e.,M(α), is such that there exists a homomorphism fromM(α) to CM(D)

O .
But then, the S-database we are seeking is D′ = D ∪ h′(qS). Indeed, on the

one hand, ~c ∈ qD′S trivially holds because (i) ~c ∈ qDS , (ii) D ⊆ D′, and (iii) qS is
a CQ. On the other hand, using Proposition 9.5 and the fact that there exists a
homomorphism from M(α) to CM(D)

O for each α ∈ h′(qS), we easily derive that
CM(D′)
O and CM(D)

O are homomorphically equivalent.
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To conclude the proof observe that, since CM(D′)
O and CM(D)

O are homomorphically
equivalent, and since ~c 6∈ certDq′O,Σ by assumption, it is easy to see that ~c 6∈ certD′q′O,Σ
as well. It follows that D′ is an S-database consistent with Σ (observe that O is a
DL-Lite−R ontology, and therefore each S-database is consistent with Σ) for which
~c ∈ qD′S and ~c 6∈ certD′q′O,Σ, thus implying that q′O is not a complete S-to-O Σ-rewriting
of qS , as required.

The following result is an immediate consequence of the above theorem.

Corollary 9.2. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology andM is a One-To-One mapping, and let qS be a CQ over S. Then, the
unique (up to equivalence w.r.t.Σ) minimally complete S-to-O Σ-rewriting of qS in
the class of EQL-Lite(UCQ) queries can be expressed as an EQL-Lite−(UCQ) query.

Observe that, when dealing with One-To-One mapping assertions, the application
of the chase is feasible in polynomial time even in the size of the mappingM, and
therefore the overall running time of the MinimallyCompleteEpistemic algorithm
becomes polynomial in the size of the input whenM is a One-To-One mapping.

9.4.2 Sound Source-to-Ontology Rewritings

We now investigate the maximally sound case. Specifically, for OBDM specifica-
tions with One-To-One mapping assertions, we now provide the algorithm Maxi-
mallySoundEpistemic for computing maximally sound source-to-ontology rewritings
of CQJFEs over the source schema when the target query language is the class of
EQL-Lite(UCQ) queries. Thus proving that, for each pair composed by an OBDM
specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is a One-To-One
mapping and a CQJFE qS over S, the unique (up to equivalence w.r.t. Σ) maximally
sound S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries is guaranteed
to exists and, moreover, as for the minimally complete case, it can be expressed as
an EQL-Lite−(UCQ) query.

In the algorithm, since M is a One-To-One mapping, when computing the
reformulation EQLPerfRefqcO,Σ over S of the EQL-Lite−(UCQ) query qcO, we can
assume that PerfRefq%O,Σ of the epistemic atom K% occurring in qcO is obtained by first
reformulating q%O with respect to O, and then by unfolding the resulting UCQ with
respect toM (with the proviso that, when unfolding an atom β over O, if a mapping
assertion m is such that the k-th argument of the atom in its right-hand side is an
existential variable whilst the k-th argument of β is either a distinguished variable
or a constant, then m have to be ignored). Furthermore, since the “¬” operator
never occurs in the EQL-Lite−(UCQ) query qcO of the algorithm, we can implicitly
assume that its reformulation EQLPerfRefqcO,Σ over S is first computed adhering to
the above procedure, and then turned into an equivalent UCQ (cf. Proposition 9.3).

