Approximating the Stable Model Semantics is Hard*

Georg Gottlob

Institut für Informationssysteme Technische Universität Wien Paniglgasse 16, 1040 Wien, Austria gottlob@vexpert.dbai.tuwien.ac.at

Mirosław Truszczyński

Department of Computer Science University of Kentucky Lexington, KY 40506-0046 mirek@cs.engr.uky.edu

Abstract. In this paper we investigate the complexity of problems concerned with approximating the stable model semantics. We show that under rather weak assumptions it is NP-hard to decide whether the size of a polynomially computable approximation is within a constant factor from the size of the intersection (union) of stable models of a program. We also show that unless P=NP, no approximation exists that uniformly bounds the intersection (union) of stable models.

Keywords: Logic programming, stable models, well-founded semantics, computational complexity

1. Introduction

In the past several years the complexity of reasoning with nonmonotonic logics has been studied extensively [3, 1, 2, 5, 9]. In particular, it is well-known that several decision problems involving stable models of logic programs are NP-complete or co-NP-complete [6, 8]. For example, the problem whether a finite propositional logic program has a stable model is NP-complete, and the problem whether a given atom is in the intersection of all stable models is co-NP-complete. In this note we consider the complexity of several related approximation problems.

Let \mathcal{P} be a class of finite propositional logic programs over a denumerable set of propositional variables VAR. Let P be a logic program from \mathcal{P} . By At(P) (N(P)) we denote the set (the number) of atoms occurring in P. By $\mathcal{S}(P)$ we denote the family of all stable models of P.

By a lower approximation for the stable model semantics we mean any operator $\Psi: \mathcal{P} \mapsto 2^{VAR}$ such that

$$\Psi(P) \subseteq \bigcap \mathcal{S}(P)$$
.

^{*}The second author was partially supported by the National Science Foundation under grants IRI-9012902 and IRI-9400568.

By an upper approximation for the stable model semantics we mean any operator $\Psi: \mathcal{P} \mapsto 2^{VAR}$ such that

$$\bigcup \mathcal{S}(P) \subseteq \Psi(P) \subseteq At(P).$$

The well-founded semantics [10] yields examples of approximation operators. Let us recall that the well founded-semantics assigns to a program P two disjoint sets of atoms: T(P) and F(P). The atoms in T(P) are interpreted as true and the atoms in F(P) are treated as false under the well-founded semantics of P. It is well-known that

$$T(P) \subseteq \bigcap \mathcal{S}(P)$$
 and $F(P) \subseteq At(P) \setminus \bigcup \mathcal{S}(P)$.

Let us define

$$M(P) = At(P) \setminus F(P).$$

The atoms in M(P) may be regarded as *possibly true* under the well-founded semantics, as it failed to establish that they are false. Clearly,

$$\bigcup \mathcal{S}(P) \subseteq M(P) \subseteq At(P).$$

Hence, T(P) is a lower and M(P) is an upper approximation operator.

Clearly, the closer the lower (upper) approximation comes to the intersection (union) of all stable models of a program, the better. The question that we deal with in this note is: how difficult it is to decide whether an approximation produces a good estimate of the intersection (union) of the stable models of a program. For instance, how difficult it is to decide whether the size of the approximation is within a constant factor from the size of the intersection (union). More formally, let $f: \mathbb{N} \to \mathbb{N}$ (throughout the paper, \mathbb{N} denotes the set of non-negative integers) and let Ψ be an arbitrary approximation operator for the stable model semantics. In the paper we consider the following two problems. In the first of them Ψ is assumed to be a lower approximation, in the second one — an upper approximation.

LA (Ψ, f) : Let Ψ be a lower approximation for the stable model semantics and let $f : \mathbb{N} \to \mathbb{N}$ (Ψ and f are fixed and are not part of the input). Given a logic program P decide whether

$$|\bigcap \mathcal{S}(P)| \le f(|\Psi(P)|).$$

 $\mathbf{UA}(\Psi, f)$: Let Ψ be an upper approximation for the stable model semantics and let $f: \mathbf{N} \to \mathbf{N}$ (Ψ and f are arbitrary but fixed and are not part of the input). Given a logic program P decide whether

$$|\Psi(P)| \le f(|\bigcup \mathcal{S}(P)|).$$

We show that for every lower approximation Ψ that can be computed in polynomial time in the size of a program, the problem $\mathrm{LA}(\Psi,f)$ is NP-hard (and, even for some very simple functions f, NP-complete). In particular, the problem is NP-hard for the well-founded semantics operator T. In other words, after one computes T(P), it is infeasible to establish whether the approximation T(P) is close to $\bigcap \mathcal{S}(P)$. In addition, it follows that if $P \neq NP$ then there is no polynomially-computable lower approximation operator Ψ and no function $f: \mathbf{N} \to \mathbf{N}$ such that for every logic program $P \in \mathcal{P}$:

$$|\bigcap \mathcal{S}(P)| \le f(|\Psi(P)|).$$

Similar results are also shown for the problem $UA(\Psi, f)$ and the well-founded semantics operator M.

