Reihe Informatik
29/95

How to interpret and establish
consistency results for semantics of
concurrent programming languages

C. Baier, M.E. Majster-Cederbaum

1

o onmmr i, s PYORE LSRRI, ST AY 4

T by o 0 7 AR S [S e |

How to interpret and establish consistency results
for semantics of concurrent programming languages

Christel Baier, Mila Majster-Cederbaum
Fakultat fiir Mathematik und Informatik
Universitat Mannheim, 68131 Mannheim, Germany
{baier,mcb}@pil.informatik.uni-mannheim.de

February 14, 1996

Abstract

It is meaningful that a language is provided with several semantic descriptions:
e.g. one which serves the needs of the implementor, another one that is suitable for
specification and yet another one that will be used to explain the language to the
user. In this case one has to guarantee that the various semantics are ’consistent’.
The attempt of this paper is to clarify the notion 'consistency’ and to present a
general framework and theorems for consistency results.

Contents
1 Introduction 2

2 Several notions of consistency
2.1 The existence of a semantics suitable for a given specification formalism . .
2.2 Consistency w.r.t. a specification formalism 6

2.3 Most concrete common abstractions and most abstract common refinements 8

2.4 Weak and strong consistency L o000 10
2.5 Application: Verification and stepwise refinement 12
3 Compositional semantics 13
3.1 The existence of a semantics suitable for modular verification 15

3.2 Most concrete common abstractions and most abstract common refinements 17

3.3 Weak consistency of compositional semantics 19

4 Adequacy and full abstractness 21

5 Weak consistency results for denotational semantics 22

5.1 Denotational semantics in the metric approach 23
5.2 Denotational semantics in the cpo approach 25
6 Conclusion and related work 31
A A categorical characterization of weak consistency 32

1 Introduction

Various methods to define the semantics of languages that allow for parallelism, commu-
nication and synchronisation have been proposed in the last years. They can be classified
by several criteria as e.g. operational versus denotational versus axiomatic methods, in-
terleaving versus true parallelism approaches, branching time versus linear time models,
event versus action based models, choice of mathematical discipline to assist the handling
of recursion and the solution of domain equations. A variety of semantical desriptions
have been proposed for given languages like CCS or TCSP and in the sequel ’consis-
tency’ results that relate different semantics in some way have been established (e.g.
(3, 6, 10, 14, 18, 25, 29]). The aim of this paper is to clarify these notions of consistency.
For this purpose we take the following view of semantics:

The semantics of a (nondeterministic) program P should give a description of the (pos-
sible) behaviours of P which provides the possibility to prove that P satisfies its specifi-
cation, i.e. to verify P. There are different ways to give specifications for programs: In
process algebra the languages for specifications and implementations coincide and satis-
faction usally means either some kind of equivalence = (e.g. strong or weak bisimulation
equivalence [32] or failure equivalence [11]) or some kind of preorder C (e.g. partial
bisimulation [20] or some kind of testing preorder [34]). Then a program P satisfies a
specification S iff P = S resp. P C S or equivalently iff P € Es where Es means
the equivalence class of S resp. the set of predecessors of S. In the logical approach a
specification is a logical formula (or a set of formulas). The usual way to define what is
meant by ’a program P satisfies a formula S (or a set of formulas)’ is to fix a semantics
a such that the meaning a(P) of P yields an interpretation for the underlying logic. P
satisfies S iff a(P) is a model of S, i.e. S evaluates to true under the interpretation
a(P). For instance, transition system semantics yield interpretations of modal logic [21],
string semantics can be used to interpret linear time temporal logics [26, 38], computation
tree semantics for interpreting branching time temporal logics [13], petri net semantics to
interpret concurrent temporal logics [40]. Regardless the formalism in which the specifi-
cation is given a specification S can be considered as a subset Eg of the set of programs
P which is under consideration:

Es = { PeP : P satisfies S }

Given a specification S for a program P, verification of P means proving P € Eg. In the
following we assume that for the set P of programs under consideration there is a collection

Prop of interesting properties which a given program can fulfill or not and a specification
is an intersection of such properties. We say a semantics @ : P — A is ’suitable for
checking a property E’ iff for all P € P: a(P) € a(F) implies P € FE or equivalently iff
a~'(a(E)) = E. Then instead of proving P € E one proves a(P) € a(E) which might
be easier since a(P) is an abstraction of P. In this sense 'suitable for checking property
E’ does not mean that the semantics a really offers a method for testing whether program
P has property E or not. This is because it might be the case that the problem whether
a given element a € A is contained in the set a(E) is undecidable. It only ensures that a
distinguishes programs satisfying property E from those programs not satisfying property
E. This a necessary (but not sufficient) condition for the capability to test property E
with help of the semantics a.

