Fundamenta Informaticae 24 (1995) 209-250 209
[0S Press

PARAMETERS AND PARAMETRIZATION IN SPECIFICATION, USING
DISTRIBUTIVE CATEGORIES

Bart JACOBS
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract. A specification, as we shall use it here, consists of a sig-
nature together with a collection of (non-conditional) equations; these
equations involve terms in the ‘distributive type theory’ which is built
on top of the signature. This type theory has finite product (x,1) and
coproduct (+,0) types. Particular simple examples of such specifications
are Hagino specifications, which are used to describe inductively defined
types. Models of specifications are described in arbitrary distributive
categories.

In a more categorical approach, one describes models as structure pre-
serving functors. It enables us to define in general what are (a) models
of parametrized spefications (in terms of Kan extensions) and (b) mod-
els with parameters (in terms of so-called ‘simple slice’ categories). It
is shown that in the special case of Hagino specifications, these general
definitions specialize to ones in terms of algebras or coalgebras for asso-
ciated ‘strong’ polynomial functors. Models with parameters of Hagino
specifications were described earlier by Cockett and Spencer.

1 Introduction

Computer scientists have introduced many more data types, like stacks or queues,
than the ones which are traditionally used by mathematicians, like groups or rings or
vector spaces. A specification is taken here to be a linguistic description of such a data
type. Early semantical studies of specifications—see for example [8] for an overview—
are based on universal algebra. Often these are single-sorted, or single-typed, as we
shall say. Category theory is sometimes used, but mostly in a superficial way. Here
we intend to use categorical tools properly: we think category theory provides the
appropriate framework to study data types. In set theory one proves a result by
‘opening sets’ and reasoning with their elements. A bit provocatively, one reasons from
an implementation. In contrast, arguments in category theory mostly rely on universal
properties which characterize the objects under consideration. This involves reasoning
from a specification (used in an informal sense here, not as defined formally below).
The latter approach is closer to the way one operates in computer science.

In this paper we restrict ourselves to equational specifications over a distributive
type theory. These are both expressive and simple enough to illustrate the categorical
approach. Such a distributive type theory involves finite product (x,1) and coproduct
(+,0) types. Especially it involves a lift operation 1+ (.) on types which can be used to
express partiality of terms. Also, one can use coproduct types + to express overloading.

Bob Walters [28, 29] started describing data types in distributive categories—which
are categories with finite products and coproducts satisfying a certain distributivity
property, see Definition 3.1 below. Since specifications are linguistic objects written

210 B. Jacobs | Parameters and Parametrization in Specification

in some type theoretic language, we think it is better first to describe the relevant
syntax and describe Walters’ examples as models in distributive categories. Therefore
we start in the next section with distributive type theory. Models are then described in
the category Sets of sets and functions; they involve assignments of sets to atomic types
and of actual functions to function symbols, in such a way that given equations hold.
Later the interpretation is extended to arbitrary distributive categories. The picture of
models we give at this stage is still rather traditional and much in line with universal
algebra. We have a first question at this point. So-called Hagino-specifications are very
simple specifications that are used specifically to define a type o(X), either inductively
via a constructor constr: o(X) — X or co-inductively via a destructor destr: X — o(X).
Models of these can be described as algebras or coalgebras of a polynomial functor
associated with o. It is a priorsi not clear that such a description coincides with the
traditional picture that we just mentioned.

To tackle this problem appropriately we need to know what a model is of a parame-
trized specification—since a Hagino specification is parametrized by the set of atomic
types which occur. There is a neat approach to the semantics of parametrized spec-
ifications using Kan extensions. In order to exploit this categorical notion, we need
an alternative description of models as certain functors. It is the functorial semantics
of Lawvere. It will be shown how a ‘traditional’ model of a specification corresponds
to a certain functor from what is called the classifying category of the specification.
With these tools we can show in Theorem 6.3 that the (co)algebra semantics of Hagino
specifications is the same as the traditional semantics. This answers our first question
and fills a gap in the literature.

A second question involves models with parameters. Cockett and Spencer [5, 6, 27]
give a concrete description of what it means for an algebra of a strong functor to be
initial with parameters. We ask ourselves whether there is a general notion of ‘model
with parameters’ for arbitrary specifications, which specializes for Hagino specifications
to the one of Cockett and Spencer. We give an affirmative answer in Section 7, see
especially Theorem 7.12, making essential use of what we call ‘simple slice’ categories
BJI.

The weight of this paper lies in the last two sections 6 and 7. The sections 2 - 5
contain preparatory expositions and some results, which we believe are mostly folk-
lore. However, it is hard—if not impossible—to find all the material in the literature.
Readers who feel comfortable with the description of a specification as a signature
together with a set € of equations, and of a model of this specification (£,£) in a
distributive category B as a distributive functor C4(%, £) — B from the classifying (or
free distributive) category of (Z,&) to B, may wish to skip much of these sections 2 -
5.

There are only few categorical prerequisites necessary to follow the main lines of the
expositions. But there are some side remarks (like 5.7, 7.3 or 7.14) which do involve
more advanced category theory. There are no deep results; the paper is of a more
expository nature.

2 Syntax

In this section it will be explained what a distributive signature is and how it gives rise
to a distributive type theory (in which one has finite product and coproduct types).
Further, one finds a description of equational logic in such a setting.

B. Jacobs | Parameters and Parametrization in Specification 211

Let S be a set, elements of which will be seen as a

write S for the closure of S under finite products (1
S is the least set satisfying

tomic or basic types!. We shall
, %) and coproducts (0, +). Thus

SU{L,0}SS and 0,7€5 = (ox7),(c47) €T

where 1 and 0 are (new) symbols for the empty product and coproduct. They can be
understood as §1ngleton and empty set. Elements of S will be called types.
For a function f:S — T there is a corresponding function F:S = Thy

f(s)=f(s), forses f)y=1 foy =0
flox7)=TF(o) x F(r) fle+7)=TF(0)+7(r)

‘In this way we obtain a functor (_) from the category Sets of sets and functions to
itself (i.e. an endofunctor on Sets)

2.1. Definition. (i) A distributive signature T (or just a signature, in this paper)
consists of a set S of basic types together with sets of function symbols F:o — T’,
where 0,7 € S. Formally £ consists of a pair (S, F) where F is an indexed collection
{For}ores of sets of function symbols. We write F:o — 7 for F € For. A signature
will be called single-typed (or single-sorted) if its set of basic types is a singleton.

(ii) A morphism of signatures from (S, F) to (T, G) consists of a function ¢: S —
T together with an indexed collection of functions ¢, ,: F,, — S0).3r) Using the
same symbol ¢ here is convenient: one has '

Fio — 7in (S,F) = ¢(F): (o) — @(7) in (T,G)

In this way one obtains a category of signatures, which will be written as Sign.

