
Fundamenta lnformaticae 24 ( 1995) 209-250 
/OS Press 

PARAMETERS AND PARAMETRIZATION IN SPECIFICATION, USING 
DISTRIBUTIVE CATEGORIES 

Bart JACOBS 
CW!, Kruislaan 413, /098 SJ Amsterdam, The Netherlands 

Abstract. A specification, as we shall use it here, consists of a sig
nature together with a collection of (non-conditional) equations; these 
equations involve terms in the 'distributive type theory' which is built 
on top of the signature. This type theory has finite product ( x, 1) and 
coproduct ( +, 0) types. Particular simple examples of such specifications 
are Hagino specifications, which are used to describe inductively defined 
types. Models of specifications are described in arbitrary distributive 
categories. 
In a more categorical approach, one describes models as structure pre
serving functors. It enables us to define in general what are (a) models 
of parametrized spefications (in terms of Kan extensions) and (b) mod
els with parameters (in terms of so-called 'simple slice' categories). It 
is shown that in the special case of Hagino specifications, these general 
definitions specialize to ones in terms of algebras or coalgebras for asso
ciated 'strong' polynomial functors. Models with parameters of Hagino 
specifications were described earlier by Cockett and Spencer. 

1 Introduction 

209 

Computer scientists have introduced many more data types, like stacks or queues, 
than the ones which are traditionally used by mathematicians, like groups or rings or 
vector spaces. A specification is taken here to be a linguistic description of such a data 
type. Early semantical studies of specifications-see for example [8] for an overview
are based on universal algebra. Often these are single-sorted, or single-typed, as we 
shall say. Category theory is sometimes used, but mostly in a superficial way. Here 
we intend to use categorical tools properly: we think category theory provides the 
appropriate framework to study data types. In set theory one proves a result by 
'opening sets' and reasoning with their elements. A bit provocatively, one reasons from 
an implementation. In contrast, arguments in category theory mostly rely on universal 
properties which characterize the objects under consideration. This involves reasoning 
from a specification (used in an informal sense here, not as defined formally below). 
The latter approach is closer to the way one operates in computer science. 

In this paper we restrict ourselves to equational specifications over a distributive 
type theory. These are both expressive and simple enough to illustrate the categorical 
approach. Such a distributive type theory involves finite product ( x, 1) and coproduct 
( +, 0) types. Especially it involves a lift operation 1 +(-)on types which can be used to 
express partiality of terms. Also, one can use coproduct types + to express overloading. 

Bob Walters [28, 29] started describing data types in distributive categories-which 
are categories with finite products and coproducts satisfying a certain distributivity 
property, see Definition 3.1 below. Since specifications are linguistic objects written 



210 B. Jacobs I Parameters and Parametrization in Specification 

in some type theoretic language, we think it is better first to describe the relevant 
syntax and describe Walters' examples as models in distributive categories. Therefore 
we start in the next section with distributive type theory. Models are then described in 
the category Sets of sets and functions; they involve assignments of sets to atomic types 
and of actual functions to function symbols, in such a way that given equations hold. 
Later the interpretation is extended to arbitrary distributive categories. The picture of 
models we give at this stage is still rather traditional and much in line with universal 
algebra. We have a first question at this point. So-called Hagino-specifications are very 
simple specifications that are used specifically to define a type a(X), either inductively 
via a constructor constr: a(X) ~ X or co-inductively via a destructor destr: X ~ a(X). 
Models of these can be described as algebras or coalgebras of a polynomial functor 
associated with a. It is a priori not clear that such a description coincides with the 
traditional picture that we just mentioned. 

To tackle this problem appropriately we need to know what a model is of a parame
trized specification-since a Hagino specification is parametrized by the set of atomic 
types which occur. There is a neat approach to the semantics of parametrized spec
ifications using Kan extensions. In order to exploit this categorical notion, we need 
an alternative description of models as certain functors. It is the functorial semantics 
of Lawvere. It will be shown how a 'traditional' model of a specification corresponds 
to a certain functor from what is called the classifying category of the specification. 
With these tools we can show in Theorem 6.3 that the (co )algebra semantics of Hagino 
specifications is the same as the traditional semantics. This answers our first question 
and fills a gap in the literature. 

A second question involves models with parameters. Cockett and Spencer [5, 6, 27] 
give a concrete description of what it means for an algebra of a strong functor to be 
initial with parameters. We ask ourselves whether there is a general notion of 'model 
with parameters' for arbitrary specifications, which specializes for Hagino specifications 
to the one of Cockett and Spencer. We give an affirmative answer in Section 7, see 
especially Theorem 7.12, making essential use of what we call 'simple slice' categories 
IB// I. 

The weight of this paper lies in the last two sections 6 and 7. The sections 2 - 5 
contain preparatory expositions and some results, which we believe are mostly folk
lore. However, it is hard-if not impossible-to find all the material in the literature. 
Readers who feel comfortable with the description of a specification as a signature I: 
together with a set £ of equations, and of a model of this specification (I:,£) in a 
distributive category IB as a distributive functor C£(I:, £) ~ JB from the classifying (or 
free distributive) category of (:E, £) to IB, may wish to skip much of these sections 2 -
5. 

There are only few categorical prerequisites necessary to follow the main lines of the 
expositions. But there are some side remarks (like 5.7, 7.3 or 7.14) which do involve 
more advanced category theory. There are no deep results; the paper is of a more 
expository nature. 

2 Syntax 

In this section it will be explained what a distributive signature is and how it gives rise 
to a distributive type theory (in which one has finite product and coproduct types). 
Further, one finds a description of equational logic in such a setting. 



B. Jacobs I Parameters and Parametrization in Specijicarion 211 

. Le.!_ S be a set, elements of which will be seen as atomic or basic typesl. We shall 
~r.1te S for the closure of Sunder finite products (1, x) and coproducts (0,+). Thus 
S is the least set satisfying 

SU{l,O}<;S and 17,T ES :::} (17 x r), (a+ r) ES 

where 1 and 0 are (new) symbols for the empty product and coproduct.. Thev can be 
understood as singleton and empty set. Elements of Swill be called types. " 

For a function f: S _, T there is a corresponding function ]: S-> T by 

J(s) = f(s), for s ES 7(1) = 1 ](O) = O 

J(a X 7) = f(17) X J(T) ](17 + r) =](a)+ f(r) 

In this way we obtain a functor (-) from the category Sets of sets and functions to 
itself (i.e. an endofunctor on Sets). 

2.1. Definition. (i) A distributive signature E (or just a signature, in this paper) 
consists of a ~et S of basic types together with sets of function symbols F: a _, T, 

where a, T E S. Formally E consists of a pair ( S, :F) where :F is an indexed collection 
{Fa,T }0 ,TES of sets of function symbols. We write F: 17 _, r for FE Fa,r· A signature 
will be called single-typed (or single-sorted) if its set of basic types is a singleton. 

(ii) A morphism of signatures from (S, :F) to (T, 9) consists of a function if;: S --> 

T together with an indexed collection of functions </JCl,T: :F0,.,. -> ~(a),~(r)' l'.sing the 
same symbol </J here is convenient: one has 

F:l7--+ Tin (S,F) :::} <f;(F):{[J(a) ___.., {[J(r) in (T,9) 

In this way one obtains a category of signatures, which will be written as Sign. 

The notion of morphism of signature used above is a very restricted one: atomic 
types are mapped to atomic types (and not to arbitrary types) and function symbols 
are mapped to function symbols (and not to arbitrary terms, see below). A category 
without such restrictions can be obtained as a Kleisli-category on the above category 
Sign, see Remark 5.7 (ii). We won't need this extra generality because essentially all 
morphisms if;: I; ~ 2:' of signatures that we consider will be inclusions. 

What we call a 'distributive signature' is called a 'distributive graph' in [30]. 

2.2. Examples. (i) Any set S (of atomic types) forms a signature with no function 
symbols. This signature will also be denoted by S. Further, there is a direct corre
spondence between functions f: S _, T and signature morphisms f: S -> T. This gives 
a full and faithful inclusion functor Sets --+ Sign. 

(ii) Let S be a set (of atomic types again) and X be a symbol not in S, which serves 
as type variable. A Hagino signature (after [10, 9]) has Su{X} as atomic types and 

one function symbol, namely, either 

constr: a --+ X or destr: X ___.., a 

where a is a type in the closure SU { X} of SU { X} under finite product and coproduct 
types. Thus X may occur in 17, which may be made explicit by writing a(X) inst~ad 
of a. In the first case we speak of an inductive Hagino signature and of the funct10n 
symbol constr as a constructor. In the second case the signature will be called co

inductive and destr will be called a destructor. 

l We use 'type' for what is sometimes called 'sort'. 



212 B. Jacobs I Parameters and Parametrization in Specification 

In case (J is of the form (]"1 + · .. + (Jn the constructor constr may be understood as 
an n-tuple of function symbols constr;: (J; -+ X. Dually, if (J is of the form 0"1 x · · · x (Jn 
the destructor destr corresponds to an n-tuple destr;: X -+ O"i· This will become clear 
once the associated term calculus is described below. 

Examples of Hagino signatures are 

for natural numbers 

for lists of type a 

l+X-+ X 

l+axX-+ X 
X-+axX for streams (or infinite lists) of type a 

These examples will be further worked out in due course. 
(iii) There are obvious morphisms of signatures from Sin (i) above to (SU {X}, 

constr: O"-+ X) and to (SU {X}, destr: X -+ (J) in (ii). Later we shall understand this 
as expressing that the set S of atomic types 'parametrizes' the latter two signatures. 
For example, in the last two examples in (ii) one has S = {a} as parameter signature. 

Next we describe how a signature E as described above forms the basis of a term 
calculus which we call distributive type theory. Its sequents have the form 

r I- M:(J 

expressing that term Mis of type a E Sin context r, consisting of variable declarations 
X1: 0"1 , ... , Xn: an. These contexts r will be written as sequences (with an order), but 
its assignments x;: O"; may be permuted freely. We shall write M[N/x] for the result 
1f substituting a term N:1 for a variable x:1 in M. As the two most important rules 
ne has context projection and application of functions symbols. 

r I- M:O" 
-----(for F: a-+ 1 in 2:) 
r 1- F(M):, 

Further, there are rules for forming finite tuples and projections of terms 

r I- M:a r 1- N:, 

r I- (M,N):a x T 

with conversions 

r 1- P: a x, 

r I- 7r P: a 

r I- M:a r 1- N:, 

r I- 7r(M, N) = M: a 

r 1- P: (J x, 

r 1- ( 7r P, 11'1 P) = P: (J x , 

r 1- P: (J x, 

r 1- 71'1 P:, r 1- (): i 

r I- M:(J r 1- N:, 

r 1- 7r'(M, N) = N:, 

r I- M: 1 

fl-M=():l 

And similarly one has rules for finite cotuples and coprojections. 

r I- M:O" f 1--N:T 

r 1- ,,,M: (J +, r 1-- "'' N: (J +, 
fl-P:(J+1 f,x:al-Q:p f,y:1l-R:p 

J1 x: (J f--> Q rt 
r I- 11 y:1 f--> R lf(P):p f,z:O I- {}:p 



B. Jacobs I Parameters and Parametri:ation in Specification 

The variables x and y are bound in Q and R in the 'case' term Jl x: a H Q ll (P) l.J y: T H R If . 
It can ?e u~d~rstood as follows. Look at P: a+ r; if P is in a, then do Q with P for 
x; else if P is m r, do R with P for y. This explains the conversions 

r I- M: a r, x: a I- Q: p r, y: T I- R: p 

r I- -0 ~::~ :: ~ ~(dvf) = Q[M/x]:p 

r I- N:r r,x:al-Q:p f,y:r I- R:p 

r I- P: a+ T f,z:a+r I- R:p 

r I- Jl x:a H R[(Kx)/z] ll 
1.J y:r H R[(K'y)/z] if(P) = R[P/z]:p 

r, z: 0 I- M:p 

f,z:O I- M = {}:p 

We thus understand {} as the unique 'value' of the empty function 0 --> p. 
These conversion rules induce a conversion relation = on terms, which is the least 

equivalence relation containing the above conversions, and which is compatible with 
the term forming operations. 

2.3. Notation and examples. For a function symbol F: a1 x · · · x an--> T we write 

instead of the formally correct 

As a special case, for n = 0 and F: 1 --> T we simply write 

I- F: T for I- F(() ): T 

In distributive type theory one has boolean logic built in. We write B = l + 1 for 
the type of booleans; it comes equipped with two constants 

ff ~ 11;(() ): B and tt ~1 11;1(0): B 

for false and true. For a boolean term (or formula) r 1- "J?: B we define its negation 

r I- •"J?: B to be 

'~f f]X:l H tt[l() 
r.p - 1J y: 1 H ff II r.p 

Obviously ,ff = tt and -.tt =ff. Also .-.r.p = r.p, which follows using Lemma 2.4 below. 
For boolean terms r I- r.p, 1/J: B, one can define their conjunct by 

X: 1 H ff 
r.p /\ 1j; ~f -0 fl z: 1 H ff fl(•'•) ~('-P) 

y: 1 H l.J w: 1 H tt II 'f/ 



214 B. Jacobs I Parameters and Parametrization in Specification 

which can be read as 

if <p =ff then ff 
elif 'if; = ff then ff 

else tt fi 
In a similar way one defines disjunction V. It can be shown that (B, /\, tt, V, ff,-.) 

forms a boolean algebra (in the type theory); in particular, the Morgan laws hold. 
A further useful aspect of distributive type theory is that it is well-fitted to deal 

with partially defined operations via error values. For every type a there is the lifted 
type 

..La ~f 1 +a 

which comes equipped with an error value .l = 11:(() ): .la. Thus a term r f- M: ..La 
can be seen as a partially defined operation of type a. It is undefined if M = .12• 

The following result is often useful when calculating with coproducts. 