2. Results

Let k be a non-negative integer. Define:

 P_k : Given a logic program P, decide whether $|\bigcap S(P)| \leq k$.

We have the following result on the complexity of P_k .

Theorem 2.1. For every non-negative integer k, the problem P_k is NP-complete.

Proof:

First, let us observe that, for every $k \geq 0$, P_k is in NP. Indeed, if $k \geq N(P)$ (recall that N(P) is the number of all atoms in P), then P is a YES instance to P_k . Otherwise, a witness that an instance of the problem P_k is a YES instance consists of a set A of N(P) - k atoms occurring in P and a collection $\{S_v : v \in A\}$ of sets of atoms such that:

- 1. S_v is a stable model of P
- 2. $v \notin S_v$.

It is clear that given a set of atoms A and a collection $\{S_v : v \in A\}$, it can be checked in polynomial time that the conditions (1) - (2) are satisfied.

To show NP-hardness, we reason as follows. We first introduce k+2 new atoms (not appearing in P): q, q_1, \ldots, q_{k+1} . Let P' be a logic program consisting of the following clauses:

- 1. $q_i \leftarrow \mathbf{not}(q)$, for every $i, 1 \le i \le k+1$,
- 2. $q \leftarrow \mathbf{not}(q_1)$,
- 3. $a \leftarrow b_1, \ldots, b_m, \mathbf{not}(c_1), \ldots, \mathbf{not}(c_n), \mathbf{not}(q_1),$ for every rule $a \leftarrow b_1, \ldots, b_m, \mathbf{not}(c_1), \ldots, \mathbf{not}(c_n) \in P$.

We have the following observations:

- 1. A set S' is a stable model of P' if and only if $S' = \{q_1, \ldots, q_{k+1}\}$ or $S' = \{q\} \cup S$, for some stable model S of P.
- 2. The intersection of all stable models of P' is
 - (a) $\{q_1, \ldots, q_{k+1}\}$, if P has no stable models
 - (b) \emptyset , if P has stable models.

Hence, the problem to decide whether P has a stable model is reduced to the question of deciding the problem P_k for the program P' (P has a stable model if and only if $|\bigcap S(P')| \le k$). Since P' can be constructed in polynomial time, it follows that P_k is NP-hard. Since it is in NP, it is NP-complete.

The construction described in the proof of Theorem 2.1. can be used to show that the problem $LA(\Psi, f)$ (informally, whether the approximation Ψ is "good") is NP-hard. More precisely, we have the following result.

Theorem 2.2. Let $f: \mathbb{N} \to \mathbb{N}$ and let Ψ be a lower approximation for the stable model semantics. If $\Psi(P)$ can be computed in polynomial time (in the size of P) then the problem $LA(\Psi, f)$ is NP-hard. If, in addition, f(n) can be computed in polynomial time in n, $LA(\Psi, f)$ is NP-complete.

Proof:

Assume there is a polynomial-time decision procedure, say \mathcal{A} , for the problem LA(Ψ , f). Put k = f(0). Next, for a logic program P define P' as in the proof of Theorem 2.1. Compute $\Psi(P')$. If $\Psi(P') \neq \emptyset$, then P has no stable models. Otherwise, $|\Psi(P')| = 0$. In this case, run the procedure \mathcal{A} to decide whether $|\bigcap \mathcal{S}(P')| \leq f(|\Psi(P')|)$.

If the answer is YES, then $|\bigcap S(P')| \leq k$ (recall that k = f(0)) and, reasoning as in the proof of Theorem 2.1., we obtain that P has stable models. If the answer is NO, then $|\bigcap S(P')| > k$ and P has no stable models. In this way we obtain a polynomial-time decision procedure for the problem whether a logic program has a stable model. Since this latter problem is NP-complete, NP-hardness of $LA(\Psi, f)$ follows.

If, in addition, f(n) can be computed in polynomial time in n, then $LA(\Psi, f)$ is in NP. Indeed, to verify that a program P is a YES instance of $LA(\Psi, f)$, one has to compute $k = f(|\Psi(P)|)$ and then proceed as described in the proof of Theorem 2.1.