The notion of morphism of signature used above is a very restricted one: atomic
types are mapped to atomic types (and not to arbitrary types) and function symbols
are mapped to function symbols (and not to arbitrary terms, see below). A category
without such restrictions can be obtained as a Kleisli-category on the above category
Sign, see Remark 5.7 (ii). We won’t need this extra generality because essentially all
morphisms ¢: & — ¥’ of signatures that we consider will be inclusions.

What we call a ‘distributive signature’ is called a ‘distributive graph’ in [30].

2.2. Examples. (i) Any set S (of atomic types) forms a signature with no function
symbols. This signature will also be denoted by S. Further, there is a direct corre-
spondence between functions f: S — T and signature morphisms f: S — T. This gives
a full and faithful inclusion functor Sets — Sign.

(ii) Let S be a set (of atomic types again) and X be a symbol not in 5, which serves
as type variable. A Hagino signature (after [10, 9]) has SU{X} as atomic types and
one function symbol, namely, either

constrrg — X or destrr X — o

where o is a type in the closure S U {X } of SU{X} under finite product and coproduct
types. Thus X may occur in o, which may be made explicit by writing ¢(X) instead
of o. In the first case we speak of an inductive Hagino signature and of the function
symbol constr as a constructor. In the second case the signature will be called co-
inductive and destr will be called a destructor.

1\We use ‘type’ for what is sometimes called ‘sort’.

212 B. Jacobs | Parameters and Parametrization in Specification

In case ¢ is of the form oy + - - - + 0, the constructor constr may be understood as
an n-tuple of function symbols constr;: o; — X. Dually, if o is of the form oy x - -+ x 7,
the destructor destr corresponds to an n-tuple destr;: X — ¢;. This will become clear
once the associated term calculus is described below.

Examples of Hagino signatures are

14X — X for natural numbers
1+axX — X for lists of type a
X - axX for streams (or infinite lists) of type «

These examples will be further worked out in due course.

(iii) There are obvious morphisms of signatures from S in (i) above to (S U {X},
constr:g — X) and to (SU{X},destr: X — o) in (ii). Later we shall understand this
as expressing that the set S of atomic types ‘parametrizes’ the latter two signatures.
For example, in the last two examples in (ii) one has § = {a} as parameter signature.

Next we describe how a signature & as described above forms the basis of a term
calculus which we call distributive type theory. Its sequents have the form

'-M:o

expressing that term M is of type ¢ € 5 in context T, consisting of variable declarations

Z1:01,...,%n: 0n. These contexts I' will be written as sequences (with an order), but

its assignments r;: 0; may be permuted freely. We shall write M[N/z] for the result
»f substituting a term N:7 for a variable z:7 in M. As the two most important rules
ne has context projection and application of functions symbols.

'M:o
T1:01, .., Zp:0, F ;05 T+ F(M):T

(for F:0 — 7in X)

Further, there are rules for forming finite tuples and projections of terms

I'rM:0o '+N:7 F'+PoxT PFPoxrT

T+ (M,N):oxr T +F1P.o TFopr L PO

with conversions

'FM:0 T FN:7T Mo C'FN:7

TFn(M,N)=M:0o FFa'(M,Ny=N:7

F'FPoxrT '+ M:1

P F(rPr'P)=Pioxr _l;_}-—l\/—f=_()—1

And similarly one has rules for finite cotuples and coprojections.
'-M:0o ' -N:7

F'FPo+r Lz:o b Q:p C,y:7 - R:p

red 57 0 e L0k ()

B. Jacobs | Parameters and Parametrization in Specification 213

The variables = and y are bound in Q and R in the ‘case’ term {l oo QR (P)

YT ’
It can be ugdgrstood as follows. Look at P:o + 7; if P is in o, then do Q with P for
x; else if Pis in 7, do R with P for y. This explains the conversions

'kM:o Lo FQip Ly:mFR:p

ced 50 7 % Boan = quasap

I'N:7 Izio FQ:p Cyy:7 F Rip

rkﬂziijg (#'N) = R[N/y):p

'kFPio+7 Izzo+7kFRp

: — <
re{ e 2 R b= rer
[2z20 - M:p
z0FM={}:p
We thus understand {} as the unique ‘value’ of the empty function 0 — p.
These conversion rules induce a conversion relation = on terms, which is the least

equivalence relation containing the above conversions, and which is compatible with
the term forming operations.

2.3. Notation and examples. For a function symbol F:0y X+ X0, — T We write
110y, ., IO FF(Ty,. T T

instead of the formally correct
Z1:01,. ., Enion FF({zh, .., 20))iT

As a special case, for n =0 and F:1 — 7 we simply write
FEr for FE):T

In distributive type theory one has boolean logic built in. We write B=1+1 for
the type of booleans; it comes equipped with two constants

fF e o()):B and tt ¥ K(():B

for false and true. For a boolean term (or formula) I' F ¢:B we define its negation
' b —p:B to be

def z:l — tt
= {]yzl — ff I}(ap)
Obviously —ff = tt and —tt = ff. Also -~ =, which follows using Lemma 2.4 below.
For boolean terms I' F ¢, %: B, one can define their conjunct by

z:1 — ff
Jor o {507 Thw b0

ony ¥

214 B. Jacobs | Parameters and Parametrization in Specification

which can be read as

if @ =ff then ff
elif ¥ =ff then ff
else tt fi

In a similar way one defines disjunction V. It can be shown that (B, A, tt,V, ff, =)
forms a boolean algebra (in the type theory); in particular, the Morgan laws hold.

A further useful aspect of distributive type theory is that it is well-fitted to deal
with partially defined operations via error values. For every type o there is the lifted
type

lo &f 1+0

which comes equipped with an error value L = £({)): Lo. Thus a term I' - M: Lo
can be seen as a partially defined operation of type o. It is undefined if M = L12.

The following result is often useful when calculating with coproducts.

2.4. Lemma. In distributive type theory one has the following equation.

'-Po+r zio FQ:p Iy:7 F Rip Izzpbk Ly

ceul 57 2 b - {57 2 fEd b

Informally, case commutes with substitutiond.

Proof. Because

u 57 2 % b

o 27 2 3 Bawyepm)
ﬂ 0 L[{} zz g I}(nz)/z]
vr o= 57 7 8 By
- {572 b
The next lemma justifies the name ‘distributive type theory’ for the above calculus:

it shows that the binary product x distributes over the finite coproducts (+, 0).

—r
—
=
—

o

~—

2.5. Lemma. Consider distributive type theory (over some signature) as described
above.

(i) There are terms P and Q in

w(ex7)+(cxp) FPiox(r+p) vieX(r+p) FQ:(cx1)+(cxp)
which are each other’s inverse, i.e.

w(ocx7)+(cxp) F Q[P/v

vie x(t+p) F PlQ/y]

u (o X T)+ (0% p)
v:o X (1 + p)

20ne can show that this lift operation forms a strong monad on the classifying categories described
in Definition 3.3 below. It forms an example of a ‘computational monad’, see [24].

3The more categorically oriented reader may have recognized cotupling [f,g]: A+ B — C of f: A —
C and g: B — C in the case term. The lemma then says that ho [f,g]=[ho f,hog].