2.4. Lemma. In distributive type theory one has the following equation. 

r f- P: a+ r r, x: a f- Q: p r, y: r f- R: p r, z: p f- L: µ 

r f- L[-0 ~~~ : ~ ~(P)/z] = -0 ~~~ : ff~~:l ~(P):µ 
Informally, case commutes with substitution3 • 

Proof. Because 

L[ Jl xy::ar : QR ll(P)/z] L[Jl x: a I-+ Q ll( )/ ][P/ ] 11 ~ lf = 11 y: T I-+ R lf w z w 

Jl x: a 1-+ L[-0 ~~ ~ : ~ ~ ( 11:x) / z] ll 
= 11 JI x: a 1-+ Q ll lf (P) 

y:r 1-+ L[1J y:r 1-+ R 1f(11:1y)/z] 

Jl x: a 1-+ L[Q/z] ll 
= 11 y:r 1-+ L[R/z] lf(P). D 

The next lemma justifies the name 'distributive type theory' for the above calculus: 
it shows that the binary product x distributes over the finite coproducts ( +, 0). 

2.5. Lemma. Consider distributive type theory (over some signature) as described 
above. 

(i) There are terms P and Q in 

u: (a x r) + (a x p) f- P: a x ( r + p) v: a x (r + p) f- Q: (a x r) +(a x p) 

which are each other's inverse, i.e. 

u: (a x r) +(a x p) f- Q[P/v] = u: (a x r) +(a x p) 
v:ax(r+p) f- P[Q/u] = v:ax(r+p) 

20ne can show that this lift operation forms a strong monad on the classifying categories described 
in Definition 3.3 below. It forms an example of a 'computational monad', see [24]. 

3 The more categorically oriented reader may have recognized cotupling (!, g]: A+ B -+ C of/: A -+ 

C and g: B-+ C in the case term. The lemma then says that ho [f,g] =[ho f,h o g]. 



B. Jacobs I Parameters and Parametrization in Specification 

(ii) Similarly, there are terms 

z: 0 f- M: a x 0 

which are other's inverse. 

w: a x 0 f- N: 0 

215 

In a more concise formulation one could write the above result as (a x r) +(a x p) ~ 

a x ( r + p) and a x 0 ~ 0. 

Proof. (i) For P one can take 

P( ) ~r JI x: a x r H (7rx, 11:(7r'x)) fl 
u - 1J y: a x p H (7ry, 11:'(7r'y)) !f (u) 

In order to define Q notice that we have a term 

JI y:r H 11:(x,y) fl 
x:a,w:r+p 1- 1J z:p H K;'(x,z) !f(w):(axr)+(axp) 

and thus for v: a x (r + p) we can substitute [7rv/x) and [7r'v/w], which yields 

Q(v) ~f JI y: T H 11:(7rv, y) ll( I ) 

1l z:p H K;1(7rv,z) If 71"V 

Then 

-0 
y:r H P[K;(7rv, y) ju] ~ , 

P[Q/u] = P[11:1(7rv,z)/u] (7rv) z:p H 

-0 
y:r H (7rv, 11:y) ~ 
z:p H (7rv,K;'z) (7r'v) 

(7rv, 71"1v) 

v. 

-0 
x:a x r H Q[(7rX, K;(7r'x))/v) 

Q[P/v] = Q[(7ry, 11:'(7r'y))/v) y:a x p H 

-0 
x:a x r H 11:(7rx, 7r1x) ~ 

= K'(7ry,7r'y) (u) y:a x p H 

-0 
x:a x r H 

ll:X ~ 
= K'y (u) y:a x p H 

u. 

(ii) We have 

w: a x 0 f- 71"1w: 0 and z:O I- {}:a x 0 

Then 

z:O f- (7r'{})[{}/w) = 71"1{} = z:O 

Further, 

y: a, z: 0 f- (y, z) = {}:a x 0 

Therefore 

by the previous lemma 

by conversion 

~(u) by the previous lemma 

w: a x 0 f- w = (y, z)[7rw/y][7r'w/z] = {}[7r'w/z): a x 0. D 

The above distributivity comes for free since we have used appropriate formulations 

of finite coproduct types with contexts as parameters; it is given by the syntax. 



216 B. Jacobs I Parameters and Parametrization in Specification 

2.6. Example (Overloading with coproducts). Suppose we have types N and R for 
natural numbers and reals and two associated function symbols for addition, 

and 

One can then form an overloaded operation plus such that plus(x, y) will be plusN(x, y) 
if x,y are both in N, plusR(x,y) if x,y are both in Rand undefined otherwise. We 
regard this as a runtime choice. Thus we will have as type of the overloaded addition, 

plus: (N + R) x (N + R) --+ 1.(N + R) 

where 1.( - ) = 1 + (-). It can be obtained by making suitable case distinctions. We 
leave the type theoretic description to the reader, but will provide a diagrammatic 
formulation of plus in Example 3.6 in the next section. 

Next we turn to equations in distributive type theory. 

2. 7. Definition. Let 2: be a distributive signature. A :E-equation is a sequent of the 
form 

r I- M =a M' 

where M, M' are terms of type a in context r. A specification is a pair (I:,£) where 
:E is a signature and E is a collection of :E-equations, considered as axioms of a theory. 

It may be clear that we are restricting ourselves to equational specifications involv
tg only non-conditional equations . 

. 8. Examples. (i) Every signature :E determines a specification which has no equa
tions. In particular-see Example 2.2 (i)-every set of basic types determines a spec
ification and so does every Hagino signature. In the latter case we shall speak of a 
'Hagino specification'. 

(ii) Monoids can be specified by a signature with one type, say n, and two function 
symbols, 

m:n x n--+ n e: 1--+ n 

for multiplication and unit. These are required to satisfy the familiar equations 

x:n I- m(x,e) =n x x:n I- m(e,x) =n x 

x: n, y: n, z: n f- m(m(x, y), z) =n m(x, m(y, z)). 

This constitutes the specification MONOJD. A specification GROUP of groups is 
obtained by adding an extra function symbol 

i: n __, n 
intended as inverse operation, and two extra equations 

x: n I- m (x, i(x)) =n x x:!l f-m(i(x),x) =n x 

(iii) Natural numbers may be specified in various ways, for example as Hagino spec
ification, 

0: 1 --+ N S: N--+ N 



B. Jacobs I Parameters and Parametri:a1ion in Specificativn 217 

that is, ~y one sort N, two function symbols and no equations. Formally-see Exam

ple 2.2 (11)-w~ sh_ould say there is one function symbol constr = [O, SJ: l + N _, N. 

_One may wish m an alternative specification an explicit predecessor operation, with 
besides the above function symbols, also 

P: N -----+ 1 + N = _l_N 

The equations involved are 

n:N Jl x: l I-+ 0 ll 
I- 1J y: N i-+ S(y) tf (P(n)) =N n 

z: J.N I- p Jl x: 1 I-+ 0 n.. - 7 

(1J y:N i-+ S(y) lf(z))-.LN-· 

One can further extend this specification with function symbols like 

plus: N x N -----+ N min: N x N ___, _l_N 

(iv) The following example of queues give a type theoretic version of Walters' cate

gorical specification in [28, 29]. The specification has two atomic types: a and Q(a); 

there are three function symbols 

nil: 1 -----+ Q(o:) push: a x Q(o:) ___, Q(o:) 

satisfying a single equation, 

w:l+axQ(a) l-pop(-0 ( )· Q(:~ I-+ 

I-+ a,q. a x a 

x: 1 I-+ J_ 

-0 (a, q): a x Q(a) -0 
y: 1 I-+ 

I-+ 
(b, p): 0: x Q(o:) I-+ 

In somewhat different informal notation this says 

I- pop( nil) = J_ 

pop: Q(o:)----+ 1 + Q(o:) x a 

nil ~ ) 
push( a, q) (w) =1+axQ(<>) 

K1(nil,a) ~ ~(w) 
K'(push(a,p), b) (pop(q)) 

{ (nil,a) 
a: a, q: Q(o:) I- pop(push(a, q)) = (push(a,p), b) 

if pop(q) = J_ 

if pop(q) = (p, b) 

We shall refer to this specification as QUEUE(a). 

2.9. Remark. A signature may be called algebraic if it does not involve finite co

product types, i.e. if for each function symbol F: a ___, T, the types a, T are built with 

finite products only (from atomic types). Similarly, a specification (E,[) is algebraic 

if I: is algebraic and terms in equations in E do not involve any finite coproducts, 

cotuples or coprojections. Thus the above specifications of monoids and groups are 

algebraic and also the Hagino specification of natural numbers in terms of 0: 1 -----+ N 

and S: N ---+ N. 

Next we describe the derivation rules for equational logic over the distributive type 

theory associated with a signature. We emphasize that the following is not a rule of 

(many-typed) equational logic 

f,x:a I- M =.,. M' 
(strengthening) (if x not in M, M') 

r 1-M=.,. M' 



218 B. Jacobs I Parameters and Parametrization in Specification 

simply because it does not hold in general: a may be empty; then the assumption x: a 
that a is inhabited leads to absurdities. In single-typed equational logic there is only 
one atomic type whose interpretation is usually required to be non-empty. Then the 
strengthening rule is valid. In many-typed logic one does not require the interpretation 
of each type to be non-empty4. 

We do use the following five rules. 

r I- M = M':a 

r I- M =" M' 

r I- M =a M' 
r I- M' =" M (sym) 

r I- M =" M' r I- M' =" M" 
------------ (trans) 

r I- M =" M" 

r I- M =u M' r,x:a I- N:T 
------------ (corn pat) 

r I- N[M/x] =,. N[M'/x] 

r I- M:a r,x:a I- N =,. N' 
---------- (subst) 

r I- N[M/x] =,. N'[M/x] 
The first of these rules tells that convertible terms (M = M': a) are equal (M =" M') 
in this equational logic. As a consequence, =" is reflexive. 

An equation which is derivable (from some set £ of axioms) using these five rules 
plus the equations associated with finite product and coproduct types, will be called a 
theorem. For example, for the specification of groups in Example 2.8 (ii) above, one 
has an obvious theorem 

x: n, y: n f- i(m(x, y)) =n m(i(y), i(x)). 

2.10. Definition. (i) A specification (2:, £)is a theory if the collection£ of equations 
is closed under derivability, i.e. if an equation E is derivable using the above five rules 
from E1, ... En E £,then already EE£. Equivalently, if£ contains all the associated 
theorems. 

Every specification (2:, £) determines a theory (E, £) by closing£ under derivability. 
(ii) A morphism of specifications from (E, £) to (2:', £') consists of a morphism 

of signatures efi: E ---> E' such that efi maps axioms to theorems, i.e. 

E E £ => efiE E [/ 

where <PE is obtained from Eby replacing all types and function symbols in E by their 
image under efi. The resulting category of specifications will be written as Spee. 

2.11. Examples. In the previous series of examples one finds obvious morphisms of 
specifications {a} __, QUEUE(a) and MONOID __, GROUP. A rather trivial but 
important example is the inclusion S __, (a(X)---> X) or S __, (X--> a(X)) of a set 
S of atomic types in a Hagino specification. 

2.12. Definition. A parametrized specification is a morphism of specifications 
efi: (E0 , £0 ) --> (E, £). The domain (2:0 , £0 ) of efi will be called the parameter specification. 

In the examples above, it is clear that o: forms a parameter in the specification of 
queues. Similarly in the specification of a group, the subspecification of a monoid can 
be seen as a parameter, on top of which a group is specified. 

Mostly in a parametrized specification efi: (E0 , £0) ---> (2:, E) the parameter specifi
cation (2:0 , £0 ) will be a subspecification of (E, £) in the sense that efi is injective both 
on types and on function symbols and maps E0-equations in £0 to E-equations in E. 

40f course, if we know on a syntactic (type theoretic) level that CJ is not empty-i.e. r I- N: O", for 
some N-then we may simply substitute N for x, which yields the conclusion r I- M =TM'. 



B. Jacobs I Parameters and Parametri:ation in Specification 219 

3 Semantics 

The set theoretic semantics of a signature l: is given in the following way. A E-model 
(or algebra) consists of a collection of 'carrier' sets {As}sES, one for each sin the set 
S of atomic types in l:. Then one extends this assignment s f--) A, to a >-+ .4" for 
a E S by putting 

A. = A., for s E S A1 = i = {0} 

Acrxr = Acr X Ar Aa+r = Aa +AT 

where + between sets means disjoint union. In this way one obtains a carrier set for 
each type. The collection {As}sES can be seen as a functor A: S --> Sets from the 
discrete category S to Sets. It is extended to a functor A: S --+ Sets. 

Besides these carrier sets {A,}, a l:-model consists of an interpretation of each 
function symbol, 

as an actual function, 

The notion of morphism of :E-models is as follows. A morphism h: ( {As}, [-Ill ___,. 
( {A:}, [ _ ]') consists of a collection of functions between carrier sets, 

for atomic types s E S 

such that for each function symbol F: a ----+ T one has that the diagram 

A" her Ai er 

[F] [ F]' 

AT hT kT 

commutes-where the collection {her} aES is obtained by extending { hs}.Es in the ob

vious way. 
Assuming one has such a :E-model ({A.},[_]), then one can extend the interp_re-

tation [ _] of function symbols to all terms: for a context f = X1: !J1, · · · , Xn: !Jn, wnte 

Ar = Acr1 X • • · X Aa,, 
Then one defines by induction on derivations for each term f I- M: a a function 

[r I- M: a]: Ar----+ Ar 



220 B. Jacobs I Parameters and Parametrization in Specification 

in the following way. 