By the ’consistency’ of two semantics a; : P = Ay, ag : P — Ay wr.t. the set Prop
of properties we mean the equivalence of a;, ay w.r.t. the capability of proving that
a program satisfies its specification: We say that a;, a, are consistent w.r.t. Prop iff
both ay, az are suitable to check the properties E € Prop. This notion of consistency
is equivalent to the existence of a semantics 3 : P — B which is suitable for checking
the properties E € Prop and functions f; : A; & B such that fioa; = fooay = 8.
(Theorem 2.10). Many results in the literature can be interpreted as consistency results
in this sense (e.g. [3, 9, 10, 18, 19, 39]). In order to show the consistency w.r.t. a set
of properties one has to deal with equations of the form foa = § where a : P — A,
B : P — B are semantics and f : A = B is a function. In this case we say 3 is an
abstraction of @ and «, 3 are weakly consistent. In the literature a variety of weak
consistency results has been established. E.g. [6, 7, 14, 25, 41] contain weak consistency
results of the form f o O = D where O is an operational, D a denotational semantics.
[4] shows that the pomset semantics of [7] is an abstraction of the denotational prime
event structure semantics of {18]. [30] gives a cpo-based denotational semantics D, and
a denotational semantics Dy based on the metric approach for CSP and establishes a
weak consistency result of the form f o Dems = Depo.

This paper investigates the notion of consistency of two (or more) semantics and presents
sufficient and necessary conditions for establishing consistency results. Section 2 intro-
duces the several notions of consistency (consistency w.r.t. a set of properties, consistency
relative to a more abstract semantics, weak and strong consistency) where no restrictions
on the syntax of the language in which the programs are written or on the semantics
are made. Theorem 2.4 shows that for a given specification formalism (i.e. a set of
properties) there exists a semantics which identifies exactly those programs which can-
not be distinguished by any of the given properties. l.e. this semantics is suitable for
proving the correctness of programs whose specifications are given in this specification
formalism. Theorem 2.11 and Theorem 2.12 show the existence of most concrete common
abstractions resp. most abstract common refinements for arbitrary families of semantics.
Most concrete common abstractions combine the different views which are given by the
semantics since it identifies exactly those programs which are identified by each of the
semantics. The most abstract common refinement can be used to check properties which
can be checked by at least one of the semantics. Section 3 deals with compositional se-
mantics where the existence of semantic operators is required but no additional structures
like metric or partial order is assumed. Theorem 3.9 asserts the existence of a compo-
sitional semantics which is suitable for modular verification of programs. We show that

the most concrete common abstraction as well as the most abstract refinement of compo-
sitional semantics are compositional (Theorem 3.10 and 3.11). In section 4 we show the
relation between waek consistency and adequacy and full abstraction. Section 5 extends
the results of [4] where a general framework for dealing with denotational semantics in
the metric and cpo approach is presented. It presents conditions for establishing weak
consistency results foa = § where o is an arbitrary compositional semantics and 3 either
a metric semantics (section 5.1) or a cpo semantics (section 5.2). In the appendix we give
a categorical characterisation of weak consistency.

2 Several notions of consistency

This section defines the notions consistency w.r.t. a set of properties, consistency rela-
tive to a semantics §, strong and weak consistency and presents sufficient and necessary
conditions for establishing consistency results in this sense. We assume a fixed set P of
programs where we do not make any restriction on the programming language in which
the programs are written. The semantics under consideration are arbitrary functions
a: P — A. A property is any subset of P. A program P has property E if P€ E. A
specification formalism is a set Prop of properties and a specification (in this specification
formalism) is an intersection of properties in Prop.

2.1 The existence of a semantics suitable for a given specifica-
tion formalism

Informally, a semantics a : P — A is suitable for a specification formalism iff it distin-
guishes programs satisfying a certain specification (of this specification formalism) from
those not satisfying this specification. Formally:

Definition 2.1 Let E be a property. A semantics o : P — A is suitable for checking F
iff oY a(E)) = E. In this case we writea = E.

If Prop is a specification formalism and a a semantics then « is suitable for Prop iff
a | E for all E € Prop.

In order to prove that @ |= F it is sufficient to show that a~!(a(E)) C F (since E is
always a subset of o~ !(a(E)).)

In Theorem 2.4 we show that for each specification formalism (i.e. each set of properties)
there exists a semantics a which is suitable to verify the correctness of programs w.r.t.
to this specification formalism in the sense that for each property E under consideration:
a = E. Moreover we show the existence of such a semantics o which is the most
‘abstract’ one under all those semantics.

Definition 2.2 Leta: P — A and B : P — B be semantics. 3 is called an abstraction
of a iff there exists a function f : A = B such that foa = . In this case we say f is
an abstraction from a to 3.

Lemma 2.3 Leta:P — A and 8 : P — B be semantics. The following are equivalent:

(a) B is an abstraction of a.

(b) For all P, Q € P: a(P) = a(Q) implies 3(P) = 8(Q).
(c) For all properties E: 3 |= E impliesa | E.