In particular, the assertion of Theorem 2.2. holds for the lower approximation operator T determined by the well-founded semantics.

Corollary 2.1. Let $f: \mathbb{N} \to \mathbb{N}$. The problem LA(T, f) is NP-hard. If, in addition, f can be computed in polynomial time, LA(T, f) is NP-complete.

Next, let us observe that if there were a polynomially-computable approximation operator Ψ such that for every logic program $P \in \mathcal{P}$

$$|\bigcap \mathcal{S}(P)| \le f(|\Psi(P)|),$$

then $LA(\Psi, f)$ would be in P (indeed, in such case, all instances of the problem $LA(\Psi, f)$ are YES instances). Since, by Theorem 2.2., $LA(\Psi, f)$ is NP-hard, $LA(\Psi, f) \in P$ is impossible, unless P=NP. Hence, we get the following result.

Corollary 2.2. Let $f: \mathbb{N} \to \mathbb{N}$. Unless $P=\mathbb{N}P$, there is no polynomially-computable lower approximation operator such that $|\bigcap \mathcal{S}(P)| \leq f(|\Psi(P)|)$.

Let us consider now the problem $UA(\Psi, f)$. Using similar techniques as before we can prove the following results.

Theorem 2.3. Let $f: \mathbb{N} \to \mathbb{N}$ be such that $f(n) \geq n$ for every integer $n \geq 0$. Let Ψ be an upper approximation operator. If Ψ can be computed in polynomial time in the size of a program, then $UA(\Psi, f)$ is NP-hard. If, in addition, f(n) can be computed in polynomial time in n, $UA(\Psi, f)$ is NP-complete.

Proof:

To prove NP-hardness, we will construct a new program P_0 out of P. First, for each atom a in P let us introduce a new atom a'. Then, define P' to be the logic program obtained from P by replacing, for each atom a, each occurrence of a by a'. Observe that if S is a stable model of P, then $S' = \{a' : a \in S\}$ is a stable model of P'. Introduce also an additional set X of new atoms so that |X| = f(0) + 1. Let P_X be a logic program defined as $P_X = \{x \leftarrow : x \in X\}$. Finally, define

$$P_0 = P_X \cup P \cup P' \cup \{a \leftarrow \mathbf{not}(p') : a, p \in At(P)\} \cup \{a' \leftarrow \mathbf{not}(p) : a, p \in At(P)\},\$$

where, recall, At(P) denotes the set of all atoms occurring in P.

We will derive now some useful properties of stable models of the program P_0 . Let S be a stable model of P. Assume first that S = At(P). Observe that the reduct $P_0|At(P_0)$ (see [4] or [7] for the definition of the reduct of a logic program) satisfies:

$$P_0|At(P_0) = P_X \cup P|At(P) \cup P'|At(P').$$

Since At(P) (At(P')) is the least Herbrand model of P|At(P) (P'|At(P')), $At(P_0)$ is the least Herbrand model of P_0 . Hence, $At(P_0)$ is a stable model of P_0 .

Next, assume that there is $p \in At(P)$ such that $p \notin S$. Let $T = S \cup At(P') \cup X$ and $T' = At(P) \cup S' \cup X$. Observe that the reduct $P_0|T$ satisfies

$$P_0|T = P_X \cup P|S \cup P'|At(P') \cup \{a' \leftarrow : a' \in At(P')\}.$$

Since the least Herbrand model of P|S is S, it follows that T is the least Herbrand model of $P_0|T$. Consequently, T is a stable model of P_0 . A similar argument shows that T' is a stable model of P_0 , as well.

Assume now that T is a stable model of P_0 . Observe that $X \subseteq T$. Assume that for some $p \in At(P)$, $p \notin T$. Then, the reduct $P_0|T$ contains all clauses of the form $a' \leftarrow$, where $a' \in At(P')$. Consequently, $At(P') \subseteq T$. Let $S = T \setminus (At(P') \cup X)$. Since $S \subseteq At(P)$ and since $p \notin S$, $P_0|T = P_X \cup P|S \cup P'|At(P') \cup \{a' \leftarrow : a' \in At(P')\}$. Since T is the least Herbrand model of $P_0|T$, it follows that S is the least Herbrand model of P|S. Consequently, S is a stable model of P. Similarly, if $p' \notin T$ for some $p' \in At(P')$, then $S' = T \setminus (At(P) \cup X)$ is a stable model of P' and, consequently, $S = \{a: a' \in S'\}$ is a stable model of P. Finally, if $T = At(P) \cup At(P') \cup X$, it follows that At(P) is a stable model of P.