[x1: a1, ... 'Xn: O'n I- X;: a;] = 71";: A .. , x ... x Aun -+ Au, 
[ x: a I- F(x): r] = [ F] : Au -+ A.,. (for Fa function symbol) 

[r I- (M, N): 71 x 72] = ([r I- M: T1 ], [r I- N: rd) ; Ar -+ A.,., x A.,.2 

[ r 1- (): 1] = ~a. 0 : Ar .-. {0} = 1 

[ r I- 7r P: ri] = 7r 0 [ r I- P: TI x T2 ] : Ar -+ A..., x ,47"2 -+ A,., 
[rl-7r'P:r2] = 71"1 o [fl-P:r1Xr2]:Ar-+ A.,.1 xA.,.2 -+ A.,.. 

[r, z: 0 I-{}: r] = Ar x 0 ~ 0 -+ A,. (the empty map) 

[r I- K-M:r1 +r2] = "' o [r 1- M:r1]: Ar -+ Ar, -+ A,.,+ A... 

where the functions "' and K-1 are the obvious injections into the disjoint union. For 
the interpretation of the case construction we observe that for sets A, B and C one has 
that the obvious map 

(A x B) +(Ax C) -t Ax (B + C) by { (O,(a,b)) ~ (a,(O,b)) 
(1,(a,c)) ~ (a,(1,c)) 

is an isomorphism. Thus for terms r I- P: TJ + 72, r, x: T1 I- Q: p and r, y: T2 I- R: p 

we can interpret the case term r I- -0 ~; ;~ : ~ ~(P): pas the composite 

where the square braces [-, -J describe the 'co-tupling' or 'source-tupling' of two func
tions f: A-+ C, g: B -+ C to a single function [!, g]: A+ B-+ C. 

A model of a specification (I:,£) is then a model of E in which one has an 
equation of functions, 

[ r 1- M: r] = [ r 1- M': r]: [ r] -t [ r] 

for each equation r I- M =r M' in £. We then say that this equation holds or is 
valid. One easily verifies that if an equation is derivable from £, then it holds in every 
model of (E, £). 

We leave it to the reader to check that all of the conversions in the previous sec
tion are valid under the above interpretation. Further if h is a morphism of models 
({A.},[-])-+ ({A:},[-]'), then one has for a term x 1: a 1, ..• , Xn: an I- M: T that the 
following diagram commutes. 

- - h X···Xh ~ ~ AO'\ X ... X Aun __ u_,_1 ____ u""'n-A'a1 X ••• X A'an 

[rl-M:r] j [ff- MorJ' 

A.,.------h~r-------A'.,. 
Thus h also preserves the interpretation of terms. 



B. Jacobs I Parameters and Parametrization in Specification 221 

The essential (categorical) aspect of the category Sets that is used for the above 
interpretation, is the presence of finite products and finite coproducts (sums), in such 
a way that binary products distribute over finite coproducts. We recall here that finite 
products (1, x) and coproducts (0, +) are described categorically by 

• for each object X there are unique maps 0 -+ X from the initial object 0 to X 
and X -+ 1 from X to the terminal object l; we usually write lx for both these maps. 
This hardly ever leads to confusion. 

• for objects X, Y, Z there are (natural) bijective correspondences 

Z--+XxY X+Y--+ Z 

Z--+X Z--+Y X--+Z Y-+Z 

We shall write the projections as X ~ X x Y ~ Y and the coprojections (some

times called injections) as X --!... X + Y ~ Y. The tupling of f: Z -+ X and 
g: Z -+ Y is written as (!, g): Z -+ X x Y and the cotupling (or source-tupling) of 
f: X -+ Z and g: Y -+ Z as [f, g]: X + Y -+ Z. There are the familiar equations 

?ro(j,g)=f ?T' 0 (J,g) = 9 (j,g) 0 h = (f 0 h,g 0 h) (7r, 7r1) =id 

and 

[f,g]oK:=f [!, g] 0 K:' = g h 0 [!, g] = [h 0 f, h 0 g] [K:, K:1] = id 

One writes j x g = (f o 7f, g o 71"1) and f + g = [K o f, K1 o g]. 
The following definition captures the essential structure needed for the interpreta

tion of distributive type theory. 

3.1. Definition. (i) A category IB is called distributive if it has finite products and 
coproducts, such that for each object I E IB, the functor I x (-): ~-+ !BI preserves finite 
coproducts, i.e. 

(a) the (unique) canonical map 0-+ Ix 0 is an isomorphism; 
(b) for each pair X, YE IB, the canonical map 

[id x K, id x x;']: (Ix X) +(Ix Y) - Ix (X + Y) 

is an isomorphism. 
(ii) A functor F:!BI -+ IC between distributive categories is called distributive if 

it preserves finite products and coproducts. Using these we get a category Distr of 
distributive categories and functors. 

The above functor F: !BI -+ C preserves finite products if for the initial / terminal 
object 0 / 1 in IB one has that FO / Fl is initial / terminal in C; further if the canonical 
maps 

F(X x Y)--+ FX x FY FX+FY--+F(X+Y) 

are isomorphisms (for each pair X, Y). 
It can be shown (as noted by Robin Cockett) that condition (a) in the above 

definition follows already from (b). Also that the coprojections are monomorphisms 
and that every map X -+ 0 is an isomorphism. Further, the distributivity in (b) can 
alternatively be expressed by (natural) bijective correspondences 

JxX--+ Z IxY--+ Z 

Ix (X + Y) --+ Z 



222 B. Jacobs I Parameters and Parametrization in Specifi'cation 

involving binary coproducts with parameters. We should warn that the opposite !IB°P 

of a distributive category need not be distributive again: for example in Sets the 
above two isomorphisms do not exist with products and coproducts interchanged. For 
distributive lattices however (i.e. for poset distributive categories) one does have that 
the opposite is a distributive lattice again. More information on these distributive 
categories can be found in [3] and in [2]. 

3.2. Examples. (i) The category Sets of sets and functions is a distributive category. 
Also the subcategory of finite sets is distributive. More generally, every topos is a 
distributive category. 

(ii) The categories of posets with monotone functions and of directed complete 
posets ( dcpo's) with continuous functions are distributive. In both cases, the empty 
poset is initial and the coproduct is given by disjoint union, ordered by (i, x) :::; (j, y) {::} 
i = j & x:::; y--where i,j E {O, l}. 5 

(iii) Every cartesian closed category with finite coproducts is automatically distribu
tive: each functor Ix (-) has a right adjoint I=> (-) and thus preserves all colimits. 
The examples in (i) and (ii) are instances of this phenomenon. 

(iv) Let MS be the category of metric spaces (X, dx) with non-expansive functions: 
a morphism f: (X, dx) _, (Y, dy) is a function f: X -> Y between the underlying sets 
with dy(f (x ), f (x')) ~ dx(x, x') for all x, x' E X. This gives an example of a category 
which is distributive but not cartesian closed. 

(v) A non-example is the category Sets. of pointed sets. Objects are sets with a 
distinguished base point and morphisms are functions preserving these base points. 
Alternatively, one can think of Sets. as the category of sets and partial functions. 
Sets. has finite products and coproducts, but is not distributive; the one-element set 
{ •} is both initial and terminal. Therefore I x { •} ~ I, which is not { •} in general 
(as required in (a) in Definition 3.1 (i)). 

One can also syntactically construct distributive categories from specifications. 

3.3. Definition. For a specification (I:,£) one forms the classifying category, writ
ten as CT(I:,£), with 

objects 
morphisms 

types CJ 

CJ _, r are equivalence classes [M(x)] of terms x: CJ I- M: r. The 
equivalence relation M ,...., M' is given by derivability from £, of the 
equation x: CJ I- M =r M'. That is, M and M' are equivalent if 
x: a I- M =r M' is a theorem. 

Identities are given by variables x: CJ I- x: CJ and composition of x: a I- M: r and 
y:r I- N:p by substitution x:a I- N[M/y]:p. 

3.4. Proposition. Classifying categories CT(I:, £) are distributive. 

Proof. It is easy to see that the type 0 is initial and that 1 is terminal. Further, there 

are obvious projections a ._.::__ a x r ~ r and coprojections a ~ CJ+ r ,..:;!__ r forming 
product and coproduct diagrams. The required distributivity follows from Lemma 2.5. 

D 

5In this category of dcpo's and continuous functions one does not have the result that every 
endomorphism has a fixed point, but one does have a fixpoint object for the lift monad 1 + (-), as 
described in [7]; this is enough to interpret recursively defined functions (as in a language like PCF). 



B. Jacobs I Parameters and Parametrization in Spec(fication 223 

3.5. Remarks. (i) The above classifying category forms a categorical version of what 

is called in universal algebra the closed (or ground) term algebra ({Ta},[-]) of 

(:E, £). This term algebra lives inside the classifying category: the elements of Ta are 

the terms 1 -+ a in CC(L:, £); these can indeed be identified with the closed terms. 

The essential difference between such term algebras and classifying categories is 

that the latter deal with all terms (and not just with the closed ones) in a natural way. 

(ii) For a specification given by a signature L: (without equations) we write 

ce(:E) ~1 ce(L:, 0) 

and call ce(:E) the classifying category of :E. 
(iii) The restriction to terms x: a I- M: T containing a single term variable x: a only, 

is not really a restriction, because using the finite product. types, there is a bijective 
correspondence between terms M and N in 

y:a1X .. ·Xanl-N:r 

where a 1 x · · · x an is 1 if n = 0. 
(iv) As will be shown in Section 5, classifying categories CT(:E, £)are free distributive 

categories. 
(v) According to Walters [30], an imperative program consists of an alphabet 

A of input symbols together with a functor A* -+ CT(:E, £) from the free monoid A* 
of finite sequences (words) of A to a classifying category ce(:E,£). It is thus given 

by a type a (representing the state) together with an A-indexed collection of terms 

(programs) {Ma: a-+ a}aEA· The functor maps an input string (a1, .. .,an) to the 

composite program Ma, o · · · o Ma,.: a-+ a. 
(vi) For algebraic: specifications (I:, £)-which do not involve finite coproducts, see 

Remark 2.9--one can form a simpler classifying category C€a(:E, £) which has types 

a built with finite products from atomic types, as objects. Morphisms a -+ r are 

equivalence classes of terms which do not involve finite coproducts. Then one has that 

these classifying categories cea(L:, £) have finite products. 

3.6. Example. We are now in a position to give a diagrammatic construction of the 

overloaded plus, as promised in Example 2.6. It can be performed in any distributive 

category with maps plusN: N x N -+ N and plusR: Rx R-+ R. In particular in classifying 

categories (in which one has such maps). We make essential use of distributivity. We 

form plus: (N + R) x (N + R) -+ j_(N + R) as composite, 

(N + R) x (N + R) ~ ((N + R) x N) + ((N + R) x R) 

~ (N x N) + (R x N) + (N x R) +(Rx R) 

1 id+!+!+ id 

(N x N) + 1 + 1 + (R x R) 

1 id+ \7 +id 

(N x N) + 1 +(Rx R) 

1 plusN + id + plusR 

N + 1 + R ~ j_(N + R) 



224 B. Jacobs I Parameters and Parametrization in Specification 

where V' = [id, id] is the codiagonal 1 + 1 ---> 1. One sees how the combinations R x N 
and N x R of inputs of different types are mapped to error values. 

This gives an example of 'programming in distributive categories', as in [29]. 

3.7. Example. We shall describe two very simple classifying categories concretely. 
If the specification is the empty one, the classifying category ct'(0) consists of two 

types O and 1 with only one arrow 0 ---> 1. It is thus the 2-element partial order. 
If the specification consists of one type {a}, no function symbols and no equations, 

then one obtains a classifying category Ge( {a}), the objects of which can be identified 
with finite polynomials E n;ai with 0 and 1 as initial and terminal object and coproduct 
+ and product x given by addition and multiplication of polynomials. Morphisms 

( E n;ai) --+ ( E miai) 
' ' 

in ce( { O!}) are built from (co )tuples and (co )projections. 

Next we describe models in arbitrary distributive categories. The definitions and 
results are obvious generalizations of the earlier set theoretic ones. 

3.8. Definition. (i) A model of a signature E in a distributive category JS is given 
by 

• a 'carrier' object A, E JS for each s in the set S of atomic types in E. Then one 
extends this assignment A: S ---> JS to an assignment A: S ---> l!ll as in the beginning of 
this section. 

• a morphism [ F]: Au ---> Ar for each function symbol F: O' --+ r. 
Again one extends this assignment of morphisms to function symbols to an assignment 
of morphisms to terms as done earlier for Sets, in such a way that for a term r = 
X1: O'i, •.. , Xn: D'n I- M: r one obtains a morphism 

[ r I- M: T]: Au, x ... x Aun --+ Ar 
(ii) A model of a specification (E, £) in Ill\ consists of a model of E that validates 

all equations in £; that is for an equation r I- M = M': r in E one has an equality of 
morphisms, 

[ r 1- M: r] = [ r 1- M': r] 

An interpretation Au of a type O' together with the morphisms resulting from in
terpretations of terms going in and out of this carrier object, may be called a data 
structure. 