Proof:
(a) => (c): Let 8 = foaand § | E. We have to show that a~!(a(E)) C E.
Since § = f o« and since f7}(f(a(E))) 2 a(E) we have:

E = g7YB(E) = o (f(f(a(B)) 2 a M (a(E))

(c) => (b): Let a(P) = «a(Q). Weput E = 37}(8(P)). We have to show that Q € E.
It is clear that # = E. By assumption (c) we have: a = FE. Since P € E and
a(P) = a(Q) we have:

Q € a'(a(P)) C a(e(E)) = E
(b) = (a): Let b € B be a fixed element. We define:

prasn g = {J0) ¢ Hazaln)

f is welldefined by assumption (b) and foa = g. O

Often a property is described in terms of a semantics a : P — A, i.e. it is of the form
a1 (Ag) where Ay is a subset of A. In this case the semantics « (and by Lemma 2.3 each
semantics for which o is an abstraction) is suitable for checking the property a~!(A).
For instance, the termination property E for a CCS-like language can easily be defined
by a tree semantics: We put E = a~!(Ap) where 4y is the set of trees of finite height
and a a tree semantics in the sense of [32] or [42]. Having a semantics a : P — A and
a logic L such that formulas of L can be interpreted over the elements of A (e.g. a is a
transition system semantics and L a branching time logic like CTL [13] or a modal logic
like HM L [21]) then every formula ¢ of L induces a property F, = a~'(A4,) where 4,
is the set of elements a € A such that ¢ evaluates to true under the interpretation a.

Theorem 2.4 Let Prop be a set of properties. There ezists a semantics a such that:

(1) @« = E for all E € Prop

(2) Whenever § is a semantics also satisfying (1) then o is an abstraction of 3.

Proof: If P € P then we put £p = {E € Prop: P € E}. We define the following

equivalence relation on P:
P=Q < €&p =£&g

Let A = P/
function a(P)

be the set of equivalence classes and let a : P — A be the canonical
[P] where [P] is the equivalence class of P.

nm

Claim 1: ¢ | E for all E € Prop.

Proof: If E € Prop and P € a™'(a(E)) then a(P) = a(Q) forsome Q € E. Le. P = Q.
Hence £ € £ = Ep and therefore P € E.

Claim 2: If §: P — B is also a semantics with § = FE for all E € Prop then « is an
abstraction of 3.

Proof: By Lemma 2.3 it is sufficient to show that 3(P) = B(Q) implies a(P) = «(Q).
Let B(P) = #(Q). Then we have to show that P = Q,i.e. £p = Eg. By symmetry it
is sufficient to show that £p C £¢. Let £ € £p. Then:

Q € g7'(B(P) C F'(B(E) = E
Hence F € £g. O

Remark 2.5 If o is a semantics then: o' fulfills the conditions (1) and (2) of Theorem
2.4 if and only if o identifies exactly those programs P, @ which cannot be distinguished
by any property £ € Prop. O

2.2 Consistency w.r.t. a specification formalism

In order to compare two (or more) semantics with regard to their capability of verifying
the correctness of the programs we have to look for the properties £ which can be checked
by them. If both semantics are suitable for checking all properties E of a given specifi-
cation formalism we consider them as consistent w.r.t. this specification formalism. [23]
proposes a notion of consistency relative to a denotational semantics. We generalize this
notion and define consistency of two or more semantics a; relative to another semantics
0 (not necessary a denotational one) and show that the consistency w.r.t. a specification
formalism (a set of properties Prop) is equivalent to the consistency relative to a semantics
B which is suitable for checking the properties of Prop (Theorem 2.10).

Definition 2.6 Let Prop be a set of properties and 8 : P — B a semantics. A family
()i € I of semantics is called consistent w.r.t. Prop iff

aile

for all E € Prop. (a;):er is called B-consistent iff there exists abstractions f; from «; to

8.

Consistency results that assert that a semantics § is an abstraction of another semantics
a are special cases of -consistency results. A list of publications which establish §-
consistency results of this form is given in section 2.4. §-consistency results that show
the consistency of two semantics relative to a more abstract semantics 3 are presented
e.g. in [3, 9, 10, 18, 19, 39]. In the following two examples we explain in which way the
results of [3, 9, 18] can be considered as §-consistency results. In a similar way the results
of [10, 19, 39] can be interpreted as 3-consistency results.

Example 2.7 [18] and [3] show the consistency of the operational transition system se-
mantics O of [35] and a denotational prime event structure semantics D for guarded
TCSP in the following sense:

O(P) = trans(D(P))

Here trans is a function which assigns a transition system to each prime event structure
and ~ denotes weak bisimulation equivalence in the sense of [32]. Let f be the function
which maps each transition system to its weak bisimulation equivalence class then the
result of [3, 18] says f o O = f o transo D which is a consistency result in our sense: @
and D are (-consistent where § = fo (0. O

Example 2.8 [9] gives a flow event structure semantics £ and a transition system se-
mantics 7 for a CCS like language. The transition labels in 7 (P) are deterministic
non-recursive programs, i.e. programs that are built from atomic actions, sequential and
parallel composition. The computations of the event structures are described by transi-
tions
ELH F

where E, E' are event structures and p a finite pomset (i.e. a flow event structure that
describes a deterministic non-recursive process). Such a transition means that E may
perform the process described by p such that the behaviour of the remaining process is

given by E’. [9] shows the adequacy’ of £ and T in the following sense: For each program
P:

e If there is a step P = P’ w.r.t. the transition system semantics then:
E(P) B &(P)
where p = E(w).

e If&(P) & FE'then P 3 P for some deterministic non-recursive program w and
some program P’ such that £(w) = p and E(P') = E'.