In a nutshell, the MaximallySoundEpistemic algorithm starts by checking whether
there is some distinguished variable of qS not appearing inM(qS), and if this is the
case, then it returns the query {~t | ⊥(~x)}. Otherwise, the algorithm first computes
the query qcO = {~t | ψ(~x)}, where ψ(~x) = ∃~Y.K(∃~z.M(qS)), which corresponds to the
minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries,
and then, for each disjunct qiS in its reformulation EQLPerfRefqcO,Σ over S such that
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Algorithm 9.3 MaximallySoundEpistemic
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is
a One-to-One mapping;
CQJFE qS = {~t | ∃~y.φ(~x, ~y)} over S

Output:
EQL-Lite−(UCQ) query qO over O

1: if there is a distinguished variable x ∈ ~x not occurring inM(qS) then
2: return qO := {~t | ⊥(~x)}
3: end if
4: Compute qcO := MinimallyCompleteEpistemic(Σ, qS)
5: Let ψ(~x) be the body of qcO, i.e., ψ(~x) := ∃~Y.K(∃~z.M(qS))
6: for each CQ qiS = {~t | ∃~yi.φi(~x, ~yi)} ∈ EQLPerfRefqcO,Σ do
7: if qiS 6v qS then
8: ψ(~x) := ψ(~x) ∧ ¬∃~Yi.K(∃~zi.M(qiS)), where ~Yi ⊆ ~yi denotes the subset of

existential variables of qiS occurring inM(qiS) and not in qS , whereas ~zi denotes
the set of fresh existential variables introduced byM(qiS)

9: end if
10: end for
11: return qO := {~t | ψ(~x)}

qiS 6v qS , it adds in conjunction to ψ(~x) the negation of the minimally complete S-
to-O Σ-rewriting of qiS in the class of EQL-Lite(UCQ) queries. Intuitively, by doing
so, for each S-database D, the algorithm prevents the returned EQL-Lite−(UCQ)
query qO to have tuples of constants in its certain answers with respect to Σ and D
that are not in the evaluation of qS over D.

The next example illustrates the algorithm.

Example 9.10. Let Σ = 〈O,S,M〉 be the following OBDM specification:

• O = { A1 v ∃P1, A2 v ∃P2 };

• S = { s1, s2, s3, s4, s5, s6 };

• M = { m1,m2,m3,m4,m5,m6,m7 }, where:
m1 : s1(x1, x2) → P1(x1, x2),
m2 : ∃y.s2(x, y) → ∃z.P2(x, z),
m3 : ∃y.s3(x1, x2, y) → P2(x1, x2),
m4 : ∃y1, y2.s4(x, y1, y2) → A2(x),
m5 : ∃y1, y2.s4(y1, y2, x) → ∃z.P3(x, z),
m6 : s5(x) → ∃z.P1(x, z),
m7 : s6(x) → A1(x).

Let the data service be the CQJFE qS = {(x) | ∃y1, y2.s1(x, y1) ∧ s2(x, y2)} over
S. The algorithm first sets qcO to the unique (up to equivalence w.r.t. Σ) minimally
complete S-to-O Σ-rewriting of qS , i.e., qcO = {(x) | ∃y1.K(∃z1.P1(x, y1)∧P2(x, z1))}.
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To compute EQLPerfRefqcO,Σ, the query q%O = {(x, y1) | ∃z1.P1(x, y1) ∧ P2(x, z1)}
associated to the epistemic atom K% of qcO (with % = ∃z1.P1(x, y1) ∧ P2(x, z1)) is
first reformulated with respect to O, thus obtaining the set {q1

O, q
2
O}, where q1

O = q%O,
while q2

O = {(x, y1) | P1(x, y1)∧A2(x)} is obtained from q1
O by applying the assertion

A2 v ∃P2. Observe that the A1 v ∃P1 ontology assertion is applied neither in q1
O

nor in q2
O, since in both queries the variables y1 is a distinguished variable. After

that, each query in the set {q1
O, q

2
O} is unfolded with respect toM, and therefore

the computed query EQLPerfRefqcO,Σ over S, which is then assumed to be turned
into an equivalent UCQ, corresponds the union of the following CQs over S:

• q1
S = {(x) | ∃y1, y

1
2.s1(x, y1) ∧ s2(x, y1

2)}, obtained from q1
O by unfolding the

atom P1(x, y1) through m1, and the atom P2(y1, z1) through m2;

• q2
S = {(x) | ∃y1, y

2
2, y

2
3.s1(x, y1) ∧ s3(x, y2

2, y
2
3)}, obtained from q1

O by unfolding
the atom P1(x, y1) through m1, and the atom P2(y1, z1) through m3 (after
renaming variable z1 with y2

2);

• q3
S = {(x) | ∃y1, y

3
2, y

3
3.s1(x, y1) ∧ s4(x, y3

2, y
3
3)}, obtained from q2

O by unfolding
the atom P1(x, y1) through m1, and the atom A2(y1) through m4.