We leave it to the reader to verify an obvious soundness result: if an equation 
E is derivable in a specification (E, £), then it holds in every model of (E, £) in a 
distributive category. In particular the associated theory is validated. The notion of 
morphism between models in Sets is formulated in such a way that it generalizes in 
an obvious way to a notion of morphism between models in an arbitrary (but fixed) 
distributive category. In this way we get a category 

Mod((E,£), Ill\) 

of models of (E, £) in a distributive category JS. A model of (E, £) in JS is then called 
initial or terminal if it is initial or terminal in this category. 

Notice that we may have total functions {A, ---> B,} as morphisms of models, but 
partial functions [ F] as interpretations of function symbols; the reason being that 
partiality can occur within a distributive specification via O' -> J_ r. 



B. Jacobs I Parameters and Parametrization in Specification 225 

3.9. Examples. (i) It is immediate that a model in Sets as defined above is the same 
as described in the beginning of this section. 

(ii) A model of the first (Hagino) specification of natural numbers in Example 2.8 
(iii) in a distributive category lB consist of an object AN together with maps 

[0]:1--+AN [S]:AN---+AN 

From now on, the we often omit the A_ and [-] notation. This is an initial model if 
for each other model 

l~YLY 

there is a unique morphism h: N -+ Y making the following diagram commute 

l ---=-0- ..... N __ s __ N 

h h 

l --a~- Y--9~- Y 

A diagram 1 ~ N ~ N which is initial in this sense is what Lawvere defines to be 
a natural numbers object (NNO) in a category. 

(iii) A model in lB of the second specification of natural numbers in Example 2.8 (iii) 
involves an extra morphism 

P: N--+ 1 + N 
The validity of the equations means that the maps 

[O,SJ 
l+N ~ N 

p 

are each other's inverses. Initiality of this model means that for every other model 
[a,J] 

l+Y ~ Y 
g 

There is a unique morphism h: N -+ Y with 

h o 0 = a, h o S = f, id+ h o P = g o h. 

In fact, this last equation follows from the first two. 
(iv) In a similar but more complicated way, one can check that a model of the 

specification of queues in Example 2.8 (iv) is given by an object A (interpreting a) and 
an object Q(A) (for Q(a) together with maps 

nil: 1 --+ Q(A) push: A x Q(A) ---+ Q(A) pop: Q(A)---+ 1 + Q(A) x A 

such that the following diagram from [28] commutes. 

[nil, push] 
1 + A x Q(A) ----'----'----=----- Q(A) 

id+ id x popl 

1 +A x (1 + Q(A) x A) 
111 

1 +A+ Ax Q(A) x A 

pop 

111 id+ [nil, push] x id 
1 + (1 +Ax Q(A)) x A--.=-.......:-'--"------..1 + Q(A) x A 



226 B. Jacobs I Parameters and Parametrization in Specification 

(v) There is an obvious way to get a model of a specification (:E, E) in its own clas
sifying category O?(:E, £). This is called the generic model of (:E, £). The equations 
which hold in this model are precisely the theorems, i.e. the equations which are deriv
able from E. In this way one obtains a completeness result: an equation E is a theorem 
if and only if it holds in all models. 

(vi) Models of algebraic specifications can be described in categories with finite 
products-since there are no finite coproducts involved. 

4 Semantics of Hagino specifications 

Hagino specifications a -+ X or X -+ a define a type a (co)-inductively--since the 
type variable X may occur in a-using finite products and coproducts of atomic types 
and X, see Example 2.2 (ii). The inductive case, say of the form (a1 + · · · + O"n) -+ X 
occurs in the functional programming language ML with syntax 

datatype X = C1 of 0"1 I · · · I Cn of an 

where C1, ••. , Cn are constructors. We would simply write [C1, ... , Cn]: (a1 +· · ·+an) 0

-+ 

X in this case. Hagino [10, 9] writes µX. a for the initial solution of a -+ X and 
vX. a for the terminal solution of X -+ a. In the experimental programming language 
CHARITY, see [4], one can define both these initial and terminal types. Thus one can 
define for example a type of trees of finite depth with nodes having infinitely many 
branches. 

These recursively defined types with initial or terminal characterizations occur al
ready in [l], but are first investigated systematically from a type theoretic perspective 
'Jy Hagino. 

The semantics described in the previous section for arbitrary specifications special
~es to Hagino specifications. This special case is often described in terms of algebras 
,nd coalgebras for an endofunctor T: JIB -+ JIB (i.e. for a functor from a category JIB to 

itself). For such a functor we often spare on parentheses and write TY for T(Y). 
Recall that for an arbitrary endofunctor T: JIB -+ JIB an algebra (or T-algebra) is 

an object Y E JIB together with a morphism 1.p: TY -+ Y. Dually, a coalgebra is a pair 
( Z, 1j;) where 'lj;: Z -+ T Z. One forms a category T-Alg with T-algebras as objects and 
as morphisms 

maps h: Y -+ Z in JIB for which the following diagram commutes 

TY ~T~h'---+- T Z 

Y-~h'----Z 

Dually, there is a category T-CoAlg of coalgebras and similar morphisms. In these 
categories of algebras and coalgebras one can again study initial and terminal objects. 
Notice that an initial algebra for T: IB -+ JIB is a terminal coalgebra for T 0 P: JE"P -+ JE"P. 



B. Jacobs I Parameters and Parametrization in Specification 227 

4.1. Fact (Lambek). An initial T-algebra ip: TY -+ Y is an isomorphism. 

By duality one has a similar result for terminal coalgebras. The fact is proved by 
considering the T-algebra T<p: T 2Y -+TY; one obtains by initiality a map cp: Y -+TY 
serving as inverse of <p. Thus initial algebras are fixed points TY 9! Y of functors. 

A model of the Hagino signature (0, S]: 1 + N ---+ N of natural numbers in a dis
tributive category llll (see Example 2.8 (iii)) consists of an algebra for the endofunctor 
T( X) = 1 + X. Requiring this algebra to be initial means that for each object Y E !Ill, 
together with maps a: 1 -+ Y and g: Y -+ Y, there is a unique h: N -+ Y with 

l+N l+h l+Y 

(O,S] [a,g] 

N--h _ _..,y 

This initial algebra approach yields the same notion of initial model as the one resulting 
from the general description in the previous section (see Example 3.9 (i)). Our aim is 
to establish such a correspondence for all Hagino signatures. 

Recall that a Hagino signature involves a set S of atomic types, a type variable X 
and either a function symbol constr: a -+ X (in the inductive case) or a function symbol 
destr: X -+ a, where a is a type in S U { X}. A model of the set (or subsignature) S in a 
category llll consists of a functor A: S-+ !Ill (i.e. of a collection {A,}.es of objects A, E !Ill). 
The category of models of S in llll is the functor category llll5, in which a morphism 
f: {As}ses-+ {B.}.es consists of a collection of morphisms f = {f,:A,-+ B.}.es in 
llll. We have written () for the functor llll5 -+ -$8 which extends the assignment s H A., 
s H f. for s E S to a H A" and a H Ju for a E S, as described in the beginning of 
the previous section. 

4.2. Definition. Each model A: S -+ llll in a distributive category llll together with a 
type a ES U {X} determines a polynomial functor T(A)a:llll-+ !Ill which follows the 
structure of a: 

T(A)u def 

the constant functor A, 
the identity functor 

the constant functor 0 

the constant functor 1 

if a:::: s ES 

ifu:=X 

if (J = 0 

if (J = 1 

Y H T(A)u1(Y) + T(A)u2 (Y) if fJ = a1 + a2 

y H T(A)a1(Y) x T(A)u,(Y) if (J = a1 x a2 

4.3. Lemma. The assignment AH T(A)u extends to a functor llll5 -+ llll". 

Proof. Given f = {!,:A,-+ B,}.es in llll5, one defines a natural transformation 

T(f)u: T(A)u -+ T(B)a 

by induction on u. The component at Y E llll is 



228 B. Jacobs I Parameters and Parametrization in Specification 

J, if a:::: s ES 

idy if a= X 

clef ido if a= 0 
T(f)a(Y) 

id1 if a= 1 

T(f)a, (Y) + T(f)a, (Y) if a= a1 + a2 

T(f)a, (Y) x T(J)a,(Y) if a= a1 x a2 

Then one checks (again by induction on a) that for h: Y __,Zin IB, 

T( A)a(Y) T(f)a(Y)T(B)a(Y) 

T(B)a(h) 

0 

We see how the syntactic structure of the type a determines the shape of the asso
ciated polynomial functor T(A)a. It turns out that models of the Hagino specifications 
a(X) __, X and X __, a(X) can be described as algebras T(A)a(X) __, X and coal
gebras X __, T(A)a(X), see Proposition 4.6 below. The initial algebras and terminal 
coalgebras herein play a special role. 

But one can also go a step further as in [11]. If one has a suitable fibred category 
E 

l where the category IE: provides some logic to reason about what happens in IB, then 
Ill 
1ne can get a 'lifted' endofunctor JE __, JE which captures the logic of induction and 
oinduction associated with the Hagino specification. This, however, will not be further 
ursued in this paper. 

1.4. Discussion on parametrization. A priori there are three ways in which a poly
nomial functor T(A)a: lB __, lB as defined above can have an initial algebra--and dually 
a terminal coalgebra 

(a) Unparametrized initiality. This is ordinary initiality of a T(A) 17 -algebra 
r.p: T(A)a(U) __, U; for each 1/J: T(A)a(V) __, V there is a unique h: U __, V with 
ho r.p = 1/J o T(A)a(h). 

(b) Parametrized initiality. In this case one also allows variation in the model of 
S; r.p: T(A)a(U) __, U is initial in this parametrized sense if for each other model B: S __, 
lB together with a morphism f: A__, B of models and a T(B)a-algebra 1/J: T(B)a(V) __, 
V, there is a unique h: U __, V making the following diagram commute. 

T(A)a(U)--~r.p---U 

T(A)a(o/ ~(f)a(U) 
T(A)a(V) T(B)"(U) h 

T(f)a(V~ /r(B)"(h) 

T(B)a(V)---1/J---V 

where the diamond on the left hand side commutes by naturality. 



B. Jacobs I Parameters and Parametrization in Specification 229 

( c) Absolute initiality. For each other model B: S --.- la and algebra 1/J: T( B)a(V) 
-+ V there is a unique pair f: A --.- B, h: U -+ V making the above diagram ( *) 
commute. This third form of initiality is initiality in the following category T(-)a-Alg, 
with 

objects pairs consisting of an S-model A: S _,. JB and an algebra 
ip:T(A),,.(U) _,. U 

morphisms (A, T(A),,.(U) 4 V) _,. (B, T(B),,.(V) .:!'.., V) are morphisms f: A-.
B of S-models together with a map h: U _,. V in IB making the above 
diagram ( *) commute. 

Notice that we have left the dependence on S implicitly in the notation T(-)cr-Alg. 

The next two results are about these three forms of initiality (a), (b) and ( c ). Firstly 
it will be shown that (a) and (b) are the same; and secondly that initiality as in (c) 
is the same as initiality in a category of models described in the previous section. We 
will argue below that ( c) is too strong. 

4.5. Lemma. An algebra T(A)cr(U) 4 U is initial in the above unparametrized sense 
(a) if and only if it is initial in the parametrized sense (b ). 

Proof. The if-part is obvious. As to the only-if-part, assume that ip: T(A),,.(U) -.
U is initial as in (a) and that another S-model B: S --.- IBl is given with f: A --.- B 
and a T(B),,.-algebra 'l/;:T(B),,.(V) --.- V. Then one has a T(A),,.-algebra 'l/; 1 ='If; o 
T(J)u(V): T(A),,.(V) _,. V and thus a unique map h: U -+ V with h o r.p = 'lj; 1 o 
T(A)u(h) ='If; o T(f),,.(V) o T(A)u(h). It is clearly the unique one with this property. 

0 

4.6. Proposition. The category Mod(L:, IBl) of models (in a fixed distributive category 
IBl) of an inductive Hagino specification 2:: = (SU { X}, constr: a --..; X) as described in 
the previous section can be identified with the category of algebras T(_)a-Alg described 

in 4.4. 

Proof. A model of 2:: in JE consists of a model A: S _,. IBl together with an object U E la 

and a morphism 

ip = [ constr ]: A(U)" --+ U 

where A(U): SU {X}-+ lE is 

A(U)t =if t = X then U else At 

By induction on a, one checks that 

A(U)" = T(A)u(U) 

see the proof of Lemma 4.3 for the description of the value of the functor T(A),,. at U. 
Thus ip is a T(A)cr-algebra and (A, r.p) is an object of the category T(-)u-Alg. 

Similarly one verifies that morphisms of 2::-models correspond to morphisms in 

T(_)"-Alg: a morphism between two L:-models 

(A, U, ip: A(U)"-+ U) --+ (B, V,'lf;: B(V),,.-+ V) 



230 B. Jacobs I Parameters and Parametrization in Specification 

consists of a morphism f: A -> B of S-models, together with a map h: U -> V in lBl 
such that the following diagram commutes. 

A(U)" _'P _ __. U 

h 

where f(h) is a morphism of SU {X}-models, given by the collection f(h)t with 

f (h)t ==if t = X then h else ft 

By induction on a one verifies that 

j(h),, = T(f)a 0 T(A)a(h) 

and thus that the above diagram corresponds to a morphism of algebras in T(-)a-Alg. 
0 

One can define a similar category T(_),,-CoAlg of coalgebras and get a result like 
above for coinductive Hagino specifications. 