Let f be the function that assigns to each flow event structure the bisimulation equivalence
class of the associated transition system (whose labels are finite pomsets). g denotes the
function that assigns to each transition system whose labels a deterministic non-recursive
programs the bisimulation equivalence class of the transition system which one gets by
substituting the labels w by the pomset £(w). Then the adequacy result of [9] says:
fo& = goT. Hence £ and T are B-consistent where 8 = fo&. O

Each family (a;);er of semantics a; is 3-consistent where 8 : P — B is a semantics which
maps P into a one-element domain B. Hence the ’quality’ of 3-consistency depends on

the ’quality’ of the semantics § (i.e. the set of properties £ with 8 = E). By Lemma
2.3 we get:”

Lemma 2.9 Let (a;)icr be a family of semantics and 3 : P — B a semantics. Then
(ai)ier is B-consistent if and only if for each property E: 3 &= E implies o; &= E for
alliel.

By Lemma 2.9: Let (a;)icr be a family of semantics which is S-consistent. Then (a;);e;
is consistent w.r.t. Prop = {87!(By) : By C B} where B is the range of 3.

Theorem 2.10 Let Prop be a set of properties and (o;)ic; a family of semantics. Then
(qu)ier is consistent w.r.t. Prop if and only if there ezists a semantics 3 such that 8 = FE
for all E € Prop and such that (o;);cr is B-consistent.

Proof: ’if’ follows by Lemma 2.9, ’only if’ by Theorem 2.4. O

2.3 Most concrete common abstractions and most abstract
common refinements

In the situation where for the same language several semantic descriptions are given (e.g.
one serving the needs of the implementation, one that is suitable for the verification and
another one that explains the language to the user) it might be useful to combine all the
different views, i.e. to look for the properties which can be checked by all semantics or to
look for the properties which can be checked by at least one the semantics. The following
two theorems show that for each family (o;) of semantics there exist

e 2 least abstract semantics which is suitable to check exactly those properties which
can be checked by each of the semantics «;,

e a most abstract semantics which is suitable to check all those properties which can
be checked by some of the semantics a;.

In other words, there exist a most concrete common abstraction and a most abstract
common refinement. Because of Lemma 2.9 the most concrete common abstraction o can
be used to show the consistency of the semantics w.r.t. a specification formalism: One
has to prove that each property of the specification formalism can be checked by a. The
most abstract common refinement can be used to prove additional properties that cannot
be expressed by the specification formalism which in general only provides the possibility
to describe what a program has to do but not how it has to be done. Hence the most
abstract common refinement is suitable to verify properties which assert something about
how the program is implemented (e.g. time and space complexity of the implementation).

Theorem 2.11 Let (o;)icr be a family of semantics. Then there exists a semantics a
such that:

(1) (a;)ier s a-consistent.

(2) Whenever 3 is a semantics such that (o;) is 3-consistent then there exists a unique
abstraction from a to (3.

For each semantics a satisfying (1) and (2) and each property E:

aEFE < o | FE foraliel

Proof: Let A; be the range of o;. We put
i€l
where |¥) means disjoint union and = the smallest equivalence relation on | A; such that:
a,-(P) = aj(P) VZ,]EI, PeP

Let f;: A; = A, fi(a) = [a], where [a] denotes the equivalence class of a w.r.t. =. Let
a: P — A be given by:
a(P) = [ai(P)]

Then a = f;o0¢; for all i € I. Hence (;) is a-consistent.
Claiml: o F F <<= Viel ;€E

Proof: = by Lemma 2.3. Now we prove <=. We assume o; |= FE for all i € I.
We have to show that a™!(a(E)) C E. Let P € a~!(a(E)). Then a(P) = o(Q)
for some Q € E. If P =) then P € E. Otherwise there exist iy,7;,...,7, € I and
Q=PF,P,...,P,,P,;1 = P € P such that

@i (Pr) = a;(Pey1), £=0,1,...,7n,

Since @ € E and «;, [= E it can be shown by induction on & that P, € E. Hence P € E.

Claim 2: Let 3 : P — B be a semantics and g; : A; = B abstractions from «; to 3. Then
there exists a unique abstraction h : A =+ B from a to g with ho f; = g,.

Proof: In order to define h we need the following:
(*) IfaeA;,be Aj,a = b, then gi(a) = g;(b).

Proof of (*): We may assume w.lo.g. a # b. Then there exist %g,%,,...,4, € I and
P=PFR,P,...,P,,P,,1 = Q € P such that:

a = ai(P), b= aj(Q), a,-k(Pk) = a,—k(PkH), k= 0, 1, ceoy .
Since g;, 0oa;, = 8 = gi,,, © @,,, we get by induction on k: g;(a) = g (P:). Hence
gi(@) = gi (@i, (Pn)) = gi(e;(Q)) = g;(b).