B. Jacobs | Parameters and Parametrization in Specification 215

(il) Simailarly, there are terms
220 F M:ox0 w:ox0F N:0
which are other’s inverse.

In a more concise formulation one could write the above result as (o x 7) + (0 % p) =
o x (r+p)and o x0=0.

Proof. (i) For P one can take

P 50 o T b

In order to define @ notice that we have a term

ro,w:T+p Z; : i,(é;’yz) l}(w):(axr)+(oxp)

and thus for v:o x (7 + p) we can substitute [7v/z] and [r'v/w], which yields

o Jl :iT o K{mv,y
Q(U)%fﬂ 2ip = K'(mv, z)[}

Then
y:1 — Pl(mv,y)/u ,)
PlQ/u] = 2p — Pl'{mo, z}/fj] |}(7rv) by the previous lemma
YT 7rv n’y) l}
. (r'v
zip v (mv,K'z
= (mv,7'v) by conversion
v.
rioxT = QUrz, n(7ro: y/v])
Q[P/v] = {] yoxp e Q[(ﬂy, vry /0] !}(by the previous lemma
{] T:0XT +— 7ra: 7'z) |}
= Uyoxp + ’(Wy iy U ()
ToXT
= ﬂ yoxp = Ky l}(u)
= u.

(ii) We have

wiox0Frw0 and 20 F{}:0x0

Then
20 k(@ {D{Hw] = 7{} =

Further,
yio,2:0 F (y,2) = {}:0%x0

Therefore
wiox0kFw = (y2)|rw/yrw/z] = {}{r'w/z:0x0. o

The above distributivity comes for free since we have used appropriate formulations
of finite coproduct types with contexts as parameters; it is given by the syntax.

216 B. Jacobs | Parameters and Parametrization in Specification

2.6. Example (Overloading with coproducts). Suppose we have types N and R for
natural numbers and reals and two associated function symbols for addition,

plusy: N x N — N and plusg:R x R — R

One can then form an overloaded operation plus such that plus(z, y) will be plusy(z, y)
if z,y are both in N, plusg(z,y) if 7,y are both in R and undefined otherwise. We
regard this as a runtime choice. Thus we will have as type of the overloaded addition,

plus:(N+R) x (N+R) — L(N +R)

where L(—) = 1+ (—). It can be obtained by making suitable case distinctions. We
leave the type theoretic description to the reader, but will provide a diagrammatic
formulation of plus in Example 3.6 in the next section.

Next we turn to equations in distributive type theory.

2.7. Definition. Let ¥ be a distributive signature. A Y-equation is a sequent of the
form

'-M=, M

where M, M’ are terms of type o in context I'. A specification is a pair (Z, &) where
¥ is a signature and £ is a collection of ¥-equations, considered as axioms of a theory.

It may be clear that we are restricting ourselves to equational specifications involv-
1g only non-conditional equations.

.8. Examples. (i) Every signature ¥ determines a specification which has no equa-
tions. In particular—see Example 2.2 (i)—every set of basic types determines a spec-
ification and so does every Hagino signature. In the latter case we shall speak of a
‘Hagino specification’.

(ii) Monoids can be specified by a signature with one type, say 2, and two function
symbols,

m:OAxQ— N el —
for multiplication and unit. These are required to satisfy the familiar equations
z:Q Fm(z,e) =qz z:Q Fmle,z) =q z
2:Q,y:Q, 2 Q Fm(m(z,y), 2) =q m(z, m(y, 2)).

This constitutes the specification MONOID. A specification GROUP of groups is
obtained by adding an extra function symbol

.0 — Q
intended as inverse operation, and two extra equations
z:Q Fm(z,i(z)) =qz z:Q Fm(i(z),z)=qz

(iii) Natural numbers may be specified in various ways, for example as Hagino spec-
ification,

0:1 — N S:N— N

B. Jacobs | Parameters and Parametrization in Specification 217

that is, t.).y one sort N, two function symbols and no equations. Formally—see Exam-
ple 2.2 (ii)—we should say there is one function symbol constr = [0,5]:1 + N — N.
One may wish in an alternative specification an explicit predecessor operation, with
besides the above function symbols, also
P:N— 1+N=1N

The equations involved are

z:1 — 0
Nk N T GO
z:1 — 0
=N v p 0y Doy B =
One can further extend this specification with function symbols like

plus:N x N — N min:NxN — LN

(iv) The following example of queues give a type theoretic version of Walters’ cate-
gorical specification in [28, 29]. The specification has two atomic types: o and Q(a);
there are three function symbols

nil: 1 — 9(a) push:a X Q(a) — Qa) pop: Qa) — 1+ Q(a) x a
satisfying a single equation,

z:1 +— il
wil4+axQa) F pop({] (a,q):a x Oa) pLsh(a, 7 I}(w)) =1+axQ(e)
z:1 — L

:1 — &'{nila w
{I (a,9):ax Qa) {' (b,) x Q%a) — h:’gpushza,p),b) I}(pop(q)) [}()

In somewhat different informal notation this says
F pop(nil) = L
il,a) if pop(g) =L
: : h = {nil, .
azeg: Qla) F pop(push(s,) { (push(a,p),b) if pop(q) = (p,b)
We shall refer to this specification as QUEUE(«).

2.9. Remark. A signature may be called algebraic if it does not involve finite co-
product types, i.e. if for each function symbol F:o — 7, the types o, 7 are built with
finite products only (from atomic types). Similarly, a specification (X,€) is algebraic
if £ is algebraic and terms in equations in £ do not involve any finite coproducts,
cotuples or coprojections. Thus the above specifications of monoids and groups are
algebraic and also the Hagino specification of natural numbers in terms of 0:1 — N
and S:N — N.

Next we describe the derivation rules for equational logic over the distributive type
theory associated with a signature. We emphasize that the following is not a rule of
(many-typed) equational logic

QaookM= M

t thenin if z not in M, M")
(strengthening) VY (

218 B. Jacobs | Parameters and Parametrization in Specification

simply because it does not hold in general: ¢ may be empty; then the assumption z: 0
that o is inhabited leads to absurdities. In single-typed equational logic there is only
one atomic type whose interpretation is usually required to be non-empty. Then the
strengthening rule is valid. In many-typed logic one does not require the interpretation
of each type to be non-empty*.

We do use the following five rules.

Fr+-M=M:0o r+M=,M T+FM=,M

- (trans)

r-M=, M FreM=,M"

TFM=, M M=, M T,z:0FN:T
———— (sym) (compat)

C+FM=, M I' - N[M/z] =, N[M'/z]

Mo [zio b N=.N
T + N[M/z] =, N'[M/z]

The first of these rules tells that convertible terms (M = M': o) are equal (M =, M’)
in this equational logic. As a consequence, =, is reflexive. .