The point that we would like to make here is that absolute initiality as in ( c) is 
:eally too much to require: it does not make sense to require that any model A of the 
i.tomic types can be mapped via f: A -> B onto another model B. For example, one 
~an check that for the Hagino specification [nil, cons]: 1 + (a x X) ----+ X of lists of type 
a one gets the following. Since the set S of atomic types is {a}, a model A: S -> Sets 
can be identified with a set A. And the set A* of finite sequences of elements of A is 
initial in the sense of (a)= (b), but not as in (c). The latter would require a map into 
any other set B. This is non-sensical. 

Thus the above Proposition 4.6 tells us that models of Hagino specifications are 
algebras, but what is lacking is the right notion of morphism of models, such that a 
correspondence with algebra maps is obtained. In order to get such a correspondence 
we have to use models of parametrized specifications. (Indeed, Hagino specifications 
are parametrized by the set of atomic types, see Example 2.11.) But to give a smooth 
description of models of parametrized specifications, we first need a more categorical 
approach to models using functors. This will be in the next section. 

In the remainder of this section we have a brief look at the existence of initial / 
terminal models for Hagino specifications, see [l, 22] or [23, Chapter 11]. These models 
can be constructed as colimits or limits of w-chains. The latter are functors w -> !Bl, 
where w is the poset category of natural numbers 

0--+1--+2--+··· 

A functor F: 1B -> IC will then be called continuous if it preserves colimits of such 
w-chains. It is easy to see that polynomial functors T(A),,-see Lemma 4.3-are (at 
least on Sets) always continuous, using that finite limits and filtered colimits commute, 
see [19], IX 2. 

The initial algebra of a continuous endofunctor T: lBl -> lBl can be constructed from 
the colimit U of the w-chain 



B. Jacobs I Parameters and Parametrization in Specification 231 

where 0 E IB is initial object. This is as in [26]; it generalizes the construction of a 
fixed point as join of .1 :::; f(.1) ::; J2(.1) ~ -· · for an endofunction f on a dcpo with 
bottom .1. Since T preserves the colimit of this w-chain we get a map TU ~ U which 
is initial algebra. For example in Sets, the endofunctor associated with the Hagino 
specification of the natural numbers is T(X) = 1 + X. The resulting colimit is 

0 ___,. 1 ---> 2 --+ · · · --+ N 

And for finite lists one has T(X) = 1 + A x X with initial algebra given by 

O ___,. 1 --+ 1 +A ---> 1 +A+ A 2 --+ 1 +A+ A2 + A 3 ___,. •.. --+ A* 

where A* = UnEN A" is the set of finite sequences of elements of A. 
Dually a terminal coalgebra for T: IB __,. IB can be constructed as an initial algebra 

for T 0 P: JB0 P -l- JB0 P 6 . That is, as a limit in ra of the w0 P-chain 

1 ~ TO ~ T 20 i:.:._ T 30 +- ... +- V 

where T: IB --+ IB is required to preserve limits of w0 P-chains. Again one has that 
polynomial functors T(A)o- are 'co-continuous' in this sense. As an example, infinite 
lists (of type a) are described by a desctructor X --+ a: x X; the resulting endofunctor 
T(X) = A x X on Sets leads to the limit 

1 +- A +- A2 +- A3 +- ... +- AN 

Finite and infinite lists together are described by a destructor X _,. 1 + a x X and 
thus by the limit 

1 +- 1 +A +- 1 +A+ A 2 +- 1 +A+ A2 + A3 +- ... +- (A*+ AN) 

The reader may wish to check that the resulting isomorphism 

is a terminal coalgebra indeed-where A+ = Un~I An is the set of non-empty finite 
sequences of elements of A. 

We conclude that in a distributive category with colimits of w-chains / limits of 
w0 P-chains, every inductive / coinductive Hagino specification has an initial algebra / 
terminal coalgebra. Especially these initial and terminal models exist in Sets. This 
yields solutions to domain equations involving finite products and coproducts. If one 
additionally wishes higher types via exponents __..., then one cannot find set theoretic 
solutions anymore (when X occurs negatively). For example, there are no non-trivial 
sets U with U 9:! U--+ U. For solutions of such domain equations with higher types one 
works in categories of dcpo's, see [26] using embedding-projection pairs as morphisms. 
Alternatively, one can work in synthetic domain theory, where domains are just sets, 
see [13]. 

6Recall however that I!ll"P need not be a distributive category. 



232 B. Jacobs I Parameters and Parametrization in Specification 

5 Functorial semantics 

In universal algebra there is a basic result that an algebra A for a signature Eis nothing 
but a morphism of algebras from the free algebra F(E) on E to A. There is a similar 
result in the present setting: a model of a specification (E, £) in a distributive category 
IB is nothing but a distributive functor ce(E, E) -+ IE from the classifying category 
a!(E, E) of (E, E) (see Definition 3.3) to !B. This classifying category can be understood 
as the free distributive category on (E, £). 

The idea of describing models as functors preserving appropriate structure goes back 
to Lawvere [21]. It has the clear advantage that it enables one to use well-established 
categorical tools for the semantics of specifications. This will be crucial in the rest of 
this paper. 

We start with some basic observations. 

5.1. Lemma. The assignment (:E, £) t-+ ce(:E, E) extends to a functor a!(_): Spee -+ 
Distr from the category of specifications to the category of distributive categories. 

Proof. For a morphism </J: (E,E)-+ (:E',E') of specifications one gets a functor Cl(</J): 
ce(E, £) __, ce(E', E') by 

at-+ ~(a) and [M] t-+ [q)M] 

where </JM is obtained from M by replacing each function symbol F in M by its image 
IF. This is well-defined on equivalence classes since </J maps theorems in (:E, £) to 
heorems in (:E', £'). D 

.. 2. Theorem. Let (E, £) be a specification and JE a distributive category. There is 
an equivalence 

Mod((E,E), IB) ::: Distr(a!(:E,E), IB) 

between the category of models of (E, £) in IE and morphisms of these, and the category 
of distributive functors a!(E, £) -+ JB and natural transformations. 

Proof. Given a model ( {A,},[-]) of (:E, £) in IB, one gets a distributive functor A: 
Cl(:E,E)-+ IB by 

and (a~r) t-+[x:a f-M(x):r] 

A morphism {h.}: ({A.},[_-])~-+ ( {~.},[_])of models yields a natural transformation 
A -+ l3 with components hu: Au -+ Bu; these are natural in a, because they commute 
with the interpretations of terms (see Section 3). 

In the reverse direction, given a distributive functor M: ce(E, £) -+ JB one obtains 
a model with carrier objects 

A. = M(s) E IB, for atomic types s 

and interpretations of functions symbols F: a --+ r as morphisms 

Au~ M(a) .MJ!~.Jl M(r) ~AT 

A natural transformation a: M-+ N yields a collection of morphisms a(s): M(s) -+ 
N(s) which commute by naturality with the interpretations of function symbols. D 



B. Jacobs I Parameters and Parametrization in Specification 233 

The above result gives us the possibility to describe a model of a specification (E, £) 
in a distributive category llll, either as a collection of objects and arrows (interpreting 
atomic types and function symbols in such a way that equations in E are validated) 
or as a distributive functor C€(E, E) ---+ R We shall freely switch between these two 
perspectives according to what is most convenient. See for example the next lemma 
below. 

The previous theorem says in particular that a set theoretic model of a specification 
(E, £) is (or, corresponds to, if you like) a distributive functor Cf(I:, E) ---+Sets. 

If IBl is a distributive category associated with some programming language-so that 
morphisms in 18 are (equivalence classes of) programs-then a model M:Cf(I:,E)---+ IS 
may be understood as an implementation of (I:, E) in this language. It then makes 
sense to write M: (I:, E) and read this as an inhabitation statement telling that 'M 
meets specification (E,£)'. In this way one can try to set up a calculus of specifications 
and implementations. 

5.3. Lemma. Let (E,E) be a specification and IB a distributive category. 
(i) A distributive functor F: IB ---+ CC induces a functor from the category of models 

of (E, E) in IB to the category of models in C. 

(ii) A morphism </J: (I:,£) ---+ (E', E') of specifications induces a functor from the 
category of models of (I:', E') in IB to the category of models of (I:,£). 

Proof. (i) Post-composition with F yields a functor 

Distr(ce(E,£), 18) -t Distr(ce(I:,£), c). 
(ii) Pre-compostion with Cf(ef>):Cf(I:,£) ....... Ge(E',E')-see Lemma 5.1-yields a 

functor 

Distr(ce(E',£'), llll) -t Distr(ce(E,E), IB). 0 

As another example one has that models M 1: Cf(E, E) ....... IB1 and M 2:C€(E,£)---+ !Si 
give rise to a model (Mi, M 2}:Cf(E,E) ....... Si XISi in the (distributive) product category 
IBl1 x JB.i. 

There is some extra mileage we can get from Theorem 5.2; therefore we first need 
the following way to go from distributive categories to specifications. 

5.4. Definition. Every distributive category IB determines a signature Sign(IB) with 
• objects X E 18 as atomic types 
• morphisms f: X---+ Yin IB as function symbols f: X---+ Y. 

The category 18 then forms an obvious model for this signature Sign(IB)-and for the 
associated term calculus. We let Th(IB) be the set of equations ' 

which hold in this model (when these terms M, M' receive their obvious interpretations 
in IB, as morphisms X1 x · · · x Xn =; Y). Then Spec(IB) = (Sign(IBI), Th(B)) will be the 
specification associated with IB. 

5.5. Lemma. Let 18 be a distributive category. 
(i) The collection of equations 'Ih(IB) is closed under derivability-and thus forms 

a theory. 
(ii) The assignment IB ~ Spec(B) extends to a functor Distr---+ Spee. 



234 B. Jacobs / Parameters and Parametrization in Specification 

Proof. (i) By definition, every equation in 1h(B) holds in IS. Hence, by soundness, 
every equation E derivable from (equations in) 1h(IB) must hold in !B. But then Eis 
already in 1h(IB). 

(ii) A distributive functor F: JR -+ C induces an obvious morphism of signatures 
Sign(IR) -+ Sign( c) by 

x-Fx and (f:X-+ Y) t--> (Ff:FX-+ FY) 

One then shows that for a term x1: Xi, ... , Xn: Xn 1- M: Y in the calculus on Sign(B) 
the following diagram commutes 

F[x: X I- M: Y] 
F(X1 x · · · x Xn) -~------"'~ FY 

111 111 

FX1 x ··· xFXn FY 
[x: FX I- FM: FY] 

Here we use that F preserves finite products and coproducts; first of all to establish 
that FX ~ FX by induction on the structure of the type X. Commutation of the 
diagram is then obtained by induction on the derivation of M. We conclude that the 
image under F of an equation in IB is an equation in C. Hence we get a morphism of 
specifications Spec(B) -+ Spec(c). D 

Next we relate these functors Spee -+ Distr and Distr -+ Spee. 

5.6. Theorem. Let (E, £) be a specification and IR a distributive category. 
(i) There is a bijective correspondence (up-to-isomorphism) 

(E,£) -t Spec(IB) = (Sign(IB), 1h(1R)) in Spee 

Cf(E,£) -t IB in Distr 

(ii) The induced model c:Cf(Sign(IR), 1h(B)) -t IR of the specification of IB in B 
itself, is an isomorphism. 

The theorem states that taking specifications yields a full and faithful functor 
Distr -+ Spee, which-in a suitable 2-categorical sense-has a left adjoint. 

Proof. (i) Just observe that a morphism of specifications (E, £) -+ Spec(IR) is nothing 
but a model of (E, £) in B. The latter corresponds by the previous theorem to a 
distributive functor Cf(E, £) -+JR. 

(ii) The inverse B -t Cf(Sign(IB), 1h(IR)) is given by X "'"" X and (!: X -+ Y) "'"" 
(the equivalence class [f(x)] of x: X I- f(x): Y). 0 

5.7. Remarks. (i) In particular we may conclude from (ii) that every distributive 
category can be described as a classifying category. Thus a distributive functor F: JR -+ 

IC can be understood as a model of (the specification Spec(Illl) of) JR in c. 
(ii) From this theorem we get an (idempotent) monad Spec(ce(_)): Spee -+ Spee. 

The resulting Kleisli category may be called the category of specifications and trans
lations, where a translation ef>: (E, £) -+ (E', £') corresponds to an assignment from 
atomic types in E to arbitrary types and from function symbols to arbitrary terms. 
Thus translations are not so restrictive as the signature morphisms described in Defi
nition 2.1 (which map atomic types to atomic types and function symbols to function 
symbols). 

Alternatively, by Theorem 5.6, a translation (E, £) -+ (E', £') can be understood 
as a distributive functor Cf(E, £) -+ ce(E', £'). 



B. Jacobs I Parameters and Parametrization in Specification 235 

(iii) For algebraic specifications-see Remark 2.9 and 3.5 (iv)-one has in a similar 
way that models can be described as finite product preserving functors a'a(L:,E)-+ IB 
and that a'a (E, E) is the free category with finite products on (L:, E). Lawvere's original 
investigations in [21] are about these algebraic (single-typed) specifications. 

(iv) Goguen and Burstall [14] have a notion of institution which they use for ab
stract model theory of (arbitrary) specifications. We briefly indicate how the above 
functorial semantics of distributive specifications gives a particularly straightforward 
example of such an institution. One has a functor Sign -+ Sets by 

{ L: r-+ { E I E is a 2:-equation} 

c/> r-+ the function E r-+ c/>E 

and for each distributive category 15 a functor Sign°P -+ Cat by 

{ E r-+ Distr( a'(I;j, 1IB) 

cl> r-+ c1>• = - 0 a'( cl>) 

For each E-equation E = (r I- N =,, N') and E-model M: a'(E) -+ lffi there is a 
satisfaction relation f= given by 

M f= E ~ M(N) = M(N'): M(r) ~ M(a) 

The notion of institution then requires that one has 

N F= c/>E {:> c/>•(N) f= E 

But this correspondence between reindexing equations and reindexing models exists by 
definition. 