Our discussion proves that:

- 1. If P has a stable model then $\bigcup S(P_0) = At(P_0)$, and
- 2. If P has no stable models then $\bigcup S(P_0) = \emptyset$.

In particular, observe that if P has stable models then $\Psi(P_0) = At(P_0)$ (it follows from the fact that Ψ is an upper approximation operator),

Now, the following procedure decides whether P has a stable model or not. First, compute P_0 and $\Psi(P_0)$. If $\Psi(P_0) \neq At(P_0)$ then P has no stable models. Assume then that $\Psi(P_0) = At(P_0)$. Use the decision procedure for $UA(\Psi, f)$ to decide whether $|\Psi(P_0)| \leq f(|\bigcup S(P_0)|)$. If no, then

$$|At(P_0)| = |\Psi(P_0)| > f(|\bigcup \mathcal{S}(P_0)|) \ge |\bigcup \mathcal{S}(P_0)|.$$

Hence, $\bigcup S(P_0) = \emptyset$ and P has no stable models. Otherwise,

$$|At(P_0)| = |\Psi(P_0)| \le f(|\bigcup \mathcal{S}(P_0)|).$$

Since $|At(P_0)| = |\Psi(P_0)| > |X| > f(0)$, it follows that $\bigcup S(P_0) = At(P_0)$. Consequently, P has stable models.

If, in addition, f(n) can be computed in polynomial time in n, the problem $\mathrm{UA}(\Psi,f)$ is in NP. Indeed, the following procedure can be used to verify that an instance to the problem $\mathrm{UA}(\Psi,f)$ is a YES instance. Compute $|\Psi(P)|$. If $|\Psi(P)|=0$, then P is a YES instance (since f is nondecreasing, $f(k)\geq 0$ for every integer $k\geq 0$). Otherwise, P is a YES instance if and only if there is a set A of atoms and a collection $\{S_v:v\in A\}$ of sets of atoms such that:

- 1. $A \neq \emptyset$,
- 2. $|\Psi(P)| \leq f(|A|)$,
- 3. for every $v \in A$, S_v is a stable model of P,
- 4. for every $a \in A$, $a \in S_a$.

Hence, at this point the procedure nondeterministically guesses A and $\{S_v : v \in A\}$, and checks that conditions (1) — (4) hold. Since it takes polynomial time to check conditions (1) — (4), the problem $UA(\Psi, f)$ is in NP.

Similarly as before, we have two corollaries. First of them deals with the operator M(P)—an upper approximation operator implied by the well-founded semantics.

Corollary 2.3. Let $f: \mathbb{N} \to \mathbb{N}$ be such that $f(n) \geq n$ for every integer $n \geq 0$. Then, the problem $\mathrm{UA}(M,f)$ is NP-hard. If, in addition, Ψ can be computed in polynomial time in the size of a program, then the problem $\mathrm{UA}(M,f)$ is NP-complete.

Corollary 2.4. Let $f: \mathbb{N} \to \mathbb{N}$ be such that $f(n) \geq n$ for every integer $n \geq 0$. Unless $P = \mathbb{NP}$, there is no polynomially-computable upper approximation operator such that $|\Psi(P)| \leq f(|\bigcup S(P)|)$.

References

- [1] T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and moderately grounded expansions. Fundamenta Informaticae, 17:31-53, 1992.
- [2] T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming and application to nonmonotonic logics. In D. Miller, editor, *Proceedings of the 1993 International Symposium on Logic Programming*, pages 266–278. MIT Press, 1993.

[3] T. Eiter and G. Gottlob. Propositional circumscription and extended closed world reasoning are Π_2^P -complete. Theoretical Computer Science, 114:231-245, 1993.

- [4] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski and K. Bowen, editors, *Proceedings of the 5th international symposium on logic programming*, pages 1070–1080, Cambridge, MA., 1988. MIT Press.
- [5] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Computation, 2:397-425, 1992.
- [6] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38:588-619, 1991.
- [7] W. Marek and M. Truszczyński. Nonmonotonic logics; context-dependent reasoning. Berlin: Springer-Verlag, 1993.
- [8] J. Schlipf. The expressive powers of the logic programming semantics. Journal of the Computer Systems and Science, 1994. To appear, A preliminary version appeared in the Ninth ACM Symposium on Principles of Database Systems, 1990.
- [9] G.F. Schwarz, and M. Truszczyński. Nonmonotonic reasoning is sometimes easier. Proceedings of the Kurt Gödel Symposium, pp. 313 324, Lecture Notes in Computer Science, Springer-Verlag.
- [10] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for general logic programs. *Journal of the ACM*, 38:620 650, 1991.