Observe that the m6 mapping assertion is applied neither in q1
O nor in q2

O for
unfolding the atom P1(x, y1), since in both queries the variable y1 is a distinguished
variable, whereas the corresponding argument (with same predicate name P1) of the
atom in the right-hand side of m6 is only an existential variable.

While q1
S v qS , it is easy to see that qiS 6v qS for both i = 2 and i = 3. Thus, the

EQL-Lite−(UCQ) query returned by the algorithm is:

qO = {(x) | ∃y1.K(∃z1.P1(x, y1) ∧ P2(x, z1))∧
¬∃y2

2.K(P1(x, y1) ∧ P2(x, y2
2))∧

¬∃y3
3.K(∃z2.P1(x, y1) ∧A2(x) ∧ P3(y3

3, z2))}.

Note that for the S-database D = {s1(c, c1), s2(c1, c2)} we have both (c1) ∈ qDS
and (c1) ∈ certDqO,Σ. Conversely, consider the S-databases D1 = D ∪ {s3(c1, c3, c4)}
and D2 = D ∪ {s4(c1, c5, c6)}. Then, we have (c) ∈ qDiS but (c) 6∈ certDiqO,Σ, for both
i = 1 and i = 2. Thus, qO is not a complete S-to-O Σ-rewriting of qS .

We are now ready to establish termination and correctness of the Maxi-
mallySoundEpistemic algorithm.

Theorem 9.7. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a One-To-One mapping, and let qS be a CQJFE over S. We
have that MaximallySoundEpistemic(Σ, qS) terminates and returns the unique (up
to equivalence w.r.t.Σ) maximally sound S-to-O Σ-rewriting of qS in the class of
EQL-Lite(UCQ) queries.

Proof. Termination of the algorithm follows from the termination of the chase of
a source instance (possibly containing variables) with respect to a One-To-One
mapping, and the fact that it is always possible to compute EQLPerfRefqcO,Σ for an
OBDM specification Σ = 〈O,S,M〉 and an EQL-Lite(UCQ) query qcO over O.
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Let qO be the EQL-Lite−(UCQ) query returned by the algorithm. We now divide
the proof into two parts: we first prove that qO is a sound S-to-O Σ-rewriting of qS ,
and then we prove that each EQL-Lite(UCQ) q′O that is a sound S-to-O Σ-rewriting
of qS is such that certq′O,Σ v certqO,Σ.

Lemma 9.5. qO is a sound S-to-O Σ-rewriting of qS .

Proof. If the algorithm returns the query qO = {~t | ⊥(~x)}, then the claim is
trivial. Otherwise, let D be any S-database, and let ~c be any tuple of constants for
which ~c ∈ certDqO,Σ. We now prove that ~c ∈ qDS as well. By construction of qO, it
follows that ~c ∈ certDqcO,Σ, where q

c
O = {~t | ∃~Y.K(∃~z.M(qS))} is the query returned

by MinimallyCompleteEpistemic(Σ, qS), i.e., the unique (up to equivalence w.r.t. Σ)
minimally complete S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries
(cf. Theorem 9.6). Since ~c ∈ certDqcO,Σ, by combining Theorem 9.1 with Proposition 9.3,
we derive that there is at least a disjunct qiS of the UCQ EQLPerfRefqcO,Σ witnessing
that ~c ∈ certDqcO,Σ, i.e., a disjunct qiS for which ~c ∈ qiS