6 Parametrized specifications 

Recall from Definition 2.12 that parametrized specifications are morphisms of specifica
tions c/>: (E0 , £0 ) -+ (L:, E). These are important in a modular approach to specification: 
if one already has a specification MONO ID of monoids (see Example 2.8 (ii)), then one 
specifies a group simply as a monoid plus an extra function symbol for inverse and the 
associated equations. In this way one obtains a specification GROUP, which extends 
MONO ID. That is, there is an inclusion specification morphism MONOID-+ GROUP. 
This is of course a very elementary case, but it is exemplaric. The possibility to 
built such a new specification on top of a given one, is a basic feature of specification 
languages---like Clear, OBJ, Act One, Act Two (see [14] for extensive references). 

The general form one recognizes in such situations is described by a morphism of 
specifications c/>: (2:0 , £0) -+ (E, E), where (2:0 , £0 ) is the parameter specification. 
MONOID is thus a parameter in the above specification of GROUP. In this section we 
concentrate on the semantics of such parametrized specifications c/>: (Eo, Eo) -+ (L:, E). 
Semantically we shall understand tjJ as an operation which, given a model M of the 
parameter specification (E0, £0) in a fixed category JIB, produces the free model of 
(E, E) on M incorporating the (E0,E0)-structure. Concretely, in the above exam
ple MONOID-+ GROUP, we understand the parametrized specification to denote the 
free group construction on an arbitrary monoid (incorporating the monoid structure). 
Categorically, this will be understood in terms of Kan extensions. Using Kan exten
sions in this way is not new (it occurs already in rudimentary form in [17]), but is little 
known. Therefore we provide details. 

Let H: c -+ [)I be an arbitrary functor. For a given category IR, one obtains a functor 



236 B. Jacobs I Parameters and Parametrization in Specification 

H*: Fun(U), IE) -+ Fun(c, IE) by M,__,,MoH 

where Fun(U), IE) is the category of functors U) ---> lE and natural transformations between 
them. In a diagram, 

In such a setting, lE is often called the receiving category. 
Kan extensions involve an inverse Fun( C, IE) ---> Fun(U), IE) to this operation H*, 

which satisfies a universal property. The latter is called 'left' c.q. 'right' dependening 
on whether the extension is initial c.q. terminal (in a suitable sense). For the moment, 
let's concentrate on left. For a functor N: C ---> IE, a left Kan extension along 
H is a functor U) ---> IE, written as LanH(N), which comes equipped with bijective 
correspondences between natural transformations 

LanH(N) -+ M m Fun(U), IE) 

N -+ H*(M) = M o H in Fun(c, IE) 

which are natural in M. 
In the triangle we get a bijective correspondence between natural transformations 

~in 
H 

~# 
lE 

where we have written L for LanH(N). Alternatively, one can describe the universal 
property as follows. There is a unit T): N ---> H*LanH(N) such that for each a: N ---> 
H*(M) there is a unique a: LanH(N)---> M with a= H*(a) o TJ. Using the universal 
property one easily establishes that Kan extensions are unique up-to-isomorphism-if 
they exist. 

A right Kan extension RanH(N): U)---> lE along H involves (natural) bijective cor
respondences 

M -+ RanH(N) in Fun(U), IE) 

H*(M) -+ N in Fun(c, IE) 
Below we are intereseted in distributive Kan extensions, where all categories and 

functors involved are distributive-including LanH(N) and RanH(N). These need not 
exist, see the discussion 6.4 later. 

First we spell out an example. A specification of stacks can be given with two 
atomic types a, for the parameter, and S(a), for the stack on a. These come together 
with function symbols 

nil: 1 -+ S(a) push: a x S(a)-+ S(a) pop:S(a)-> 1 +a x S(a) 



B. Jacobs I Parameters and Parametrization in Specification 237 

which satisfy the equations 

f- pop(nil) =1+axS(a) ..L 

a:a,s:S(a) f- pop(push(a, s)) = 11:1( (a, s)) : 1 +a x S(a) 

J1 x: 1 r-+ nil rt 
1.1 (a, s): a x S(a) r-+ push( a, s) lf (pop(z)) =s(a) z. z:S(a) f-

Let's write STACK(a) for this specification. It is not a Hagino specification. 
A model of such a stack in a distributive category consists of a diagram 

[nil push] 
I+AxS(A)' S(A) 

pop 

in which the two arrows are each other's inverse. Suppose we wish to describe a suitable 
form of initiality of such a model. The following two forms come to mind. 

(a) Unparametrized initiality. For each object S'(A) together with a commuting 
diagram 

[nil' push'] 
1 +Ax S'(A) ' S'(A) 

pop' 

there is a unique h: S(A) ---+ S'(A) making the two squares below commute. 

[nil push] 
1 +A x S(A) ' S(A) pop 

id+ id x h h 

[nil' push') 
1 +Ax S'(A) ' S'(A) 

pop' 

In this formulation we keep the parameter object A fixed. It says that for any other 
stack on A, there is a unique morphism to that stack. 

(b) Parametrized initiality. For each object B together with a morphism f: A---+ 
Band a stack on B, 

[nil' push') 
1 +Bx S'(B) ' S'(B) 

pop' 

there is a unique h: S(A) ---+ S'(B) such that the following diagram commutes. 

[nil push] 
1 +A x S(A) ' S(A) pop 

id+ f x h h 

[nil' push') 
1 +Bx S'(B) ' S'(B) 

pop' 

In this formulation we also allow variation in the object on which one has a stack. 
It is obvious that the parametrized formulation in (b) is more general than the 

unparametrized one in (a). After a moment's thought one sees that the version in (b) 
is what one wants: only (b) enables us to define such an elementary operation as length 



238 B. Jacobs I Parameters and Parametri=ation in Specification 

len:S(A) ~ N 

by taking in (b), B = 1, f =!:A__, l and as stack on l the isomorphism 

1 + (1 x N) 9:! N 

which follows from the isomorphism l+N 1~1 N. This yields a unique map len: S(A) __, N 
which satisfies, in functional notation, P 

len(nil) 

len(push(a, s)) 

0 

S(len( s)) 
{ 

J_ if pop( s) = J_ 
P(Jen( s)) = Jen(~'pop(s)) else 

where the latter equation follows from the first two. Such a length map does not arise 
from the unparametrized initiality in (a), since N is not a stack on an arbitrary object 
A. 

The reader may wish to verify that in the category of sets, the definition 

S(A) = A* = UnEN An 

yields an obvious isomorphism 

1 +A x S(A) 9:! S(A) 

which is initial in the parametrized sense (b). Of course there are other stacks on A in 
Sets. For example one can take finite plus infinite lists: A*+ AN, or also A*+ AN+ AN. 

We now try and capture this parametrized initiality more abstractly. We have 
an obvious parametrized specification if;: {o:} __, STACK( a) which sends a to a. It 
induces a functor Ct'( <,ii): Ct'( {a}) __, Cf(STA CK( a)) between the classifying categories, 
see Lemma 5.1. Thus we get a forgetful functor if;* = _ o Ct'( if;) from the category of 
STACK( a )-models to the category of {a }-models (in a fixed category IB), see Lemma 5.3 
(ii). A bit more concretely, <,ii* sends a STACK( a)-model 

STACK(B) = [1 +Bx S(B) ;::: S(B)] to B. 

Now let A be an object in IB; that is, a {a }-model or a distributive functor A: Cf( {a}) __, 
IE, see Theorem 5.6. The initial stack ISTACK(A) on A as described in (b) above 
satisfies the following property: for each other stack STACK(B) and each morphism 
f: A __, B = <,b*(STACK(B)), there is a unique morphism of stacks !STACK( A) __, 
STACK(B). Thus, parametrized initiality says that there is a bijective correspondence 

A ~ <,b*(STACK(B)) in Distr(Ct'( {o:} ), IB) 
ISTACK(A) ~ STACK(B) in Distr(Ct'(STACK(o:)), IB) 

which describes the initial stack !STACK( A) on A as the distributive left Kan extension 
along Ct'(<,1>). We can therefore write Lan<l>(A) = ISTACK(A). 

This description is at the right level of abstraction to be generalized. 

6.1. Definition. Let if;: (:Eo, Eo) __, (:E, £) be a parametrized specification and IB a 
distributive category; following the above description, <,ii induces a functor <,ii* = _ o 
Cf(<,b) from the category Distr(Ct'(:E,£), IB) of models of (:E,£) in IB to the category 
Distr( Ct'(:Eo, Eo), IB). 



B. Jacobs I Parameters and Parametrization in Specification 239 

(i) Let N: CT(I:o, l'o) -+ 1B be a (I:o, l'o) model. The 1>-initial model on N is the 

li_stributive left Kan extension Lanq,(N): CT(I:, £) -+ IB-if it exists. It comes equipped 
1r1 th (natural) bijective correspondences 

Lanq,(N) _____, M in Distr(CT(I:,£), IB) 

N -----> cf(M) in Distr(CT(I:0 ,£0), IB) 

C'he 1>-terminal model on N is the distributive right Kan extension Ran.p(Jv'): 
~ ( L:, £) -+ IB. 

(ii) A model K: CT(I:, £) -+ IB is called 4>-initial if it is ef;-initial on rj;'(K). Equiva

ently, if the induced counit s: Lan<t>( r/J' K) -+ K is an isomorphism. 
Similarly one defines rj;-terminal (I:, £)-models. 

(iii) We say that the specification morphism rjJ: (2::0 , £0) -+ (I:,£) has initial exten

•ions if for each (I:o, L'o) model N, the distributive left Kan extension Lan.p(N) exists. 

J ually, terminal extensions involves existence of all right Kan extensions. 

The above functor r/;' is often called a forgetful functor since usually 1> is an inclusion, 

;o that ef>*(M) has less structure than M. The terminology 'rP-initial / terminal on 

V' is often used in a sloppy way. In case <P is understood from the context, then it 

s often omitted. One also finds 'free' for 'initial' and 'cofree' for 'terminal'. Further, 

V sometimes serves as a specific model in the notation Lanq,(JV) and sometimes as a 

:> arameter. In the latter case <P has initial extensions and the assignment N r-+ Lanq, (N) 
~xtends to a left adjoint to qi•. 

'L 2. Examples. (i) The specification of groups described in Example 2.8 (ii) can be 

ieen as GROUP(a) parametrized by an atomic type a used for the underlying set; it 

n valves function symbols m: a x a -+ a, e: 1 -+ a and i: a -+ a. There is then an 

:> bvious morphism ef>: {a} -+ GROUP( a) of specifications. A model of {a} in Sets 

s just a set, say S. A model of GROUP(a) in Sets is a group G and <f;*(G) is the 

.1 nderlying set of G. The specification morphism <P has initial extensions: the left Kan 

'!xtension Lan<P(S) always exists and is the free group on S. It is determined by the 

::orrespondence between functions S-+ ef>*(G) and group homorphisms Lanq,(S)-+ G. 

The above Definition 6.1 captures free groups on objects in arbitrary categories

'Lnd not just in Sets. 
(ii) Earlier in Example 2.8 (iii) we saw a morphism of specifications MONOID -+ 

GROUP. It restricts to a morphism of specifications ef>: COMMONOID-+ ABGROUP 

::>etween commutative monoids and abelian groups; these both involve an additional 

:::ommutativity equation 

x: f!, y: f! \- m(x, y) = m(y, x): f! 

rhe functor efi* sends an abelian group G to its underlying commutative monoid c/>'(G). 
[ n the reverse direction, a left Kan extension exists. It sends a commutative monoid M 

t;o the free abelian group Lan<P(M) on M, which incorporates the monoid structure of 

M. Usually, Lan~(M) is called the Grothendieck group of M, and written as K(M), 
:;;ee e.g. [20]. There is the bijective correspondence between homorphisms M -+ <P*( G) 

:Lnd K(M) -+ G. 

Finally we come to our first theorem. It relates initial algebras of Hagino specifica

tions and left Kan extensions along the associated morphism of specification. 



240 B. Jacobs I Parameters and Parametrization in Specification 

6.3. Theorem. Consider an inductive Hagino specification E = (Su {X}, constr: <7--+ 
X) with a model A: S--+ IE of the atomic types S, in a distributive category a. Then 

a morphism <p = [constr]:T(A)11 (U)--+ U is initial T(A),,-algebra 

if and only if 

<p, as a model Ge(E) --+ IE, is the left Kan extension on A: CT( S) --+ 1E 
along S --+ E in 

ce(s) ---ce(E) 

\I 
Proof. Let's write the morphism of specification as </J: S--+ E. Another model 'lj;: CT(E) 
--+ IE can by Proposition 4.6 be identified with an algebra 'lj;: T(B),,(V) --+ V with 
B = q/(<p) as the model Ge(S)--+ IE of the atomic types. One has that r.p together with 
1J =id: A --+ A= </;*( cp) is left Kan extension if and only if for every f: A --+ B ::::::: </J*( 'lj;) 
there is a unique ]: r.p --+ 'lj; with J = <P*(]). This means, again by Proposition 4.6, 
that J is of the form (!:A --+ B, h: U --+ V) forming a commuting diagram ( *) as 
in 4.4. Thus we have shown that r.p is left Kan extension if and only if cp is initial 
in a parametrized sense (b) as in 4.4. By Lemma 4.5 the latter says that cp is initial 
T(A)11-algebra. D 

6.4. Discussion on distributive Kan extensions. In receiving categories IB with 
colimits (like Sets) one can compute left Kan extensions along H: C --+ [JI via the 
>a-called pointwise colimit 

Lan<P(N)(X) = l~ ((H ! X) ~ c .!i.. a) 
iee e.g. [19]. One has that the associated unit 1): N--+ H*LanH (N) is an isomorphism 
in case H is full and faithful. A dual formula exists for right Kan extensions. 