Definition: Let h : A — B be given by: h([a]) = gi(a) if a € A;. We show that h is the
unique abstraction from a to § with ho f; = g;.

By definition of h: ho f; = g; and

h(a(P)) = h(«(P)]) = gi(e:(P)) = B(P)

for all P € P. Let ' : A — B be also an abstraction from « to # such that h' o f; = g¢;.
Then for all { € A: € = [a] for some a € A;, i € I. Hence

K(§) = K(fi(a)) = gi(a) = h(&).

Theorem 2.12 Let (a;)icr be a family of semantics. Then there exists a semantics o
such that:

(1) Each of the semantics oy, © € I is an abstraction of a.

(2) Whenever (3 is a semantics also satisfying (1) then there exists a unique abstraction
from (3 to c.

For each semantics o satisfying (1) and each property E: If a; = E for somei € I then
a E E.

Proof: Let A; be the range of ;. We put:
A = H A,’
i€l
and a: P = A, a(P) = (@i(P))ics- Then the projections f; : A — A; are abstractions

from o to ;. If B : P — B is a semantics and ¢g; : B — A; are functions such that
giof = a; then we show that there exists a unique abstraction g : B — A such that

fiog = g
Let g : B = A be given by: g(b) = (gi(b))iesr- Thengof = aand fiog = g;. If
g : B — A is also an abstraction from 8 to o with f;0 ¢’ = g; then

g®) = (fi(d®))ier = (g:(0))ier = 9(b)
for all b € B.

By Lemma 2.3: If o is a semantics satisfying (1) then: o; | F for some i € I implies
a E E. O

One might suppose that the most abstract common refinement o (i.e. a semantics satisfy-
ing the conditions (1) and (2) of Theorem 2.12) of a family (;) of semantics q; is suitable
for checking a property E if and only if at least one of the semantics o; is suitable for
checking E. In general the implication ’only if’ is wrong. For instance, consider two
semantics o1 and a with o (P)) = a1 (P) # oy (P,) and az(P,) = a;(P) # a3(P,) then
a; = {P},i=1,2, whereas the most abstract common refinement a of ¢; is sutable for
checking {P}.

2.4 ‘Weak and strong consistency

Theorem 2.10 shows that one way to establish consistency results w.r.t. a specification
formalism of semantics a;, ¢ € I, is to establish abstractions from the semantics a; to some
other semantics 3. As a matter of fact, many ’consistency’ results consist of defining an
abstraction from one semantics to the other. This motivates the following definition:

Definition 2.13 Leta: P — A and 3 : P — B be semantics.

(a) o and B are called weakly consistent iff a is an abstraction of B or 3 an abstraction

of a.

10

(b) a and B are called strongly consistent iff « is an abstraction of 8 and 8 an abstrac-
tion of a.

For instance weak consistency results are established in [4, 6, 7, 14, 23, 24, 25, 30, 33, 36).
The simplest form of strong consisteny results is the equality of semantics. E.g. [6, 7, 14,
25] contain strong consistency results of the form O = D where O is an operational, D a
denotational semantics. A strong consistency result for different semantics is established

in [41] which shows the strong consistency of Plotkins transitions system semantics for
CSP (37] and a denotational semantics for CSP defined in the style of [8].

Lemma 2.3 contains a characterisation of weakly consistent semantics. The following
lemma follows immediately by Lemma 2.3. It shows that strongly consistent semantics
a, B are fully equivalent w.r.t. the capability of testing properties (independent of any
specification formalism).

Lemma 2.14 Leto:P = A and B : P — B be semantics. The following are equivalent:

(a) o and B are strongly consistent.
(b) For all P, Q € P: a(P) = a(Q) if and only if B(P) = 3(Q).
(c) For all properties E: a |= E ifand onlyif 8 = E.

Remark 2.15 The semantics « in. Theorem 2.11 and Theorem 2.12 are unique up to
strong consistency. O

Lemma 2.16 Let §: P — B be a semantics and f : A — B a surjection. Then there
exists a semantics a : P — A such that o and § are strongly consistent.

Proof: Since f is surjective there exists g : B — A such that fog = idg. We put
‘a = gof. Then g is an abstraction from 3 to a. Since foa = fogo8 = 3, fisan
abstraction from a to 4. O

Ifa; : P = A; and ap : P — A; are weakly consistent, e.g. f o o) = a», then ay, ay are
consistent w.r.t. Prop = {a3'(Ap) : A9 C A} and B-consistent w.r.t. every abstraction 3
of ay. The following diagram shows the hierarchy of consistency results where the arrows
denote implication:

a-consistency

/

(B-consistency — consistency w.r.t. Prop

\/

weak consistency

|

strong consistency

11

where (7 is a most abstract semantics suitable for checking all properties in Prop (Theorem
2.4) and o an abstraction of 3. f-consistency is a weaker notion than weak consistency.
E.g. one can provide a pomset semantics o; and a synchronization tree semantics as for
a language which includes nondeterministic choice and parallel composition that are j3-
consistent where 3 maps a process to a set of traces. «; and a; cannot be weakly consistent
as ¢ is a linear time true concurrency model and ay a branching time interleaving model.