An equation which is derivable (from some set £ of axioms) using these five rules
plus the equations associated with finite product and coproduct types, will be called a
theorem. For example, for the specification of groups in Example 2.8 (ii) above, one
has an obvious theorem

z:Q,y: 0 Fi(m(z,y)) = m(1(y),i(z)).

2.10. Definition. (i) A specification (X, €) is a theory if the collection £ of equations
is closed under derivability, i.e. if an equation E is derivable using the above five rules
from Ei,... E, € £, then already E € £. Equivalently, if £ contains all the associated
theorems.
Every specification (I, £) determines a theory (%, €) by closing £ under derivability.
(ii) A morphism of specifications from (X, &) to (¥',£’) consists of a morphism
of signatures ¢: £ — %' such that ¢ maps axioms to theorems, i.e.

Ecf = ¢Ee &

where ¢F is obtained from E by replacing all types and function symbols in E by their
image under ¢. The resulting category of specifications will be written as Spec.

(subst)

2.11. Examples. In the previous series of examples one finds obvious morphisms of
specifications {a} — QUEUE(a) and MONOID — GROUP. A rather trivial but
important example is the inclusion § — (o(X) — X) or § — (X — (X)) of a set
S of atomic types in a Hagino specification.

2.12. Definition. A parametrized specification is a morphism of specifications
#: (Lo, &) — (Z,€). The domain (5, &) of ¢ will be called the parameter specification.

In the examples above, it is clear that o forms a parameter in the specification of
queues. Similarly in the specification of a group, the subspecification of a monoid can
be seen as a parameter, on top of which a group is specified.

Mostly in a parametrized specification ¢: (2o, &) — (X,) the parameter specifi-
cation (Zg, &) will be a subspecification of (X, £) in the sense that ¢ is injective both
on types and on function symbols and maps Zg-equations in & to Z-equations in £.

40f course, if we know on a syntactic (type theoretic) level that ¢ is not empty—i.e. T + N:o, for
some N—then we may simply substitute N for z, which yields the conclusion I' - M =, M'.

B. Jacobs | Parameters and Parametrization in Specification 219

3 Semantics

The set theoretic semantics of a signature ¥ is given in the following way. A £-model
(or algebra) consists of a collection of ‘carrier’ sets {A,}es, one for each s in the set

-~

S of_fmtomic types in £. Then one extends this assignment s — A, to o — A, for
o € S by putting

A, =4, forses A =1={0} Ay =10

Eax-r = Aa X Af AU+1‘ = A\a + AT

where + between sets means disjoint union. In this way one obtains a carrier set for
each type. The collection {A,};cs can be seen as a functor A:S — Sets from the
discrete category S to Sets. It is extended to a functor A:T — Sets.

Besides these carrier sets {A;}, a £-model consists of an interpretation of each
function symbol,

Fo— 1
as an actual function,
[F)4, — A,

The notion of morphism of £-models is as follows. A morphism h: ({4,},[-]) —
({A’},[-1") consists of a collection of functions between carrier sets,

he Ay — AL, for atomic types s € S

such that for each function symbol F: ¢ — 7 one has that the diagram

)
Q
Q
3
Q

[F1 [FY

At 7

commutes—where the collection {&,},¢3 is obtained by extending {hs}ses in the ob-

vious way.
Assuming one has such a £-model ({4,},[-]), then one can extend the interpre-
tation [[-] of function symbols to all terms: for a context I' = 2,:01, ..., Zn: On, Write

A= Ay, x oo x A,
Then one defines by induction on derivations for each term I' k M: o a function

r P—M:a]]:ﬁr——a;ff

220 B. Jacobs | Parameters and Parametrization in Specification

in the following way.

[zi:01,... 200, Faiios] = wi:ﬁ,1x~--xﬁaﬂ — ﬁai
[z:0 F F(z):7] = [F]: A, — A, (for F a function symbol)
[CH(MN):m xn] = (T FM:n]L[T N : Ar — A, x A,

[TFQ):1] = Xa.0: A — {0} =

~

[ThaP:n] = 7o [TFPimxn]: Ar — A,l X 2,2 — A
[THaP:n] = o o [DFPmxn]: A — A, x4, — A,
[T,2:0 F{}:7] = Arx0 20— 4, (the empty map)

[TFeM:m+n] = ko [[FMn]: Ar — An — ATI—&-AT2
[TH&N:ii+71] = & o [THFN:7R]: Ar — AT2 — Arl-l—AT2
where the functions k£ and &' are the obvious injections into the disjoint union. For
the interpretation of the case construction we observe that for sets A, B and C one has
that the obvious map
(0,(a,b)) = (a,(0,8))
(1,(a,0)) = (a,(1,0))

is an isomorphism. Thus for terms ' + Py + 7o, [yziy F Q:pand T,y:ma - Rip
T

(AxB)+(AxC)— A% (B+C) by {

—
we can interpret the case term I' + {I — @ l}(P):p as the composite

IZ{ ’ld I[FI_P 7'1+7ZH)A X(An'f'A-rg)

= (Ao x A+ (Ap x A LDz P pL[Ly:m FRp]],

where the square braces [, .] describe the ‘co-tupling’ or ‘source-tupling’ of two func-
tions f: A — C, g: B — C to a single function [f,g: A+ B — C.

A model of a specification (X,£) is then a model of ¥ in which one has an
equation of functions,

[CEM:A]=[CFM:7]:[T]— 7]

for each equation I' + M =, M’ in £&. We then say that this equation holds or is
valid. One easily verifies that if an equation is derivable from &£, then it holds in every
model of (Z,€).

We leave it to the reader to check that all of the conversions in the previous sec-
tion are valid under the above interpretation. Further if A is a morphism of models
({A:},[-1) = ({AL},[-T'), then one has for a term z;:04,...,2,: 0, F M:7 that the
following diagram commutes.

Ay X X A, hoy X+ X b, Ay X x Al
[T FM:T] [TFM:r]
A, - A,

Thus A also preserves the interpretation of terms.

B. Jacobs | Parameters and Parametrization in Specification 221

The essential (categorical) aspect of the category Sets that is used for the above
interpretation, is the presence of finite products and finite coproducts (sums), in such
a way that binary products distribute over finite coproducts. We recall here that finite
products (1, x) and coproducts (0,+) are described categorically by

e for each object X there are unique maps 0 — X from the initial object 0 to X
and X — 1 from X to the terminal object 1; we usually write !x for both these maps.
This hardly ever leads to confusion.

e for objects X,Y, Z there are (natural) bijective correspondences

Z — X xY X+Y — 7
7 — X Z — Y X — 7 Y — 7

We shall write the projections as X «— X x Y Y and the coprojections (some-
times called injections) as X — X +Y «— Y. The tupling of f:Z — X and
9:Z — Y is written as (f,9):Z — X x Y and the cotupling (or source-tupling) of
fiX—Zandg:Y —» Z as [f,g]: X + Y — Z. There are the familiar equations

mo(fg)=f mo(fig)=g (fig)oh=(fohgoh) (m,7) =id

and

(f.glok=Ff [fglok' =g ho[fgl=[ho fihog] (5, K] = id

One writes f x g=(f om,gon’yand f+g=[ko f,k o gl
The following definition captures the essential structure needed for the interpreta-
tion of distributive type theory.