If we assume the above functors H and N are distributive, then there is no reason 
why the above pointwise colimit should yield the distributive Kan extension. Even 
worse, the distributive Kan extension need not exist at all, as the following simple 
example (due to Dominic Verity) shows. Consider the free distributive category Il = 
CT( {a}) on one object (see Example 3. 7) with finite polynomials E n;a; as objects. 
A distributive functor H: Il --+ Il is determined by its action on a e' Il. Thus we may 
identify such an H with a particular polynomial H = En;ai. A distributive functor 
n --+ Sets corresponds to a model A E Sets of {a}. The distributive left Kan extension 
of A along H should be a set Ao together with a bijective correspondence 

Ao ---+ B 

A ---+ En;B; = H*(B) 
i 

for every B E Sets. In particular, for B = 0, there is at most one function A --+ 0, 
whereas there may be many functions A --+ n0 = E n;0i (namely if n0 > 0). We 
conclude that such a distributive Kan extension Ao does not exist in general. 

It is open under which circumstances distributive Kan extensions do exist. 



B. Jacobs I Parameters and Parametrization in Specification 241 

In some cases however, the above pointwise formula(*) does give the right answer7 . 

Consider for example the Hagino specification LIST( a.) with constructor [nil, cons]: 1 + 
a. x. list( a.) -+ list( a). There is an obvious morphism of specifications ef;: {a} -+ LIST( a) 
which sends a to a.. It induces a functor Cf(ef;):Cf({a.}) = n-+ Cl(LIST(a)). The left 
Kan extension of an {a}-model A E Sets along Cf(ef;) at list(a) E Cl(LIST(a.)) is 
according to the formula ( *) the colimit of the diagram in Sets resulting from all 
possible 

list( a) 

By the requirement that all these triangle commute, this can be cut down to 

Thus in Sets we have to take the colimit A* in 

0--+ 1--+ 1 +A--+ 1 +A+ A2 --+ ···--+A* 

Hence the pointwise construction ( *) yields the right result in this case. 
In the last chapter of [29] one finds the Generalized Todd-Coxeter Procedure (due 

to Carmody and Walters) which computes left Kan extensions in Sets. It takes finite 
descriptions (in terms of graphs and relations) of categories and functors as input and 
produces the left Kan extension L together with the universal natural transformation. 
The procedure terminates if and only if each LX is a finite set. There is an implemen
tation. It remains to be investigated to what extend this procedure can be adapted 
meaningfully to the above situation and compute extensions in the case of parametrized 
specifications. 

7 Models with parameters 

The universal property of the natural numbers (as described in 3.9 (ii)) says in informal 
notation, that for each a: Y and g: Y-+ Y, there is a unique h: N -+ Y with 

hO =a and h(Sn) = g(hn) 

More useful is a version with parameters: for each parameter set (or object) I with 
f: I -+ Y and g: Ix Y -+ Y, there is a unique h: Ix N -+ Y with 

h(i,O)=fi and h(i, Sn)= g(i, h(i, n)) 

For example, using this version with parameters, one can define addition by taking 

7This happens for example when the specifications involved are algebraic and the receiving category 

has all colimits which are preserved by functors Ix (-). 



242 B. Jacobs I Parameters and Parametrization in Specification 

I= N, Y= N, J(m) = m, g(m,n) =Sn 

Categorically, these 'natural numbers with parameters' are given in a (distributive) 
category IB by a diagram 

l~N.2.+N 

such that for each parameter object I E IB and for each f: Ix 1 -+ Y and g: Ix Y-+ Y, 
there is a unique h: I x N -+ Y making the following diagram commute. 

I x 1 id x O I x N id x S I x N 

(7r, h/ 

Ixl IxY~IxY 
(7r, JI (7r, g/ 

We have written f: I x 1 -+ Y instead off: I-+ Y to make things come out nicer. 
This universal property can best be described in what we call the 'simple slice 

category' 18// I associated with IB. 

7.1. Definition. (i) For a category IB with binary products x and an object I E IB, 
the simple slice category 18// I has 

objects X E IB 
morphisms X -+ Y in IB// I are morphisms I x X -+ Y in IB 

rhe identity X -+ X in IB// I is the second projection 7r1: I x X -+ X and composition 
>f f: X -+ Y and g: Y -+ Z in IB// I is 

g • f =go (7r, JI: Ix X ---+Ix Y---+ Z 

We shall often write this fat dot • for composition in simple slices, to distinguish it 
from composition o in IB. 

(ii) Each object I E 18 determines a functor I*: IB-+ IB// I by 

X 1-+ X and f 1-+ f o 7r 1 

An important observation is that initiality with parameters of 1 ___'!._, N ~ N is 
. 1 .. t. l"t f h d. 1 J"(o) N I"(S) N . h . l 1. llJ Th. ·11 precise y im ia 1 y o t e iagram ---+ ---+ m eac s1mp e s ice JB11 • 1s w1 

be generalized below. But first we nee,<l to take a closer look at these simple slices. 

7.2. Lemma. Let IB be a category with finite products. 
(i) The simple slice 18//1 over the terminal object 1 E IB is isomorphic to IE. 

(ii) Each simple slice 18// I has finite products and I*: IB-+ IB// I preserves them. 
(iii) If IB is a distributive category, then so is every simple slice IB// I. Moreover 

I*: IB -+ 18// I is then a distributive functor. 
(iv) IB is cartesian closed if and only if each I*: IB-+ IB// I has a right adjoint I=> (_). 

Such a right adjoint necessarily preserves finite products, but need not preserve finite 
coproducts. 

( v) There is a full and faithful functor IB// I -+ IB/ I from the simple to the ordinary 
slice, given by X 1-+ [7r: Ix X-+ I]. 



B. Jacobs I Parameters and Parametrization in Specification 243 

Proof. (i) Since 'JJ//l(X, Y) 2:! IB{l x X, Y) 2:! IB(X, Y). 
(ii) The object 1 E B//J is terminal, because B//l(X, 1) 2:! B(J x X,l), which is a 

singleton. 
Similarly, the product of X, YE rs// I is X x Y, since 

UJ//l(Z, X x Y) = IB(I x Z, X x Y) 
2:! IB(I x Z, X) x '8(! x Z, Y) 

= 'JJ// l(Z, X) x s// J(Z, Y) 

(iii) The initial object 0 E UJ is also initial in B// I, since B// l(O, X) 2:! B(J x 0, X) 2:! 

B(O, X), which is a singleton. Here we use the isomorphism 0 2:! I x 0 from (a) in 
Definition 3.1 (i). 

Also the coproduct is inherited from B using the distributivity in (b ): 

B//I(X + Y, Z) = s(I x (X + Y), Z) 
2:! IB((I x X) +(I x Y), Z) 
2:! IB(I x X, Z) x IB(l x Y, Z) 
= B//l(X, Z) x B/Jl(Y, Z). 

(iv) A right adjoint I=> (_) to !*-if it exists-must satisfy 

B(X, I=> Y) 2:! B//I(l*(X), Y) = '8(! x X, Y) 

which makes it satisfy the requirements of an exponent functor. 
(v) Easy. D 

7 .3. Remarks on simple and ordinary slice categories. There is a great simi
larity between simple slice categories JE// I and ordinary slice categories B/ I. In fact 
this is our motivation for calling these categories B// I slices as well. 

In general, one can describe what it means for an object I in a category B to 'adjoin 
an indeterminate' x: I in the form of an arrow x: 1 --+ I to UJ. Such a description involves 
a univeral property of a functor from '8 to the thus extended category JE(x: I], see [18]. 
For particular categories, this functor IB --+ IB[x: I] can be identified concretely. It is 

• I*: B --+ B// I for categories 18 with finite products; 
• [•: B--+ B/ I for categories IS with finite limits. 

We conclude that simple and ordinary slice categories arise in similar ways. Further, 
the simple slice IB// I is the Kleisli category of the comonad I x (_): IB --+ B, wheras the 
ordinary slice B/ I is the Eilenberg-Moore category of this comonad. Thus for a specific 
(lax) diagram, 'JJ// I is the colimit and B/ I is the limit. 

In general, the assignment I 1-1- B[x: J] extends to an indexed category J5"P --+ Cat, 
using the universal property of!BI--+ B[x: J]. By applying the Grothendieck construction 
one obtains a fibration with IB as base category. In the particular case of IB being a 

B__,. 

l 
B 

category with finite limits, one obtains the codomain fibration . And for 
s(s) 

B with finite products, this leads to what we call the simple fibration l on JE. 
Codomain fibrations are essential for the categorical description of depen!ent type 
theories (see [25]), whereas simple fibrations are used for simple type theories (see (16]). 
More information can be found in [12]. 

The role which ordinary slices play for categories with finite limits is played by 
simple slices for categories with finite products. Completely analogous to the above 
result (iv) that a category JE with finite products is cartesian closed if and only if each 



244 B. Jacobs I Parameters and Parametrization in Specification 

/': IB-+ IB// I has a right adjoint I=> (_),one has that a category IB with finite limits is 
cartesian closed if and only if each functor J*: IB -+ IB/ I has a right adjoint TI1· 

The approach below deals with 'simple' parameters in simple slices B// I. It extends 
in an obvious way to 'dependent' parameters in ordinary slices IB/ I. But note that IB/ I 
need not be distributive if B is. The appropriate coproducts one needs here are called 
universal. 

Perhaps as a warning we should add that the notation IB// I is sometimes used for 
the 'lax comma category' of a 2-category !B. Its objects are morphisms cp: X -+ I in IB 
and its morphisms are diagrams 

X-Y 

~=>r 
I 

We can now say that a model of a specification (E, E) in IB with parameter I E B 
is a distributive functor M: ce(E, E) -+ B// I; that is, a model of (E, E) in the simple 
slice IB// I. But in order to get the right notion of initiality with parameters we extend 
Kan extensions to 'Kan extensions with parameters'. The definition is like for natural 
numbers with parameters: upon application of /*: IB -+ IB// I one requires initiality (or 
extension, as below). 

7.4. Definition. Consider functors H: C -+ ][)) and .N': C -+ !B. A left Kan extension 
with parameter I E IB of N along H is a functor .C: ][)) -+ B together with a natural 
ransformation 'f/: N -+ H*(C) = .CH such that /* [, with /*'f/: I* .N' ---+ I* .CH in B// I 

left Kan extension of I*.N' along H. This means that for each functor M: ][))-+ B// I 
th a: I*N-+ H*(M) in B// I, there is a unique a: J*.C-+ M with 

l*N ~ /*.CH fill. MH is I*.N' ~ MH 

n a diagram, 
IC H ][)) 

~yJ 
H*(M) =MH ~ IB ~ M 

\1· 
B//1 

Notice that for I = 1 we get the ordinary notion of Kan extension. 

7.5. Definition. Consider a parametrized specification c/J: (E0 , £0 ) -+ (E, E) and a 
distributive category B. The cf;-initial model with parameters on .N': ce(Eo, £0 ) -+ Ill\ 

is a distributive functor .C = Lanr,0(.N'): ce(E, E) -+ B which is left Kan extension with 
parameter I along ce( c/J ): ce(E0 , E0 ) --+ ce(E, E), for every object I E !BI. 

What we'll do below is give an appropriate extension of Theorem 6.3 with parame
ters. The above definition applies to arbitrary specifications and hence to Hagino spec
ifications in particular. This special case is studied by Cockett and Spencer [5, 6, 27] 



B. Jacobs I Parameters and Parametri:ation in Specification 245 

in terms of so-called strong functors. In the remainder we show that their notion of 
model with parameters (or 'strong' model as they call it) is a special case of the above 
one. 

7 .6. Definition. An endofunctor T: lE -+ IB on a category JE with finite products is 
called strong if it comes equipped with a strength natural transformation with com
ponents 

st1,x: Ix TX----+ T(I x X) 

making the following two diagrams commute. 

Ix TX --21...r(J x X) Ix (J x rxf~1 x T(J x X)B__T(I x (J x X)) 

al I T(a) ~ T(,') 

TX (Ix J) x TX ---~st'------T((I x J) x X) 

where a is the obvious isomorphism ( ( 7r, 7r o 7r'), 71" 1 o 7r'). 

Here we talk about strength for an endofunctor lE -+ lB on a category IB with finite 
products. More generally, strength can be defined in terms of a monoidal structure on 
IE. The notion of a strong monad is crucial in [24]; it is a monad whose underlying 
functor is strong in such a way that the strength map is compatible (in a suitable sense) 
with the unit and multiplication. 

The next lemma gives a useful result about strong functors; for more information, 
see Remark 7.14. 

7. 7. Lemma. A strong functor T: lB -+ lB extends for every I E lE to a functor 

T II I: JEii I ----> IBll I 

which is strong again. 

In Remark 7.14 below one finds a sharper version of this result. It shows that one 
can take the above extension to be the defining property of strong functors. 