2.5 Application: Verification and stepwise refinement

Weak consistency results can help to prove the correctness of implementations which
are generated by stepwise refinement. We show that under the assumption that a given
program P which is written in a high-level language P meets the specification it can be
concluded that its refinement ¢(P) (which is written in a lower-level language P’) also
meets the specification. The programs P € P are considered as algorithms. We assume
a mapping ¢ : P — P’ which assigns to each P € P a program i(P) € P’ which we call
the implementation of P.

We assume semantics a : P — A and o/ : P’ = A’ and a ’consistency result’ of the form
a = foad oiwhere f: A" = Ais a function. The reason why we assume that f maps
A’ to A and not vice versa is that in general ¢(P) (and then also o/(i(P))) contains more
details. E.g. it might be the case that in P there is an atomic statement a which stands for
the sorting of a finite sequence of natural numbers. The function ¢ might map this atomic
statement to a program which implements Quicksort (or another sorting algorithm).

7

P P’

a o

A Al
The assumption @ = foa' o7 can be coﬁsidered as a weak consistency result for the
semantics o and o o ¢ for the language P.

Lemma 2.17 For each property E C P with o |= E: If the algorithm P has property
E then its implementation i(P) has property i(E).

If E = a7 '(Ag) where Ag C A and E' = o/~1(A}) where Ag C A’ and f~1(4y) C A)
then:

If the algorithms P has property E then its implementation :(P) has property E’.

Proof: Since f is an abstraction from o’ o4 to a we get by Lemma 2.3: o/ o7 & E.
Since ¢ is an abstraction from ¢ to o/ o i we get (again by Lemma 2.3): ¢ = E. Hence
for each algorithm P € P: i(P) € i(F) if and only if P € E.

Let E = a71(4), E' = o/71(4}) and f~1(4y) C A). Then o E and o | E'.

Since @« = fodad oi we have:
E = o Yd4y) = i f 1 (A))) C iTHaTHAY)) = iTYE)
Therefore :(E£) C E'. Hence: If P € E then i(P) € i(E) C E'. O

12

This result can be used to verify the correctness of the implementation w.r.t. a specifica-
tion written in some logic. In addition to the assumptions of above we assume that the
specifications are given as a set of logical formulas of some logic L. We assume that there
are functions F : A = I, F' : A’ = I’ where I, I’ are sets of interpretations for L such
that for all a’ € A" and all formulas ¢ of L:

If F(f(a')) is a model of ¢ then F'(a’) is a model of ¢.

We say P € P satisfies ¢ iff F(a(P)) is a model of ¢ and similary, P’ € P’ satisfies ¢ iff
F'(/(P')) is a model of ¢.

Lemma 2.18 With the notions and assumptions of above: If the algorithm P satisfies ¢
then the implementation i(P) satisfies .

Proof: Let Ag resp. Aj be the set of elements a € A resp. o' € A’ such that F(a)
resp. F'(a’) is a model of . Then the assumption above says that Ay D f~!(4,). If
P satisfies ¢ (i.e. F(a(P)) is a model of ¢) then P € a~!(A4y). Hence by Lemma 2.17
i(P) € o/71(Ap), i.e. F'(o/(i(P))) is a model of ¢ which means that i(P) satisfies . O

Hence under the assumptions of above the verification problem is reduced to prove that

e the algorithm meets the specification

o if F(f(a’)) is a model of ¢ then F’(a’) is a model of ¢.

The simplest case in which the second condition is satisfied is I' = I, Fo f = f'.

3 Compositional semantics

In compositional semantics the meaning of a composite program P = w(Py,...,P,) can
be computed by composing the meanings of the modules P, ..., P, via a semantic opera-
tor wy on the underlying semantic domain A. Compositionality yields tools to compute
the semantics and for modular verification. Modular verification means that in order to
prove the correctness of a program P each of the program modules is verified separately
and the correctness of P is proved using the specifications of the modules but without
using any knowledge about how the modules are implemented. This implies that also
the specifications should be modular: for each property £ under consideration and each
n-ary operator w of the underlying language there exist a set £z, consisting of n-tuples
(E4,..., E,) of properties such that the composite program P = w(Py,..., P,) has prop-
erty E if and only if there is some of these tuples where P; has property E;, i =1,...,n.
In this case, if o is a compositional semantics suitable for checking all properties in the
underlying specification formalism then

a(P) € a(E) <<= 3(E,...,E,)€EEn : a(P)€a(E),i=1,...,n

I.e. « is suitable for modular verification.

In this-and the following sections we deal with a language P with abstract operator
symbols and recursion (modelled by declarations). The syntax is as in [4]:

13

Notation 3.1 A symbol-algebra (or signature) is a pair £ = (Op, |- |) consisting of o
set Op of operator symbols and a function | -|: Op = INy which assigns the arity |w| to
each operator symbol w. Operator symbols of arity 0 are called constant symbols. The set
L(X, Idf) of statements over ¥ and Idf (where Idf is a fized set of variables) is given by
the production system

s == a | z | wisy...,s,)

where a is a constant symbol, * € Idf, w an operator symbol with |w| = n > 1,
S1y-+.,8, € L(X,Idf). A declaration is a mapping o : Idf — L(T,Idf). A program

over (X, Idf) is a pair < 0,s > consisting of a declaration o and a statement s.

