Fundamenta Informaticae 28 (1996) 123-128 193
10S Press

Approximating the Stable Model Semantics is
Hard*

Georg Gottlob

Institut fir Informationssysteme
Technische Universitat Wien
Paniglgasse 16, 1040 Wien, Austria
gottlob@uezpert.dbai.tuwien.ac.at

Mirostaw Truszczyriski
Department of Computer Science
University of Kentucky
Lezington, KY 40506-0046
mirek@cs.engr.uky. edu

Abstract. In this paper we investigate the complexity of problems concerned with ap-
proximating the stable model semantics. We show that under rather weak assumptions
it is NP-hard to decide whether the size of a polynomially computable approximation
is within a constant factor from the size of the intersection (union) of stable models of
a program. We also show that unless P=NP, no approximation exists that uniformly
bounds the intersection (union) of stable models.

Keywords: Logic programming, stable models, well-founded semantics, computa-
tional complexity

1. Introduction

In the past several years the complexity of reasoning with nonmonotonic logics has been
studied extensively [3, 1, 2, 5, 9]. In particular, it is well-known that several decision problems
involving stable models of logic programs are NP-complete or co-NP-complete [6, 8]. For
example, the problem whether a finite propositional logic program has a stable model is NP-
complete, and the problem whether a given atom is in the intersection of all stable models
is co-NP-complete. In this note we consider the complexity of several related approximation
problems.

Let P be a class of finite propositional logic programs over a denumerable set of proposi-
tional variables VAR. Let P be a logic program from P. By A#(P) (N(P)) we denote the set
(the number) of atoms occurring in P. By S(P) we denote the family of all stable models
of P.

By a lower approzimation for the stable model semantics we mean any operator W:P —

9VAR guch that
T(P) S [S(P).

*The second author was partially supported by the National Science Foundation under grants IRI-9012902
and IRI-9400568.

124 G. Gottlob and M. Truszczyriski / Approximating the Stable Model Semantics...

By an upper approzimation for the stable model semantics we mean any operator V: P

9 VAR gych that
Js(P) c w(P) C 4x(P).

The well-founded semantics [10] yields examples of approximation operators. Let us recall
that the well founded-semantics assigns to a program P two disjoint sets of atoms: T'(P)
and F(P). The atoms in T(P) are interpreted as true and the atoms in F(P) are treated as
false under the well-founded semantics of P. It is well-known that

P)C[S(P) and F(P)C A{P)\|JS(P)

Let us define

M(P) = At(P)\ F(P).
The atoms in M(P) may be regarded as possibly true under the well-founded semantics, as
it failed to establish that they are false. Clearly,

| Js(P) € M(P) C AY(P).

Hence, T(P) is a lower and M(P) is an upper approximation operator.

Clearly, the closer the lower (upper) approximation comes to the intersection (union) of
all stable models of a program, the better. The question that we deal with in this note
is: how difficult it is to decide whether an approximation produces a good estimate of the
intersection (union) of the stable models of a program. For instance, how difficult it is to
decide whether the size of the approximation is within a constant factor from the size of the
intersection (union). More formally, let f : N — N (throughout the paper, N denotes the
set of non-negative integers) and let ¥ be an arbitrary approximation operator for the stable
model semantics. In the paper we consider the following two problems. In the first of them
U is assumed to be a lower approximation, in the second one — an upper approximation.

LA(Y, f): Let ¥ be a lower approximation for the stable model semantics and let f : N — N
(¥ and f are fixed and are not part of the input). Given a logic program P decide
whether

INS(P)| < F(I¥(P)))

UA(VU, f): Let ¥ be an upper approximation for the stable model semantics and let f :
N — N (¥ and f are arbitrary but fixed and are not part of the input). Given a logic
program P decide whether '

[e(P)| < F(1US(P))).