Proof. One defines T II I by 

x H TX 

Ix x __!__. y H Ix TX ~ T(I x X) !1. TY 

By the first diagram in Definition 7.6 one has that T II I preserves identities; by the 
second diagram it preserves composition. This is a bit subtle: 

TllI(g) • Tiil(!) Tg o st o (7r,Tfost) 

= 

= 
= 
= 

Tg o st o idxTJ o (7r,st) o idX7r1 o (7r,id) 

Tg o T(id x J) o st o id x st o (7r,id) 

by naturality of st 

Tg o T(idxfoa- 1) o Ta o st o id x st 0 (7r, id) 

Tg o T(id x f o a- 1) o st o a o (7r,id) 

Tg o T(idxfoa- 1 ) o st o 8xT(id) 

Tg o T( id x f o a- 1 o 8 x id) o st 

Tg o T((7r,J)) o st 

Tll I(g • J) 



246 B. Jacobs I Parameters and Parametrization in Specification 

As strength map for T//I one has I*(st) = st o 7r1 • D 

It is easy to see that the composite IB 9'! IB//1 '!.!4 IB//1 9i IB is equal to T: IB _, IB. 

7.8. Lemma. On a distributive category IB, identity functors and constant functors 
are strong. Moreover, if T, S: IB-> IB are strong, then so are 

Y f-> T(Y) x S(Y) and Y f-> T(Y) + S(Y). 

Proof. The identity functor has the identity natural transformation as strength. A 
constant functor has the second projection as strength. As strength for Y f-> T(Y) x 
S(Y) one has 

Ix (T(Y) x S(Y)) (idX7r,idX7r')u x T(Y)) x (Ix S(Y))s~T(I x Y) x S(I x Y) 

and for Y 1--+ T(Y) + S(Y) one has 

Ix (T(Y) + S(Y)) ~ (Ix T(Y)) +(Ix S(Y)) st + st T(I x Y) + S(I x Y). 
D 

7.9. Corollary. Each polynomial functor T(A)a: IB-> IB as in Definition 4.2 is strong. 

The following definition contains a compact formulation of a notion used by Cockett 
and Spencer in their description of Hagino specifications with parameters. 

7 .10. Definition (See [5, 6, 27]). An algebra i.p: TU-> U for a strong functor T: IB _, 
is called strongly initial if for each I E IB, one has that I* ( tp) is an initial algebra 
r T //I: IB// I _, IB// I. 

There is of course a dual notion of strongly terminal coalgebra. 

If we spell out strong initiality of tp: TU _, U as described above, then we come to 
the formulation used by Cockett and Spencer. It means that for each parameter object 
I E IB and for each '!/J: I x TV _, V in IB, there is a unique h: I x U _, V making the 
following diagram commute. 

Ix TU (7r, st) I x T(I x U) id x Th I x TV 

id x 'P 

Ix U----~h~----V 

The fact that 'strong initiality' is a special case of our 'initiality with parameters' 
crucially depends on the following observation. 

7.11. Lemma. Assume a set S of atomic types, plus a type variable X and a type 
a E S U { X}. A model A: S -> IB gives rise to a strong functor T( A )a: Ill\ _, Ill\ and thus 
by Lemma 7. 7 to a functor T(A)cr// I: Ill\// I __. IB// I (for each I E IB). 

But since A extends to a model I* A: S -> Ill\// I we get by the construction in Defi
nition 4.2 an endofunctor on IB// I; it is written as T(I* A)": IB// I _, IB// I. One has that 
these two functors are equal, i. e. 



B. Jacobs I Parameters and Parametrization in Specification 247 

T(A)u// I= T(I* A)u· 

Proof. By induction on u. Let's do the case u = a1 x a2• It's obvious that the two 
functors act identically on objects. Assume f: X - Y in B// I (i.e. f: I x X - Y in 
Ill\). Then 

T(I* A)u1Xu2U) 
= T(l*A)u,(f) x T(I*A)u2U) 
= T(I* A)u, (!) x T(I* A)u2U) 0 (id x 7r, id x 7r1) 

= T(A)ui!! J(f) x T(A)u2!! I(f) 0 (id x 7r, id x 7r1) 

= T(A)u1U) x T(A)u2U) 0 st x st 0 (id x 1r,id x 7r1) 

= T(A)u1 xu2 (f) o st 

= T(A)u1Xo2//J(f). 

(in IBI// I) 
(in IBI) 
(by IH) 

0 

7.12. Theorem. Let :E =(SU {X}, constr: a - X) be an inductive Hagino specifica
tion. Then a model of :E in a distributive category Ill\ is initial with parameters on S 
if and only if the interpretation of constr is a strongly initial algebra for the induced 
polynomial functor on 111. 

There is a similar result for strong terminal models of co-inductive Hagino specifi
cations. 

Proof. Assume a model of :E in IB, given by a model A: S - IB, U E IB of SU {X} and 
an algebra cp = [ constr ]: T(A)u(U) - U. Then 

cp is initial with parameters 

~ for each I E 111, cp is left Kan extension with parameter I 

~ for each I E IB, I*(cp) is left Kan extension 

~ for each I E IBI, l*(cp) is initial algebra of T(I* A)u 

~ for each I E IB, l*(cp) is initial algebra of T(A)a//I 

~ cp is strongly initial algebra of T(A)a. 

The following result can also be found in [5]. 

7.13. Lemma. Let Ill\ be a distributive category and T: 111 - 111 a strong functor. 
(i) Any terminal coalgebra X - TX is automatically strongly terminal. 

0 

(ii) In case Ill\ is cartesian closed, then every initial algebra T X - X is strongly 
initial. 

Proof. (i) Suppose cp: TX - X is a terminal coalgebra. For a map 7/J: Ix Y - TY 
we seek a unique h: Ix Y - X with cp oh= Th o st o (7r, 7/J). Let 7/J' be the coalgebra 
I x Y - T(I x Y) given by 7/J' = st o (7r, 7/J). There is then a unique morphism of 
coalgebras 7/J' - cp, which is as required. 

(ii) Let cp: TX - X be initial T-algebra. Given 7/J: Ix TY - Y, we seek a unique 
h: I x X - Y with '1j! o id x Th o (7r, st) = h o id x cp. There is an algebra 
1/J': T(I => Y) - (I=> Y) obtained by abstraction from the composite 

Ix T(I => Y) (7r, st} Ix T(I x (I=> Y))id x T(ev) Ix TY 7/! y 

One obtains a unique k: X - (I=> Y) forming a morphism of algebras cp - 7/J'. Then 
h = ev o id x h: I x X - Y is as required. O 



248 B. Jacobs I Parameters and Parametrization in Specification 

In particular, we have that initial algebras / terminal coalgebras in sets, posets or 
bottomless dcpo's are always strongly initial / terminal. 

A result like in (ii) can also be proved for algebraic specifications: a model M of 
an algebraic specification (L:, £) in a cartesian closed category IB (i.e. a finite product 
preserving functor M: Cfa(E, £) -+ IB) is initial if and only if it is initial with parameters. 
For the only-if-part, consider a model N: Cfa(I.;, £) -+ '8// I in the simple slice over I. 
It gives rise to a model in IB, 

where I => (-) is the right adjoint to I* given by exponentiation, see Lemma 7.2 
(iv). Note that I => N preserves finite products again and is thus a model of (E, E) 
in B. There is an isomorphism between natural transformations J*(M) -+ N and 
M -+ (I => N); but M is initial among models in IB// I. That is, M is initial with 
parameters. 

This argument does not work for distributive functors, since I => N need not be 
distributive if N is. 

s(11) 
7.14. Remarks on strength. Recall the simple fibration l arising from If-+ 'iE// I 
as described in Remark 7.3. One can show that there is a tijective correspondence 

s(e) s(e) 
between strong functors 'f& -+ IB and fibred functors l -+ l . The latter are 

II Ill 
functors S: s('f&) -+ s(IB) for which one has a commuting triangle 

s('iE) __$___. s(IB) 

\/ 
and which preserves cartesian morphisms8 . This tells us that strong functors are func
tors which are appropriately defined in each context-and not functors which are en
riched; this is something completely different. A comparable result is that IB has dis
tributive coproducts (i.e. coproducts which are appropriately defined in each context, 

s(B) 
i.e. satisfying (a)+(b) in Definition 3.1 (i)) if and only if the simple fibration l has 

B 
fibred coproducts. For more information on these fibred concepts, see e.g. [15]. 

The above Theorem 7.12 says that the concept of a strong functor is not necessary 
for the description of Hagino specifications with parameters. After all, Definition 7.5 
does not involve any strength. What it does involve (implicitly) is an appropriate 
description in every context: a model £: Cf(E, £) -+ IB which is Kan extension with pa
rameters corresponds to a 'fibrewise' model consisting of a collection of Kan extensions 
£ 1:Cf(L,,£)-+ !Bf/I in each fibre over I, which are preserved by reindexing functors 
u*: Bf/ J -+ Bf/ I for u: I -+ J (i.e. u• o LJ ~ .C1 ). 

Acknowledgements. I wish to thank Robin Cockett, Peter Knijnenburg and Dominic 
Verity for helpful discussions. Special thanks to Horst Reichel for spotting a mistake 
in an earlier version. 

8 A similar result exists for strong monads (as used in [24]); it is generally attributed to Plotkin. 



B. Jacobs I Parameters and Parametri:ation in Specification 249 

References 

[l] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly con
strained parameters. Inf & Contr., 52:139-158, 1982. 

[2] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distribu
tive categories. Journ. Pure Appl. Algebra, 84(2):145-158, 1993. 

[3] J.R.B. Cockett. Introduction to distributive categories. Math. Struct. Comp. Sci., 
3:277-307, 1993. 

[4] J.R.B. Cockett and T. Fukushima. About charity. Technical Report 92/480/18, 
Dep. Comp. Sci., Univ. Calgary, 1992. 

[5] J.R.B. Cockett and D. Spencer. Strong categorical datatypes I. In R.A.G. Seely, 
editor, Category Theory 1991, volume 13 of CMS Conference Proceedings, pages 
141-169. AMS, 1992. 

[6] J.R.B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for 
categorical programming. Manuscript, 1992. 

[7] R.L. Crole and A.M. Pitts. New foundations for fixpoint computations: Fix
hyperdoctrines and the fix-logic. Inj. & Comp., 98(2):171-210, 1992. 

[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and 
Initial Semantics, volume 6 of EATCS Monographs. Springer, Berlin, 1985. 

[9] T. Hagino. A categorical programming language. PhD thesis, Univ. Edinburgh, 
1987. 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 
[16] 

[17] 

[18] 

[19] 
[20] 
[21] 

T. Hagino. A typed lambda calculus with categorical type constructors. In D.H. 
Pitt, A Poigne, and D.E. Rydeheard, editors, Category and Computer Science, 
number 283 in Leet. Notes Comp. Sci., pages 140-157. Springer, 1987. 
C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ. 
Edinburgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ. DAIMI 
Techn. rep. PB-462. 
C. Hermida and B. Jacobs. Fibrations with indeterminates: Contextual and func
tional completeness of polymorphic lambda calculi. Book of Abstracts of Category 
Theory and Computer Science 5, 13-17, September 1993. 
J.M.E Hyland. First steps in synthetic domain theory. In A. Carboni, M.C. 
Pedicchio, and G. Rosolini, editors, Como Conference on Category Theory, number 
1488 in Leet. Notes Math., pages 131-156, Berlin, 1991. Springer. 
J.A Goguen and R. Burstall. Institutions: Abstract model theory for specification 
and programming. Journ. ACM, 39(1):95-146, 1992. 
B. Jacobs. Categorical Type Theory. PhD thesis, Univ. Nijmegen, 1991. 
B. Jacobs. Simply typed and untyped lambda calculus revisited. In M.P. Fourman, 
P.T. Johnstone, and A.M. Pitts, editors, Applications of Categories in Computer 
Science, number 177 in LMS, pages 119-142. Cambridge Univ. Press, 1992. 
H. Kaphengst and H. Reichel. Operative Theorien und Kategorien von operativen 
Systemen. In H.J. Boehnke, editor, Studien zur Algebra und ihren Anwendungen, 
pages 41-56, Berlin, 1972. Akademie-Verlag. 
J. Lambek and P.J. Scott. Introduction to higher order Categorical Logic, volume 7 
of Studies in Adv. Math. Cambridge Univ. Press, 1986. 
S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971. 

S. Lang. Algebra. Addison Wesley, 2nd rev. edition, 1984. 
F.W. Lawvere. Functorial semantics. Proc. Nat. Acad. Sci. USA, 50:869-872, 

1963. 



250 B. Jacobs I Para.meters and Parametrization in Spe.cijication 

[22] D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic 

approach. Math. Systems Theory, 14:97-139, 1981. 
[23] E.G. Manes and M.A. Arbib. Algebraic Appoaches to Program Semantics. AKM 

Theor. Comp. Sci.,. Springer, Berlin, 1986. 
[24] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55-92, 1991. 

[25] R.A.G. Seely. Locally cartesian closed categories and type theories. Math. Proc. 
Cambridge Phil. Soc., 95:33-48, 1984. 

[26] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain 

equations. SIAM Journ. Comput., 11:761-783, 1982. 
[27] D.L. Spencer. Categorical programming with functorial strength. PhD thesis, 

Oregon graduate inst. of Sci. & Techn., 1993. 
[28] R.F.C. Walters. Data types in distributive categories. Bull. Austr. Math. Soc., 

40:79-82, 1989. 
[29] R.F.C. Walters. Categories and Computer Science. Carslaw Publications, Sydney, 

1991. Also available as: Cambridge Computer Science Text 28, 1992. 

[30] R.F.C. Walters. An imperative language based on distributive categories. Math. 

Struct. Comp. Sci., 2:249-256, 1992. 