3.1. Definition. (i) A category B is called distributive if it has finite products and
coproducts, such that for each object I € B, the functor I x (_): B — B preserves finite
coproducts, i.e.

{(a) the (unique) canonical map 0 — I x 0 is an isomorphism;

(b) for each pair X,Y € B, the canonical map

fdxk,id X K):(Ix X))+ (I xY)—Ix(X+Y)

is an isomorphism.

(i) A functor F:B — C between distributive categories is called distributive if
it preserves finite products and coproducts. Using these we get a category Distr of
distributive categories and functors.

The above functor F:B — C preserves finite products if for the initial / terminal
object 0 / 1 in B one has that F0 / F1 is initial / terminal in C; further if the canonical
maps

F(XxY)— FX x FY FX+FY — F(X +7Y)
are isomorphisms (for each pair X,Y).
It can be shown (as noted by Robin Cockett) that condition (a) in the above
definition follows already from (b). Also that the coprojections are monomorphisms

and that every map X — 0 is an isomorphism. Further, the distributivity in (b) can
alternatively be expressed by (natural) bijective correspondences

IxX — Z IXY — Z
Ix(X+Y) — Z

222 B. Jacobs | Parameters and Parametrization in Specification

involving binary coproducts with parameters. We should warn that the opposite B
of a distributive category need not be distributive again: for example in Sets the
above two isomorphisms do not exist with products and coproducts interchanged. For
distributive lattices however (i.e. for poset distributive categories) one does have that
the opposite is a distributive lattice again. More information on these distributive
categories can be found in [3] and in [2].

3.2. Examples. (i) The category Sets of sets and functions is a distributive category.
Also the subcategory of finite sets is distributive. More generally, every topos is a
distributive category.

(ii) The categories of posets with monotone functions and of directed complete
posets (dcpo’s) with continuous functions are distributive. In both cases, the empty
poset is initial and the coproduct is given by disjoint union, ordered by (¢, z) < {j,7) ©
i=j &z <y—wherei,j€{0,1}.8

(iii) Every cartesian closed category with finite coproducts is automatically distribu-
tive: each functor I x () has a right adjoint I = (_) and thus preserves all colimits.
The examples in (i) and (ii) are instances of this phenomenon.

(iv) Let MS be the category of metric spaces (X, dx) with non-expansive functions:
a morphism f:(X,dx) — (Y,dy) is a function f: X — Y between the underlying sets
with dy(f(z), f(z")) < dx(z,z') for all z,z’ € X. This gives an example of a category
which is distributive but not cartesian closed.

(v) A non-example is the category Sets, of pointed sets. Objects are sets with a
distinguished base point and morphisms are functions preserving these base points.
Alternatively, one can think of Sets, as the category of sets and partial functions.
Sets, has finite products and coproducts, but is not distributive; the one-element set
{e} is both initial and terminal. Therefore I x {e} = I, which is not {e} in general
(as required in (a) in Definition 3.1 (i)).

One can also syntactically construct distributive categories from specifications.

3.3. Definition. For a specification (%, £) one forms the classifying category, writ-
ten as C/(X,£), with

objects types o

morphisms ¢ — 7 are equivalence classes [M(z)] of terms z:0 F M:7. The
equivalence relation M ~ M’ is given by derivability from £ of the
equation z:0 + M =, M'. That is, M and M’ are equivalent if
z:0 W M =, M'is a theorem.

Identities are given by variables z:0 F z:0 and composition of z:0 + M:7 and
y:7 F N:p by substitution z:0 F N[M/y]: p.
3.4. Proposition. Classifying categories C(X,E) are distributive.

Proof. [t is easy to see that the type 0 is initial and that 1 is terminal. Further, there
are obvious projections o X~ o X 7 < 7 and coprojections 0 — g +7 «*— 7 forming
product and coproduct diagrams. The required distributivity follows from Lemma 2.5.

O

5In this category of dcpo’s and continuous functions one does not have the result that every
endomorphism has a fixed point, but one does have a fixpoint object for the lift monad 1 + (.), as
described in [7]; this is enough to interpret recursively defined functions (as in a language like PCF).

B. Jacobs | Parameters and Parametrization in Specification 223

3.5. Remarks. (i) The above classifying category forms a categorical version of what

is called in universal algebra the closed (or ground) term algebra ({7,},[.]) of

(%,€). This term algebra lives inside the classifying category: the elements of T, are

the terms 1 — o in C4(E, £); these can indeed be identified with the closed terms.
The essential difference between such term algebras and classifying categories is

that the latter deal with all terms (and not just with the closed ones) in a natural way.
(i) For a specification given by a signature & (without equations) we write

c(s) ¥ s,
and call C4(X) the classifying category of .
(iii) The restriction to terms z:¢ + M: 7 containing a single term variable z: o only,

is not really a restriction, because using the finite product types, there is a bijective
correspondence between terms M and N in

ZT1:01, - Tni0n EM:T

Yooy X+ X o EN:T

where gy X -+ X 0,15 1if n=0.

(iv) As will be shown in Section §, classifying categories C/(Z, £) are free distributive
categories.

(v) According to Walters [30], an imperative program consists of an alphabet
A of input symbols together with a functor A* — C4(Z, £) from the free monoid A*
of finite sequences (words) of A to a classifying category C/(X,€). It is thus given
by a type o (representing the state) together with an A-indexed collection of terms
(programs) {M,:0 — o}sea. The functor maps an input string (a;,...,a.) to the
composite program M, o -0 M, 10 — 0.

(vi) For algebraic specifications (£, £)—which do not involve finite coproducts, see
Remark 2.9—one can form a simpler classifying category Cl,(X,€) which has types
¢ built with finite products from atomic types, as objects. Morphisms ¢ — 7 are
equivalence classes of terms which do not involve finite coproducts. Then one has that
these classifying categories (%, (X, £) have finite products.

3.6. Example. We are now in a position to give a diagrammatic construction of the
overloaded plus, as promised in Example 2.6. It can be performed in any distributive
category with maps plusy: Nx N — N and plusg: R x R — R. In particular in classifying
categories (in which one has such maps). We make essential use of distributivity. We
form plus: (N + R) x (N + R) — L(N + R) as composite,
(N+R)x (N+R) = ((N+R)xN)+((N+R)xR)
(NxN)+(RxN)+(NxR)+ (RxR)
Lid+!+14+1id
(NxN)+1+1+(RxR)
lid+V+id
(NxN)+1+(RxR)
| plusy + id + plusg
N+1+R & L(N+R)

R

224 B. Jacobs | Parameters and Parametrization in Specification

where V = [id, id] is the codiagonal 1+ 1 — 1. One sees how the combinations R x N
and N x R of inputs of different types are mapped to error values. .
This gives an example of ‘programming in distributive categories’, as in [29].