We show that for every lower approximation ¥ that can be computed in polynomial time
in the size of a program, the problem LA(¥, f) is NP-hard (and, even for some very simple
functions f, NP-complete). In particular, the problem is NP-hard for the well-founded
semantics operator T. In other words, after one computes T(P), it is infeasible to establish
whether the approximation T'(P) is close to [JS(P). In addition, it follows that if P£NP
then there is no polynomially-computable lower approximation operator ¥ and no function
f :IN — N such that for every logic program P € P:

I S(P)] < F(1(P)).

Similar results are also shown for the problem UA(¥, f) and the well-founded semantlcs
operator M.

G. Gottlob and M. Truszczyriski / Approximating the Stable Model Semantics... 125

2. Results

Let k be a non-negative integer. Define:
P.: Given a logic program P, decide whether |[\S(P)| < k.
We have the following result on the complexity of Py.

Theorem 2.1. For every non-negative integer k, the problem Py is NP-complete.

Proof:
First, let us observe that, for every k£ > 0, Py is in NP. Indeed, if £ > N(P) (recall that

N(P) is the number of all atoms in P), then P is a YES instance to P;. Otherwise, a witness
that an instance of the problem Py is a YES instance consists of a set A of N(P) — k atoms
occurring in P and a collection {S,:v € A} of sets of atoms such that:

1. S, is a stable model of P
2. v ¢S,

It is clear that given a set of atoms A and a collection {S,:v € A}, it can be checked in
polynomial time that the conditions (1) - (2) are satisfied.

To show NP-hardness, we reason as follows. We first introduce k + 2 new atoms (not
appearing in P): ¢, ¢1,...,qk+1. Let P’ be a logic program consisting of the following
clauses:

1. ¢; «— not(g), for every 1, 1 <1 < k +1,
2. ¢ — not(q),
3. a —by,...,by,not(cy),...,not(c,), not(gqy),
for every rule a « by,...,bn,not(c),...,not(c,) € P.

We have the following observations:

1. A set S’ is a stable model of P’ if and only if S = {q1,...,qk41} or &’ = {q} U S, for
some stable model S of P.
2. The intersection of all stable models of P’ is

(a) {q1,..- ,qk+1}, if P has no stable models
(b) 0, if P has stable models.

Hence, the problem to decide whether P has a stable model is reduced to the question of
deciding the problem Pj for the program P’ (P has a stable model if and only if | S(P’)| <
k). Since P’ can be constructed in polynomial time, it follows that P; is NP-hard. Since it
is in NP, it is NP-complete. o

The construction described in the proof of Theorem 2.1. can be used to show that the
problem LA(Y, f) (informally, whether the approximation ¥ is “good”) is NP-hard. More
precisely, we have the following result.

Theorem 2.2. Let f : N — N and let ¥ be a lower approzimation for the stable model
semantics. If U(P) can be computed in polynomial time (in the size of P) then the prob-
lem LA(Y, f) is NP-hard. If, in addition, f(n) can be computed in polynomial time in n,
LA(Y, f) is NP-complete.

Proof:

Assume there is a polynomial-time decision procedure, say A, for the problem LA(U, f). Put
k = f(0). Next, for a logic program P define P’ as in the proof of Theorem 2.1. Compute
U(P). If \II(P') # 0, then P has no stable models. Otherwise, [¥(P’)| = 0. In this case,
run the procedure A to decide whether |(S(P')| < f(|¥(P'))).

126 G. Gottlob and M. Truszczyhski / Approximating the Stable Model Semantics. ..

If the answer is YES, then |[()S(P’)| < k (recall that k = f(0)) and, reasoning as in
the proof of Theorem 2.1., we obtain that P has stable models. If the answer is NO, then
[NS(P')| > k and P has no stable models. In this way we obtain a polynomial-time.
decision procedure for the problem whether a logic program has a stable model. Since this
latter problem is NP-complete, NP-hardness of LA(W, f) follows.