D. There are two possible cases
for the disjunct qiS : either qiS 6v qS , or qiS v qS .

In the former case, by construction of the algorithm, the query qO contains
in its body the formula ¬∃~Yi.K(∃~zi.M(qiS)) in conjunction to the body of qcO.
Furthermore, observe that qiS is a disjunct of EQLPerfRefqcO,Σ, and therefore each
distinguished variable occurring in qiS occurs also inM(qiS). So, by Theorem 9.6,
we derive that ∃~Yi.K(∃~zi.M(qiS)) is the body of a query being a complete S-to-
O Σ-rewriting of qiS (in fact, the unique (up to equivalence w.r.t. Σ) minimally
complete S-to-O Σ-rewriting of qiS in the class of EQL-Lite(UCQ) queries). Thus,
since ~c ∈ qiS

D, from the above observation we have that formula ∃~Yi.K(∃~zi.M(qiS))
is EQL-logically implied by 〈Σ, D〉 (and thus, formula ¬∃~Yi.K(∃~zi.M(qiS)) is not
EQL-logically implied by 〈Σ, D〉) when replacing its free variables with the tuple of
constants ~c. As a consequence, we have that ~c 6∈ certDqO,Σ, which is a contradiction
to the initial assumption that ~c ∈ certDqO,Σ. It follows that the former case just
considered is not possible because it leads to a contradiction. Therefore, we consider
only the latter case. But then, as for the latter case, observe that ~c ∈ qiS

D and
qiS v qS clearly imply that ~c ∈ qDS as well, as required.

We now show that qO is actually the unique (up to equivalence w.r.t. Σ) maximally
sound S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries. Since from
the above lemma we know that qO is a sound S-to-O Σ-rewriting of qS , it is enough
to prove that each EQL-Lite(UCQ) q′O that is a sound S-to-O Σ-rewriting of qS is
such that certq′O,Σ v certqO,Σ (cf. Definition 3.6). We do this by way of contradiction.

Let q′O be an EQL-Lite(UCQ) query such that certq′O,Σ 6v certqO,Σ, that is, there
exists an S-database D consistent with Σ such that certDq′O,Σ 6⊆ certDqO,Σ. It follows
that there is a tuple of constants ~c such that ~c ∈ certDq′O,Σ, but ~c 6∈ certDqO,Σ. If
~c 6∈ qDS , then q′O is trivially not a sound S-to-O Σ-rewriting of qS , and we are done.
Therefore, we assume that ~c ∈ qDS . We now exhibit an S-database D′ consistent with
Σ for which (i) ~c 6∈ qD′S , and (ii) CM(D′)

O and CM(D)
O are homomorphically equivalent,

i.e., there is a homomorphism from CM(D′)
O to CM(D)

O and vice versa.
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Consider first the case that the algorithm returns the query qO = {~t | ⊥(~x)}.
In this case, in the body of qS there is at least a distinguished variable x ∈ ~x
occurring as k-th argument of some source predicate s ∈ S such that x does not
occur inM(qS). Let h be any homomorphism from qS = {~t | ∃~y.φ(~x, ~y)} to D with
h(~t) = ~c, and consider the constant c ∈ ~c for which h(x) = c. The S-database D′ we
are seeking is obtained from D by replacing each fact of the form s(~a) with s(~a′),
where ~a is any tuple of constants in which the k-th argument is h(x) = c, and ~a′ is
obtained from ~a by replacing the k-th argument h(x) = c with a fresh constant cx.
Two considerations follow for the S-database D′: (i) Clearly, we have that ~c 6∈ qD′S
because there can be no homomorphism h from qS to D′ with h(x) = c (and thus,
with h(~t) = ~c); (ii) Since x does not occur inM(qS), and since the left-hand side of
One-To-One mapping assertions are simply atoms without constants or repeated
variables, it is easy to see that D′ is such thatM(D) =M(D′). It follows that D′ is
such that (i) ~c 6∈ qD′S , and (ii) CM(D′)

O and CM(D)
O are homomorphically equivalent.