3.7. Example. We shall describe two very simple classifying categories concretely.

If the specification is the empty one, the classifying category C/(@) consists of two
types 0 and 1 with only one arrow 0 — 1. It is thus the 2-element partial order.

If the specification consists of one type {@}, no function symbols and no equations,
then one obtains a classifying category C/({a}), the objects of which can be identified
with finite polynomials ¥ n;a with 0 and 1 as initial and terminal object and coproduct
+ and product x given by addition and multiplication of polynomials. Morphisms

(2 nat) — (; m;at)
in ¢({a}) are built from (co)tuples and (co)projections.

Next we describe models in arbitrary distributive categories. The definitions and
results are obvious generalizations of the earlier set theoretic ones.

3.8. Definition. (i) A model of a signature ¥ in a distributive category B is given
by

e a ‘carrier’ object A, € B for each s in the set S of atomic types in . Then one
extends this assignment A: S — B to an assignment A: S — B as in the beginning of
this section. R ~

e a morphism [F']: A, — A, for each function symbol F: 0 — 7.
Again one extends this assignment of morphisms to function symbols to an assignment
of morphisms to terms as done earlier for Sets, in such a way that for a term I' =
T1:01,...,Tn: 0y = M:7 one obtains a morphism

[CFM] Ay XX Ay, — A,
(ii) A model of a specification (Z,€) in B consists of a model of ¥ that validates

all equations in £; that is for an equation I' H M = M': 7 in € one has an equality of
morphisms,

[THM:7]=[TFM:7]

An interpretation A, of a type o together with the morphisms resulting from in-
terpretations of terms going in and out of this carrier object, may be called a data
structure.

We leave it to the reader to verify an obvious soundness result: if an equation
E is derivable in a specification (X, £), then it holds in every model of (£,£) in a
distributive category. In particular the associated theory is validated. The notion of
morphism between models in Sets is formulated in such a way that it generalizes in
an obvious way to a notion of morphism between models in an arbitrary (but fixed)
distributive category. In this way we get a category

Mod((Z,), B)

of models of (Z,£) in a distributive category B. A model of (£,£) in B is then called
initial or terminal if it is initial or terminal in this category.

Notice that we may have total functions {4, — B,} as morphisms of models, but
partial functions [F'] as interpretations of function symbols; the reason being that
partiality can occur within a distributive specification via ¢ — L7.

B. Jacobs | Parameters and Parametrization in Specification 225

3.9. Ex.amples. (i) It is immediate that a model in Sets as defined above is the same
as described in the beginning of this section.

(11) A model of the first (Hagino) specification of natural numbers in Example 2.8
(ili) in a distributive category B consist of an object Ay together with maps

[[0]]1——>AN [[S]]ZAN~—>AN

From now on, the we often omit the A_ and [-] notation. This is an initial model if
for each other model

1Ly Ly
there is a unique morphism h: N — ¥ making the following diagram commute

1 0 N S N

l—f—Y——Y

A diagram 1 - N -2 N which is initial in this sense is what Lawvere defines to be
a natural numbers object (NNO) in a category.

(iii) A model in B of the second specification of natural numbers in Example 2.8 (iii)
involves an extra morphism

P:N— 1+N

The validity of the equations means that the maps
[0,3]
I1+N =N
P

are each other’s inverses. Initiality of this model means that for every other model
[a,f]

1+Y Y
g

There is a unique morphism h:N — Y with
hoO=a, hoS=f, id+hoP=goh.

In fact, this last equation follows from the first two.

(iv) In a similar but more complicated way, one can check that a model of the
specification of queues in Example 2.8 (iv) is given by an object A (interpreting a) and
an object Q(A) (for Q(a) together with maps

nil: 1 — Q(A) push: 4 x Q(A) — Q(A) pop: Q(A) — 1+ Q(A) x A

such that the following diagram from [28] commutes.

L+ Ax O(A) [nil, push] o(4)
id+z'dxpopl
1+ Ax(1+Q(A)x A
+Ax(1+ QA x4 .
1+ A+ AxQ(A)x A
N . . .
1+ (144 x Q(4)) x A id + [nil, push] x id 1+ Q(A) x 4

226 B. Jacobs | Parameters and Parametrization in Specification

(v) There is an obvious way to get a model of a specification (X, &) in its own clas-
sifying category C4(Z, £). This is called the generic model of (5, £). The equations
which hold in this model are precisely the theorems, i.e. the equations which are deriv-
able from £. In this way one obtains a completeness result: an equation E is a theorem
if and only if it holds in all models.

(vi) Models of algebraic specifications can be described in categories with finite
products—since there are no finite coproducts involved.

4 Semantics of Hagino specifications

Hagino specifications 0 — X or X — o define a type o (co)-inductively—since the
type variable X may occur in o—using finite products and coproducts of atomic types
and X, see Example 2.2 (ii). The inductive case, say of the form (o) + - -- 4+ 0n) = X
occurs in the functional programming language ML with syntax

datatype X = Cyofo;| -+ | Cpof o,

where C1, . .., C, are constructors. We would simply write [C, ..., Cy]: (o1+-- -+crn). —
X in this case. Hagino [10, 9] writes pX.o for the initial solution of ¢ — X and
vX. o for the terminal solution of X — o. In the experimental programming language
CHARITY, see [4], one can define both these initial and terminal types. Thus one can
define for example a type of trees of finite depth with nodes having infinitely many
branches.

These recursively defined types with initial or terminal characterizations occur al-
ready in [1], but are first investigated systematically from a type theoretic perspective
“y Hagino.

The semantics described in the previous section for arbitrary specifications special-
zes to Hagino specifications. This special case is often described in terms of algebras
.nd coalgebras for an endofunctor T:B — B (i.e. for a functor from a category B to

itself). For such a functor we often spare on parentheses and write TY for T(Y').

Recall that for an arbitrary endofunctor 7:B — B an algebra (or T-algebra) is
an object Y € B together with a morphism ¢:TY — Y. Dually, a coalgebra is a pair
(Z,%) where ¢: Z — TZ. One forms a category T-Alg with T-algebras as objects and
as morphisms

(TY L Y) h, (TZ 5 z)

maps h:Y — Z in B for which the following diagram commutes

v —Th 77
® Y
y—h .z

Dually, there is a category T-CoAlg of coalgebras and similar morphisms. In these
categories of algebras and coalgebras one can again study initial and terminal objects.
Notice that an initial algebra for 7:B — B is a terminal coalgebra for 7°P: B°P — B°P.

B. Jacobs | Parameters and Parametrization in Specification 227

4.1. Fact (Lambek). An initial T-algebra ¢: TY — Y is an isomorphism.

By duality one has a similar result for terminal coalgebras. The fact is proved by
considering the T-algebra T': T?Y — TY'; one obtains by initiality a map @Y = TY
serving as inverse of . Thus initial algebras are fixed points 7Y 2 Y of functors.