If, in addition, f(n) can be computed in polynomial time in n, then LA(V¥, f) is in NP.
Indeed, to verify that a program P is a YES instance of LA(Y, f), one has to compute
k = f(|]¥(P)|) and then proceed as described in the proof of Theorem 2.1. 0

In particular, the assertion of Theorem 2.2. holds for the lower approximation operator
T determined by the well-founded semantics.

Corollary 2.1. Let f: N — N. The problem LA(T, f) is NP-hard. If, in addition, f can
be computed in polynomial time, LA(T, f) is NP-complete.

Nex/t, let us observe that if there were a polynomially-computable approximation operator
¥ such that for every logic program P € P

ISP < F(IT(P))),

then LA(¥, f) would be in P (indeed, in such case, all instances of the problem LA(¥, f) are
YES instances). Since, by Theorem 2.2., LA(Y, f) is NP-hard, LA(U, f) € P is impossible,
unless P=NP. Hence, we get the following result.

Corollary 2.2. Let f : N — N. Unless P=NP, there is no polynomially-computable lower
approximation operator such that [[\S(P)| < f(|¥(P)]).

Let us consider now the problem UA(Y, f). Using similar techniques as before we can
prove the following results.

Theorem 2.3. Let f : N — N be such that f(n) > n for every integer n > 0. Let ¥ be
an upper approrimation operator If U can be computed in polynomial time in the size of
a program, then UA(\IJ f) is NP-hard. If, in addztzon, f(n) can be computed in polynomial
time in n, UA(‘II f) is NP-complete.

Proof:

To prove NP-hardness, we will construct a new program Py out of P. First, for each atom a
in P let us introduce a new atom a’. Then, define P’ to be the logic program obtained from P
by replacing, for each atom a, each occurrence of a by a’. Observe that if S is a stable model
of P, then §' = {a":a € S} is a stable model of P’. Introduce also an additional set X of new
atoms so that |X| = f(0) + 1. Let Px be a logic program defined as Px = {z «:z € X}.
Finally, define ‘ :

Py = Px UPUP'U{a « not(p):a,p € A{(P)} U {a’ « not(p):a,p € At(P)},

where, recall, At{(P) denotes the set of all atoms occurring in P.
We will derlve now some useful properties of stable models of the program FP,. Let S be

a stable model of P. Assume first that S = A#(P). Observe that the reduct Py|A#(Py) (see
[4] or [7] for the definition of the reduct of a logic program) satisfies: ‘

Py| At(Py) = Px U P|At(P) U P'|A(P').

Since AY(P) (A#(P')) is the least Herbrand model of P|At(P) (P'|A#(P")), At(P,) is the least
Herbrand model of Fy. Hence, At(FPy) is a stable model of F,.
Next, assume that there is p € AY(P) such that p ¢ S. Let T = S U A#P’) U X and
= At(P)U S’ U X. Observe that the reduct Py|T satisfies

Po|T = Px U P|SU P'|AYP')U {a’ —:d' € AH(P')}.

G. Gottlob and M. Truszczyviski / Approximating the Stable Model Semantics... 127

Since the least Herbrand model of P|S is S, it follows that T is the least Herbrand model of
Py|T. Consequently, T is a stable model of Fy. A similar argument shows that 7" is a stable

model of Py, as well.
Assume now that T is a stable model of F. Observe that X C T. Assume that for

some p € A(P), p ¢ T. Then, the reduct FPy|T contains all clauses of the form a’' «, where
a' € AYP'). Consequently, At(P') CT. Let S =T\ (A{(P’) U X). Since S C At(P) and
sincep ¢ S, Po|T = PxUP|SUP'|A{P')U{d' «:a’ € At(P")}. Since T is the least Herbrand
model of Py|T, it follows that S is the least Herbrand model of P|S. Consequently, S is a
stable model of P. Similarly, if p’ ¢ T for some p’ € A{(P’), then ' =T\ (A{P)U X) is
a stable model of P’ and, consequently, S = {a:a’ € S’} is a stable model of P. Finally, if
T = At(P) U A¢(P') U X, it follows that A#(P) is a stable model of P.