We now consider the case that the algorithm does not return the query qO =
{~t | ⊥(~x)}, i.e., each distinguished variable of qS occurs in M(qS). Consider any
homomorphism h from qS = {~t | ∃~y.φ(~x, ~y)} to D with h(~t) = ~c, and consider h(qS),
i.e., the set of facts corresponding to the image of h under qS . By construction (see
also Theorem 9.6), the formula ∃~Y.K(∃~z.M(qS)) occurring in conjunction in the
body of qO is true in CM(D)

O when replacing each free variable x ∈ ~x and each variable
Y ∈ ~Y with h(x) and h(Y), respectively (observe that the existential variables ~Y are
those of qS occurring also inM(qS)). Since, however, ~c 6∈ certDqO,Σ, by construction
of qO we derive that there is at least a formula ¬∃~Yi.K(∃~zi.M(qiS)) occurring in
conjunction in the body of qO that is not EQL-logically implied by 〈Σ, D〉 when
replacing each free variable x ∈ ~x and each variable Y ∈ ~Y with h(x) and h(Y),
respectively, where qiS = {~t | ∃~yi.φi(~x, ~yi)} is a disjunct of EQLPerfRefqcO,Σ for which
qiS 6v qS with qcO = {~t | ∃~Y.K(∃~z.M(qS))}. So, formula ∃~Yi.K(∃~zi.M(qiS)) must be
true in CM(D)

O when replacing each free variable x ∈ ~x and each variable Y ∈ ~Y with
h(x) and h(Y), respectively. Therefore, using Proposition 9.4, this implies that it is
possible to extend h with a new homomorphism hi from terms ofM(qiS) to CM(D)

O
for which hi(Yi) is a constant, for each Yi ∈ ~Yi. Let now h′ be the function extending
hi by assigning a different fresh constant cyi to each existential variable yi 6∈ ~Yi ∪ ~Y
of qiS , i.e., to each existential variable of qiS not occurring inM(qiS).

Notice that qiS is a disjunct of EQLPerfRefqcO,Σ with qcO = {~t | ∃~Y.K(∃~z.M(qS))}.
Thus, since the left-hand side of each mapping assertion inM is simply an atom
without constants or repeated variables, it is easy to verify that all the possible logical
consequences over O of the set of facts h(qS) is a subset of the logical consequences
over O of the set of facts h′(qiS), i.e., there is a homomorphism from CM(h(qS))

O to
CM(h′(qiS))
O . Furthermore, similarly as already observed in the proof of Theorem 9.6,

since formula ∃~Yi.K(∃~zi.M(qiS)) is true in CM(D)
O when replacing each free variable

x ∈ ~x, each variable Y ∈ ~Y, and each variable Yi ∈ ~yi with h(x) = hi(x), h(Y) = hi(Y),
and hi(Yi), respectively, and since the left-hand side of each mapping assertion in
M is a single atom without constants or repeated variables, we derive that each fact
α ∈ h′(qiS) is such that there is a homomorphism fromM(α) to CM(D)

O . So, using
Proposition 9.5, there is a homomorphism from CM(h′(qiS))

O to CM(D)
O .
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Due to the fact that there is a homomorphism from CM(h(qS))
O to CM(h′(qiS))

O , and
the fact that there is a homomorphism from CM(h′(qiS))

O to CM(D)
O , by making use of

Proposition 9.5, it is possible to conclude that the S-database Dh obtained from
D by removing all the facts in h(qS) and adding all the facts in h′(qiS) is such that
CM(Dh)
O and CM(D)

O are homomorphically equivalent, i.e., Dh = ((D \h(qS))∪h′(qiS))
is such that CM(Dh)

O and CM(D)
O are homomorphically equivalent.