A model of the Hagino signature [0,5]:1 + N — N of natural numbers in a dis-
tributive category B (see Example 2.8 (iii)) consists of an algebra for the endofunctor
T(X) =1+ X. Requiring this algebra to be initial means that for each object Y € B,
together with maps a:1 — Y and g: Y — Y, there is a unique &:N — Y with

14NLth gLy

[0,] [a, 9]

N h |y

This initial algebra approach yields the same notion of initial model as the one resulting
from the general description in the previous section (see Example 3.9 (i)). Our aim is
to establish such a correspondence for all Hagino signatures.

Recall that a Hagino signature involves a set S of atomic types, a type variable X
and either a function symbol constr: ¢ — X (in the inductive case) or a function symbol
destr: X — o, where o is a type in S U {X}. A model of the set (or subsignature) Sin a
category B consists of a functor A: S — B (i.e. of a collection {A,}.es of objects A, € B).
The category of models of S in B is the functor category B°, in which a morphism
fi{As}ses — {Bs}ses consists of a collection of morphisms f = {f,: A; = Bs}ses in
B. We have written (:) for the functor B’ — B® which extends the assignment s — A,
st foforse Stoo— A, and 0 — ﬁ, for o € G, as described in the beginning of
the previous section.

4.2. Definition. Each model A: S — B in a distributive category B together with a
type 0 € SU {X} determines a polynomial functor T(A),:B — B which follows the
structure of o:

(the constant functor A, ifo=seS
the identity functor fo=X
T(A), def the constant functor 0 ?f o :E— 0
the constant functor 1 ifo=1
Y = T(A)g,(Y) + T(A)e,(Y) if o =01+ 02
Y = T(A),,(Y) X T(A)y(Y) if o =01 X0

4.3. Lemma. The assignment A — T(A), extends to a functor BS — B®.

Proof. Given f = {f,: As = Bs}ses in BY, one defines a natural transformation
T(f)o: T(A)y — T(B),

by induction on o. The component at ¥ € B is

228 B. Jacobs | Parameters and Parametrization in Specification

fs ifo=seS
idy ifo=X
def | tdo ifo=0
TH.¥) = 1d) fo=1
Ty Y)Y+ T(f)on(Y) ifo=0,4 02
{ T(f)oy (V)X T(f)opy(YV) if o =0y x 02

Then one checks (again by induction on o) that for A:Y — Z in B,

(A, (v) " DeMpp) vy
T(4), (h) T(B), (k)

T(A),(2) D) r gy, () 0

We see how the syntactic structure of the type o determines the shape of the asso-
clated polynomial functor T(A),. It turns out that models of the Hagino specifications
a(X) — X and X — o(X) can be described as algebras T(A),(X) — X and coal-
gebras X — T(A),(X), see Proposition 4.6 below. The initial algebras and terminal
coalgebras herein play a special role.

But one can also go a step further as in [11]. If one has a suitable fibred category

l where the category E provides some logic to reason about what happens in B, then
‘ne can get a ‘lifted’ endofunctor E — E which captures the logic of induction and
oinduction associated with the Hagino specification. This, however, will not be further
ursued in this paper.

+.4. Discussion on parametrization. A priori there are three ways in which a poly-
nomial functor T(A),:B — B as defined above can have an initial algebra—and dually
a terminal coalgebra

(a) Unparametrized initiality. This is ordinary initiality of a T(A),-algebra
@:T(A)s(U) — U; for each ¥:T(A),(V) — V there is a unique h:U — V with
hogw=1o0T(A),(h).

(b) Parametrized initiality. In this case one also allows variation in the model of
S;¢:T(A)o(U) — U is initial in this parametrized sense if for each other model B: § —
B together with a morphism f: A — B of models and a T(B),-algebra v: T(B),(V) —
V, there is a unique h: U — V making the following diagram commute.

T(A)o(U

/ \f)
T(A),(V) h)
T(f)a(V\)\ /T(B»(h)

T(B)o(V) ——; v

where the diamond on the left hand side commutes by naturality.

B. Jacobs | Parameters and Parametrization in Specification 229

(c) Absolute initiality. For each other model B: S — B and algebra ¢: T(B),(V)
— V there is a unique pair f:A — B, h:U — V making the above diagram (%)
commute. This third form of initiality is initiality in the following category T'(.),-Alg,
with

objects pairs consisting of an S-model A:S — B and an algebra
e:T(A),(U) - U

morphisms (4, T(A),(U) % V) = (B,T(B),(V) % V) are morphisms f: A —
B of S-models together with a map h:U — V in B making the above
diagram (*) commute.

Notice that we have left the dependence on S implicitly in the notation T'(_),-Alg.

The next two results are about these three forms of initiality (a), (b) and (c). Firstly
it will be shown that (a) and (b) are the same; and secondly that initiality as in (c)
is the same as initiality in a category of models described in the previous section. We
will argue below that (c) is too strong.

4.5. Lemma. An algebra T(A),(U) % U is initial in the above unparametrized sense
(a) if and only if it is initial in the parametrized sense (b).

Proof. The if-part is obvious. As to the only-if-part, assume that ¢:T(A),(U) —
U is initial as in (a) and that another S-model B:S — B is given with f:4A — B
and a T(B),-algebra 9:T(B),(V) — V. Then one has a T(A),-algebra ¢’ = ¢ o
T(f)o(V): T(A),(V) — V and thus a unique map h:U — V with h o ¢ =9’ o
T(A)g(h) =1 o T(f)s(V) o T(A)s(h). It is clearly the unique one with this property.

a

4.6. Proposition. The category Mod(Z,B) of models (in o fized distributive category
B) of an inductive Hagino specification & = (S U {X},constr:o — X) as described in
the previous section can be identified with the category of algebras T(-),-Alg described
4.4

Proof. A model of T in B consists of a model A: S — B together with an object U € B
and a morphism

—

@ = [constrJ: A(U), — U
where A(U): SU{X} — Bis

A(U), =ift = X then U else A,
By induction on o, one checks that

A(D), = T(A),()

see the proof of Lemma 4.3 for the description of the value of the functor T(A), at U.
Thus ¢ is a T(A),-algebra and (4, ¢) is an object of the category T(.)s-Alg.

Similarly one verifies that morphisms of X-models correspond to morphisms in
T(_),-Alg: a morphism between two Y-models

— —

(A,U,(p:A(U)d —-U) — (B,V,lp:B(V)U - V)

230 B. Jacobs | Parameters and Parametrization in Specification

consists of a morphism f: A — B of S-models, together with a map h:U — V in B
such that the following diagram commutes.

A, U
fn), h

B), —¥—v

o

where f(h) is a morphism of S U {X }-models, given by the collection f(k), with
f(h)y = ift = X then h else f,

By induction on ¢ one verifies that

——

f(h), = T(f)o 0 T(A)s(h)

and thus that the above diagram corresponds to a morphism of algebras in T(_),-Alg.
0

One can define a similar category T(-),-CoAlg of coalgebras and get a result like
above for coinductive Hagino specifications.