Our discussion proves that:

1. If P has a stable model then |JS(Fp) = A(F), and
2. If P has no stable models then | JS(Fp) = 0.

In particular, observe that if P has stable models then ¥(F,) = A P) (it follows from the
fact that ¥ is an upper approximation operator),

Now, the following procedure decides whether P has a stable model or not. First, compute
Py and ¥(Fp). If ¥(Fy) # At(Fo) then P has no stable models. Assume then that ¥U(F) =
At(P,). Use the decision procedure for UA(V, f) to decide whether |¥(Fy)| < f(|US(Fo)|)-
If no, then

|AL(Po)| = 1% (Po)] > F(IJS(Po)I) 2 1| S(Po)l-
Hence, | JS(P) = § and P has no stable models. Otherwise,

[AUPo)| = |¥(Po)| < F(I|JS(Po))-

Since |AH(B)| = |¥(F)| > |X| > f(0), it follows that | JS(Py) = At(F). Consequently, P
has stable models.

If, in addition, f(n) can be computed in polynomial time in n, the problem UA(¥, f) is
in NP. Indeed, the following procedure can be used to verify that an instance to the problem
UA(Y, f) is a YES instance. Compute |¥(P)|. If |[¥(P)| = 0, then P is a YES instance
(since f is nondecreasing, f(k) > 0 for every integer k > 0). Otherwise, P is a YES instance
if and only if there is a set A of atoms and a collection {S,:v € A} of sets of atoms such
that:

LA,
2. [9(P)] < f(IA)),

3. for every v € A, S, is a stable model of P,
4. for every a € A, a € S,.

Hence, at this point the procedure nondeterministically guesses A and {S,:v € A}, and
checks that conditions (1) — (4) hold. Since it takes polynomial time to check conditions
(1) — (4), the problem UA(VY, f) is in NP.]

Similarly as before, we have two corollaries. First of them deals with the operator M(P)
— an upper approximation operator implied by the well-founded semantics.

Corollary 2.3. Let f : N — N be such that f(n) > n for every integer n > 0. Then, the
problem UA(M, f) is NP-hard. If, in addition, ¥ can be computed in polynomial time in
the size of a program, then the problem UA(M, f) is NP-complete.

Corollary 2.4. Let f : N — N be such that f(n) > n for every integer n > 0. Unless
P = NP, there is no polynomially-computable upper approximation operator such that

[e(P)| < F(IUS(P))).

128 G. Gottlob and M. Truszczyriski / Approximating the Stable Model Semantics. ..

References

[1] T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and moderately
grounded expansions. Fundamenta Informaticae, 17:31-53, 1992.

[2] T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In D. Miller, editor, Proceedings of the 1993 Inter-
national Symposium on Logic Programming, pages 266-278. MIT Press, 1993.

[3] T. Eiter and G. Gottlob. Propositional circumscription and extended closed world
reasoning are [17-complete. Theoretical Computer Science, 114:231 — 245, 1993.

[4] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski and
K. Bowen, editors, Proceedings of the 5th international symposium on logic programming,
pages 1070-1080, Cambridge, MA., 1988. MIT Press.

[5] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Compu-
tation, 2:397-425, 1992.

[6] W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the ACM, 38:588-619,
1991.

[7] W. Marek and M. Truszczynski. Nonmonotonic logics; context-dependent reasoning.
Berlin: Springer-Verlag, 1993.

[8] J. Schlipf. The expressive powers of the logic programming semantics. Journal of the -
Computer Systems and Science, 1994. To appear, A preliminary version appeared in
the Ninth ACM Symposium on Principles of Database Systems, 1990.

[9] G.F. Schwarz, and M. Truszczyriski. Nonmonotonic reasoning is sometimes easier. Pro-
ceedings of the Kurt Godel Symposium, pp. 313 - 324, Lecture Notes in Computer
Science, Springer-Verlag.

[10] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics
for general logic programs. Journal of the ACM, 38:620 - 650, 1991.