Consider now the S-database D′ obtained by repeatedly iterating the above
process for each possible homomorphism h from qS to D with h(~t) = ~c, until one
obtain a D′ such that ~c 6∈ qD′S . In other words, the S-database D′ can be obtained
starting from D and then repeatedly removing all the facts in h(qS) and adding all
the facts in h′(qiS), for each homomorphism h from qS to D with h(~t) = ~c, where qiS
is a disjunct of EQLPerfRefqcO,Σ for which (i) qiS 6v qS and formula ∃~Yi.K(∃~zi.M(qiS))
is true in CM(D)

O when replacing each free variable x ∈ ~x and each variable Y ∈ ~Y
with h(x) and h(Y), respectively (at least one must exists because ~c 6∈ certDqO,Σ), and
(ii) h′ is obtained from h and qiS as illustrated above. Using again Proposition 9.5,
from the previous observations, we derive that the obtained S-database D′ is such
that CM(D′)

O and CM(D)
O are homomorphically equivalent. Furthermore, since qS is a

CQJFE, and therefore it does not have existential variables in join occurring in its
body, and since in D′ we have removed all the facts h(qS) for each homomorphism
h from qS to D with h(~t) = ~c, one can easily verify that ~c 6∈ qD′S by construction.

To conclude the proof note that, both in the case that the algorithm returns the
query {~t | ⊥(~x)} and in the case that it does not return {~t | ⊥(~x)}, it is possible
to obtain an S-database D′ such that (i) ~c 6∈ qD

′
S , and (ii) CM(D′)

O and CM(D)
O

are homomorphically equivalent. Since CM(D′)
O and CM(D)

O are homomorphically
equivalent, and since ~c ∈ certDq′O,Σ by assumption, it is easy to see that ~c ∈ certD′q′O,Σ
as well. It follows that D′ is an S-database consistent with Σ (observe that O is a
DL-Lite−R ontology, and therefore each S-database is consistent with Σ) for which
~c 6∈ qD′S and ~c ∈ certD′q′O,Σ, thus implying that q′O is not a sound S-to-O Σ-rewriting
of qS , as required.

As for the running time of the MaximallySoundEpistemic algorithm, we observe
that it is independent of the size of S, polynomial in the size of both O andM, and
exponential in the size of qS . This latter is due to the fact that EQLPerfRefqcO,Σ is
in general the union of an exponential number of CQs with respect to the number
of atoms occurring in qS , and also due to the various containment check of CQs.
Finally, note that the overall running time is exponential in the size of the input.

9.4.3 Perfect Source-to-Ontology Rewritings

We conclude this chapter with a consideration on perfect source-to-ontology rewritings
in the class of EQL-Lite(UCQ) queries, for the case of OBDM specifications with
One-To-One mapping assertions.

Consider any pair composed by an OBDM specification Σ = 〈O,S,M〉 where
O is a DL-Lite−R ontology and M is a One-to-One mapping and a CQ qS over
S. Clearly, by definition, either the unique (up to equivalence w.r.t. Σ) minimally
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complete S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries is also
a sound, and therefore a perfect, S-to-O Σ-rewriting of qS , or no perfect S-to-O
Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries exists.

With this observation at hand, and making use of Theorem 9.6, we can specialise
the PerfectEpistemic algorithm in an obvious way for the case of OBDM specifications
with One-to-One mapping assertions. For the sake of completeness, we report here the
algorithm PerfectEpistemicOneToOne together with its termination and correctness.

Algorithm 9.4 PerfectEpistemicOneToOne
Input:

OBDM specification Σ = 〈O,S,M〉 where O is a DL-Lite−R ontology andM is
a One-to-One mapping;
CQ qS over S

Output:
either an EQL-Lite−(UCQ) qO over O, or report that “no perfect S-to-O Σ-
rewriting of qS in the class of EQL-Lite(UCQ) queries exists”

1: qO := MinimallyCompleteEpistemic(Σ, qS)
2: if EQLPerfRefqO,Σ v qS then
3: return qO
4: else
5: return “no perfect S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ)

queries exists”
6: end if

Theorem 9.8. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a One-To-One mapping, and let qS be a CQ over S. We
have that PerfectEpistemicOneToOne(Σ, qS) terminates and returns the perfect S-
to-O Σ-rewriting of qS if it exists and can be expressed as an EQL-Lite(UCQ)
query, otherwise it reports that no perfect S-to-O Σ-rewriting of qS in the class of
EQL-Lite(UCQ) queries exists.