If P =< 0,5 > is a program then the behaviour of P is given by s where each occurrence of
a variable r in s is interpreted as a recursive call of the procedure ¢(z). In the following we
fix a declaration o and we define P to be the set of programs < o, s > where s € L(Z, Idf).
The operator symbols are considered as operators on P where we put

w(<o,81>, ..., <0,5,>) =< 0, w(sy,...,sn) >.

We write z to denote the recursive program < o,z >, o(z) instead of < 0,0(z) > and a
instead of < ¢,a > for each constant symbol a.

Example 3.2 CCS [31, 32] without recursion is associated with the symbol-algebra
Yccs which consists of the following operator symbols: the constant symbol nil, for each
action a € Act an operator symbol v, of the arity 1, 7,(s) = a.s, modelling prefixing, the
binary operator symbols + and |, modelling nondeterminism resp. parallelism with possi-
ble communication on complementary actions, for each L C Act \ {7} an operator symbol
pr, pr(s) = s\ L, of the arity 1 for modelling restriction to actions ¢ L U L and for each
relabelling function A : Act — Act an operator symbol £, of the arity 1, £,(s) = s{A},
which is used for renaming the actions. Here Act is a nonempty set of actions which
contains an internal action denoted by 7. We assume a function (-) : Act — Act, a — G,
such that 7 = 7 and @ = a for each action a € Act. If L C Act then L={a:a € L}. A
relabelling function is a function A : Act — Act with A(7) = 7 and A\(@) = A(a). O

Example 3.3 The language Lo = Lo(Xo, Idf) which is considered e.g. in [7] is given
by the symbol-algebra ¥y which contains a nonempty set Act of actions as the constant
symbols and binary operator symbols +, || and ; for modelling nondeterminism, parallelism
(with or without synchronisation or communication) resp. sequential execution. O

As usual interpretations of symbol-algebras are given by E-algebras. If & = (Op,|-|) is a
symbol-algebra then a ¥-algebra is a pair (4, Op,) consisting of a set A and a set Opy4 of
operators Opy = {wa :w € Op} such that wy : A® = A is a function where |w| = n.
(In the case n = 0 wa € A.) In the following we omit the operator set Op, of a Z-algebra
and we shortly write A instead of (A,0Op,). If A and B are -algebras then a function
f A — B is called a homomorphism iff

flwalé,-.s6)) = wa(fl&)---, f(&))

for each w € Op, |w| = n.

14

Definition 3.4 A compositional semantics for P is a function a:P — A where A is
Y -algebra and which satisfies the following conditions:

(I) a(w(Py,...,P,)) = wala(P),...,a(P))
forallweOp, lw|=n>0and P,,...,P, €P.

(II) o satisfies the recursion condition: a(z) = a(o(z)) for all z € Idf.

In [4] we gave examples which show that for given A there might be either no compositional
semantics or more than one. A general characterisation of possible meaning functions is
given in the following lemma:

Lemma 3.5 (see [4]) Let A be a T-algebra and «: P - A a semantics. Then: « is a
compositional if and only if a is a fized point of the operator

4 . (P A) o (PoA)

where ®4 is defined by structural induction:

(1) ®4(f)(a) = aa for each constant symbol a
(2) ®4(f)(z) = f(o(z)) for each variable z € Idf

(3) @Y w(Pry.. s Pr)) = wal @A)(P1)s-- -, QHF)(Pn))
forallP,...,P,€P,we0p, |w|=n>1.

Remark 3.6 Let f: A — B be a homomorphism between two X-algebras A and B and
let f : (P—= A) = (P — B) bedefined by f(g) = fog. Then f is an abstraction
from « to G if and only if f(a) = B. It is easy to see that f o ®* = &5 o f where ®4
and ®2 are defined as in Lemma 3.5. O

3.1 The existence of a semantics suitable for modular verifica-
tion

We extend the result of Theorem 2.4 and present a condition for the existence of a
compositional semantics which is suitable for modular verification. The condition which
is needed is the modularity of the properties:

Definition 3.7 Let Prop be a set of properties. Prop is called modular iff the following
conditions are satisfied:

1. For each property E € Prop and each n-ary operator symbol w (n > 1) there exists
a set Eg,, consisting of n-tuples (E\, ..., E,) of properties E; € Prop such that for
all P,...,P, € P:

w(P,...,P) € E <<= 3(E,...,E)€€Ep, : PeEE;, i=1,...,n

15

2. For all variables x € P and all properties E € Prop:

te€E <<= o(z)€EE

If a specification formalism is modular then the first condition asserts the soundness and
completeness of modular verification: the implication <= reflects the soundness of modular
verification (if the modules fulfill certain properties then the composite program satisfies
its specification), the implication = stands for the completeness of modular verification
(if the composite program is correct then the correctness can be shown by proving that
its modules have certain properties). The second condition is needed to ensure that the
recursive program z which is assumed to consist of a recursive call of o(z) cannot be
distinguished from o(z) by any property.