The point that we would like to make here is that absolute initiality as in (c) is
-eally too much to require: it does not make sense to require that any model A of the
atomic types can be mapped via f: A — B onto another model B. For example, one
:an check that for the Hagino specification [nil, cons]: 1 + (@ x X) — X of lists of type
o one gets the following. Since the set S of atomic typesis {«}, a model A: S — Sets
can be identified with a set A. And the set A* of finite sequences of elements of 4 is
initial in the sense of (a) = (b), but not as in (c). The latter would require a map into
any other set B. This is non-sensical.

Thus the above Proposition 4.6 tells us that models of Hagino specifications are
algebras, but what is lacking is the right notion of morphism of models, such that a
correspondence with algebra maps is obtained. In order to get such a correspondence
we have to use models of parametrized specifications. (Indeed, Hagino specifications
are parametrized by the set of atomic types, see Example 2.11.) But to give a smooth
description of models of parametrized specifications, we first need a more categorical
approach to models using functors. This will be in the next section.

In the remainder of this section we have a brief look at the existence of initial /
terminal models for Hagino specifications, see [1, 22] or [23, Chapter 11]. These models
can be constructed as colimits or limits of w-chains. The latter are functors w — B,
where w is the poset category of natural numbers

0—1—2— ...

A functor F:B — C will then be called continuous if it preserves colimits of such
w-chains. It is easy to see that polynomial functors T(A4),—see Lemma 4.3—are (at
least on Sets) always continuous, using that finite limits and filtered colimits commute,
see [19], IX 2.

The initial algebra of a continuous endofunctor T:B — B can be constructed from
the colimit U of the w-chain

B. Jacobs | Parameters and Parametrization in Specification 231

070720 Bhrdy — ... L p

where 0 € B is initial object. This is as in [26]; it generalizes the construction of a
fixed point as join of L < f(L) < f?(L) < --- for an endofunction f on a dcpo with
bottom L. Since T preserves the colimit of this w-chain we get a map TU = U which
is initial algebra. For example in Sets, the endofunctor associated with the Hagino
specification of the natural numbers is 7(X) = 1 + X. The resulting colimit is

0—1—02— ... — N
And for finite lists one has T(X) =1 + A x X with initial algebra given by
0—1—14+A4A—1+A4+A4%2 —1+A+A+A°— ... — 4

where A* = U,en A" is the set of finite sequences of elements of A.
Dually a terminal coalgebra for T:B — B can be constructed as an initial algebra
for T°P:B°P — B°P®. That is, as a limit in B of the w°P-chain

1e—T0 120 L 730 — oo — v

where T:B — B is required to preserve limits of w°P-chains. Again one has that
polynomial functors T(A), are ‘co-continuous’ in this sense. As an example, infinite
lists (of type @) are described by a desctructor X — a x X; the resulting endofunctor
T(X) = A x X on Sets leads to the limit

le— Ae— A% — A% — ... — AN

Finite and infinite lists together are described by a destructor X — 1 + @ x X and
thus by the limit

le—1+A—1+A4+A — 1+ A+ A2+ A8 — — (A" + AY)
The reader may wish to check that the resulting isomorphism
I+ AX (A +AY) 2 1+ AX A+ AX AN 2 1+ AT+ 4N = 424+ AN

is a terminal coalgebra indeed—where A* = (J,>; A" is the set of non-empty finite
sequences of elements of A.

We conclude that in a distributive category with colimits of w-chains / limits of
w°P-chains, every inductive / coinductive Hagino specification has an initial algebra /
terminal coalgebra. Especially these initial and terminal models exist in Sets. This
yields solutions to domain equations involving finite products and coproducts. If one
additionally wishes higher types via exponents —, then one cannot find set theoretic
solutions anymore (when X occurs negatively). For example, there are no non-trivial
sets U with U 2 U — U. For solutions of such domain equations with higher types one
works in categories of dcpo’s, see [26] using embedding-projection pairs as morphisms.
Alternatively, one can work in synthetic domain theory, where domains are just sets,
see [13].

5Recall however that B°P need not be a distributive category.

232 B. Jacobs | Parameters and Parametrization in Specification

5 Functorial semantics

In universal algebra there is a basic result that an algebra A for a signature ¥ is nothing
but a morphism of algebras from the free algebra F(X) on ¥ to A. There is a similar
result in the present setting: a model of a specification (£, £) in a distributive category
B is nothing but a distributive functor C4(%,£) — B from the classifying category
C(Z,E) of (£,&) (see Definition 3.3) to B. This classifying category can be understood
as the free distributive category on (%,).

The idea of describing models as functors preserving appropriate structure goes back
to Lawvere [21]. It has the clear advantage that it enables one to use well-established
categorical tools for the semantics of specifications. This will be crucial in the rest of
this paper.

We start with some basic observations.

5.1. Lemma. The assignment (T,€) — CU(Z, &) extends to a functor C4(_): Spec —
Distr from the category of specifications to the category of distributive categories.

Proof. For a morphism ¢: (Z,€) — (¥, €’) of specifications one gets a functor C{(¢):
(L&) — A, E) by

c—@¢o) and [M]w— [pM]

where ¢ M is obtained from M by replacing each function symbol F'in M by its image
‘F. This is well-defined on equivalence classes since ¢ maps theorems in (%,) to
heorems in (X', £"). O

2. Theorem. Let (X,£) be a specification and B a distributive category. There is
an equivalence

Mod((%,€), B) ~ Distr(Cl(T,), B)

between the category of models of (,€) in B and morphisms of these, and the category
of distributive functors C/(X,E) — B and natural transformations.

Proof. Given a model ({4,},[-]) of (£,£) in B, one gets a distributive functor .A:
CZ,E) - B by

o A, and (0MT)H[I$IU FM(z):7]

A morphism {h,}: ({A.}, [-1) = ({B},[-]) of models yields a natural transformation
A — B with components A,: A, — B,; these are natural in o, because they commute
with the interpretations of terms (see Section 3).

In the reverse direction, given a distributive functor M:C{(Z,£) — B one obtains
a model with carrier objects

A, = M(s) €B, for atomic types s
and interpretations of functions symbols F:0 — 7 as morphisms
A2 Mo) B mn = 4,

A natural transformation a: M — A yields a collection of morphisms a(s): M(s) —
N (s) which commute by naturality with the interpretations of function symbols. O

B. Jacobs | Parameters and Parametrization in Specification 233

The above result gives us the possibility to describe a model of a specification (£,6)
in a distributive category B, either as a collection of objects and arrows (interpreting
atomic types and function symbols in such a way that equations in & are validated)
or as a distributive functor C4(X,€) — B. We shall freely switch between these two
perspectives according to what is most convenient. See for example the next lemma
below.

The previous theorem says in particular that a set theoretic model of a specification
(Z,€) is (or, corresponds to, if you like) a distributive functor C4(E,£) —