Furthermore, as a straightforward consequence of Corollary 9.2, we also get the
following interesting result.

Corollary 9.3. Let Σ = 〈O,S,M〉 be an OBDM specification where O is a DL-Lite−R
ontology and M is a One-To-One mapping, and let qS be a CQ over S. We have
that the perfect S-to-O Σ-rewriting of qS in the class of EQL-Lite(UCQ) queries
either does not exists, or it can be expressed as an EQL-Lite−(UCQ) query.
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Chapter 10

Conclusions

This chapter concludes the thesis with a brief discussion and possible directions for
future work.

10.1 Discussion
In this thesis we have introduced a novel reasoning task over the OBDM specification,
called abstraction. The main purpose of this task is to automatically produce the
semantic characterisation of data services through ontologies, and thus make data
services automatically Findable, Accessible, Interoperable, and Reusable (FAIR).
We have presented a formal framework for abstraction, via the semantically well-
founded notion(s) of source-to-ontology rewriting, which can be seen as the inverse
of the well-known and well-studied notion(s) of ontology-to-source rewriting. We
have carried out a comprehensive analysis of two important related computational
problems within the most common languages used in OBDM, including two restricted
scenarios and also the addition of non-monotonicity in the target query language.

We believe that the notions introduced and the technical results presented in
this thesis are not only theoretically interesting in themselves, but also have many
possible practical applications besides the semantic characterisations of data services,
as for example in the fields mentioned in the introduction, namely open data, source
profiling, updating, and explanation of classifiers. We point out that the thesis left
some interesting and challenging open problems, which are detailed in the below list:

• When the UNA is not adopted, answering CQ 6=,bs over DL-LiteR knowledge
bases has been shown to be FOL-rewritable. The FOL-rewritability question,
however, is still open for unions thereof, although it has been proven that the
problem remains in AC0 in data complexity.

• When the UNA is not adopted, answering UCQ2,6=s over DL-LiteRDFS knowl-
edge bases as well as answering general CQ6=s over DL-Lite¬RDFS knowledge
bases has been shown to be Πp

2-complete in combined complexity. For the case
of CQ2, 6=s over DL-Lite¬RDFS knowledge bases, however, the Πp

2-hardness part
has only been conjectured.

• Strictly related to the above problem is the containment problem for UCQ6=s.
Specifically, while checking whether q′ v q has been shown to be Πp

2-hard
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(and therefore Πp
2-complete) when both q′ and q are CQ 6=s as well as when

q′ is a CQ and q is a UCQ2,6=, the Πp
2-hardness of the problem has only been

conjectured for the case of q′ being a CQ6= and q being a CQ2,6=.

• For the case of mappings that are both pure GAV and LAV, the exact compu-
tational complexity of the verification problem for sound source-to-ontology
rewritings is still open.

• For the case of LAV mappings, the exact computational complexity of the
verification problem for perfect source-to-ontology rewritings is still open.

• Both in the restricted scenario for UCQJFEs and in the restricted scenario
for CQJFEs, we point out that the verification problem has been studied for
sound source-to-ontology rewritings only. While the proof of Theorem 5.1
already shows that the verification problem for complete source-to-ontology
rewritings is NP-complete in both the restricted scenarios, the problem is still
open for perfect source-to-ontology rewritings. In particular, it is trivial to
establish membership in DP and in NP in the restricted scenario for UCQJFEs
and in the restricted scenario for CQJFEs, respectively (for the former, just
observe that the set of perfect source-to-ontology rewritings is the intersection
between the set of sound source-to-ontology rewritings and the set of complete
source-to-ontology rewritings, where, in the restricted scenario for UCQJFEs,
soundness and completeness can be verified in coNP and in NP, respectively).
However, we only conjecture matching lower bounds for both cases.

• The verification problem for all types of source-to-ontology rewritings when
the target query language is the class of EQL-Lite(UCQ) queries has not
been addressed at all, and thus it is still an open problem to determine the
exact computational complexity of the verification problem for each type of
source-to-ontology rewriting.

• The proofs of the non-existence cases of minimally complete, and maximally
sound source-to-ontology rewritings in the class of EQL-Lite(UCQ) queries
(Theorems 9.2 and 9.3, respectively) rely on pure GAV mapping assertions. For
the case of LAV mappings, however, it is still an open problem to determine
whether minimally complete (respectively, maximally sound) source-to-ontology
rewritings are guaranteed to exist in the class of EQL-Lite(UCQ) queries.

• In addition to the previous cases, we point out that for the case of One-To-One
mappings it is still an open problem to determine whether maximally sound
source-to-ontology rewritings of CQs in the class of EQL-Lite(UCQ) queries
are guaranteed to exist.

10.2 Future Work

In addition to tackling the open problems mentioned in the foregoing list, we see
many other interesting avenues for future work, including the following:
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• Basically, the introduced notions of source-to-ontology rewriting are based on
certain answers. In principle, there may be other meaningful properties that a
query over the ontology have to satisfy to be considered a perfect (respectively,
sound, complete) source-to-ontology rewriting. For instance, one may consider
a model-based semantics where a query qO is a perfect (respectively, sound,
complete) S-to-O Σ-rewriting of a query qS if and only if qDS = qIO (respectively,
qIO ⊆ qDS , qDS ⊆ qIO) for each S-database D and model I ∈ ModΣ(D).

• Throughout the thesis, we have implicitly assumed that both the evaluation of
queries posed over source databases and the certain answers of queries posed
over the ontology of OBDM systems are sets. This is in contrast with the
standard semantics of DBMSs, which is based on bags (i.e., multisets) and
duplicate tuples are retained by default. Considering as starting point the
works [Nikolaou et al., 2019; Cima et al., 2019e] that propose a bag semantics
for OBDM systems, it would be interesting to investigate the various notions
of source-to-ontology rewriting under a bag-based semantics.

• Study the impact of integrity constraints over the source schemas S.

• Extending the analysis to OBDM settings going beyond the one based on
DL-LiteR, e.g., by considering as ontology languages DLs equipped with role
functionality assertions such as DL-LiteA, or DLs of the EL family.

• The class of queries for expressing data services in this thesis has been the one
of UCQs (and its fragments). It would be interesting to examine cases where
the source query language for expressing data services goes beyond UCQs.

• In Chapter 6, we have seen many cases where UCQ-maximally sound source-
to-ontology rewritings are not guaranteed to exists in the general scenario.
It would be very useful singling out the minimal class of queries LO that
guarantees the existence of LO-maximally sound source-to-ontology rewritings.
For instance, one may start to investigate whether such LO is the class of
(unions of ) conjunctive two-way regular path queries, a class of queries well-
studied in the context of lightweight DLs (see, e.g., [Bienvenu et al., 2015]).

• Related to the above problem is to analyse another notable decision problem,
namely the existence problem for a target query language LO: check whether
an LO source-to-ontology rewriting (perfect, or approximated) exists for a
given OBDM specification Σ = 〈O,S,M〉 and a given source query qS over S.

• Singling out more interesting scenarios in which source-to-ontology rewritings
expressed in the class of EQL-Lite(UCQ) queries (or its fragments still non-
monotonic) can be actually computed.

• Study the impact of our notions and technical results in other data interop-
eration architectures, such as peer-to-peer data integration [Calvanese et al.,
2004b].

We believe that each of the above issues is an interesting research problem that
deserves to be investigated.
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