Lemma 3.8 Let Prop be a set of properties satisfying condition 2 of Definition 3.7 and
let = be the induced equivalence relation, i.e.

P=Q <<= VEcProp: PEEffQeE.
Then:

(a) If Prop is modular then = is a congruence relation on P.

(b) If = is a congruence relation on Prop and Prop = P/ = then Prop is modular.

Proof: Let Prop be modular. We show that = is a congruence relation on P. If w is
an n-ary operator symbol, n > 1, then we have for all P,...,P,,Q,...,Q, € P with
P = Q:

w(Py,...,P,) € E < 3(F,...,E,) €€, : PE€E;,i=1,...,n
— B(El,...,En)GSE,w : Q,’EE,‘, t=1,...,n
> w(Ql,...,Qn) € F

Here E € Prop and &g, are as in Definition 3.7. Hence P, = Q;,i=1,...,n implies
w(Py,...,P) = w(Q,...,Q,).

Now we suppose that = is a congruence relation on P and Prop = P/ =. We show that
Prop satisfies the first condition of Definition 3.7. Let E € Prop and w an n-ary operator

symbol in ¥. We define
8E,w = { ([Pl],,[Pn]) : w(Pl,...,Pn) e E}

where [P] denotes the =-equivalence class of P. Since Prop = P/ = the equivalence class
[P] is a property in Prop. Then:

1. If w(PI,...,Pn) € E then ([P],...,[P.]) € €gw. Hence P, € E;, i =1,...,n for
some (Ey,...,E,) € Eg,,.

16

2. Let (Ey,...,E,) €€, and P, € E;,;i=1,...,n,and let (Qy,...,Q,) be a tuple
of programs with E; = [Q;] and w(Q,...,Q,) € E. Then P, = Q;,i=1,...,n.
Since = is a congruence relation on P we have:

w(Py,...,P) = w(Q1,...,Qn)
Since E is the equivalence class of w(Q1,..., Q) we get w(P,,...,P,) € E. O
By Lemma 3.8(b), every congruence relation on a process algebra induces a modular
specification formalism. For instance, bisimulation equivalence ~ is a congruence on

CCS [32] and hence the specification formalism Prop = CCS/ ~ a modular specification
formalism.

The next lemma shows that for every modular specification formalism Prop there exists
a most abstract compositional semantics which is suitable for checking all properties of
Prop, i.e. which is suitable for modular verification.

Theorem 3.9 Let Prop be a modular set of properties. Then there exists a surjective
compositional semantics a which satisfies:

(1) « = E for all E € Prop

(2) Whenever B is a semantics satisfying (1) then o is an abstraction of 5.

Proof: Let o be defined as in the proof of Theorem 2.4. Then « is surjective and satisfies
(1) and (2). We show the compositionality of a: For every n-ary operator symbol w in ¥
we may define:

wa([P], .- [Pa)) = [w(Pry...,P)]

(wa is welldefined because of Lemma 3.8). Hence A is a Z-algebra. By the second
condition in Definition 3.7 we get:

a(z) = [z] = [o(z)] = a(o(s))

Hence « is compositional. O

3.2 Most concrete common abstractions and most abstract
common refinements

The following theorems show that the results of Theorem 2.11 and 2.12 carry over to
surjective compositional semantics:

Theorem 3.10 Let (a;):er be a family of surjective compositional semantics. Then there
exists a surjective compositional semantics a such that:

(1) (a:)ier is a-consistent.

(2) Whenever 8 is a semantics satisfying (1) then 3 is an abstraction of o.

17

s

Proof: Let A; be the range of a; and let & : P = A be as in the proof of Theorem 2.11.
Then « is surjective (since each of the semantics o; is surjective) and satisfies (1) and (2).
We show the compositionality of a:

Claim: Let w be an n-ary operator symbol, n > 1, and ¢, j € I, ay,...,a, € A,
bi,...,bp € Aj such that ax = by, k=1,...,n. Then:
(.UA_.(G,I,...,CL") = wAj(bl,...,b,,)

Proof: Let i € I be a fixed index and ax = o;(F), kK = 1,...,n. (Note that o; is
surjective. Hence each element a € A is of the form a = a;(P) for some P € P.)

We show by induction on k¥ (0 < k£ < n) that for all j € I

wa;(a1,...,a0) = wa(by,. . bk, @ (Petr), .., aj(PL))
forall by,...,b € A; withay = b, 1=1,... k.
Basis of induction (k = 0):
wa;,(a1,...,8,) = wa,(a(P),...,a(P,))
a;(w(Py,...,P))
aj(w(Pi,...,P.))
wa, (o (Py),...,0;(P,))

il

Induction step k —1 = k (1 <k <n):
Letjel, by,....,be € 45,00 = by = ;(Q1),! =1,...,k. Then there exist

P=1y, iy ..., im=j € I
and Pk. = R], RQ, RPN Rm, Rm+1 = Qk € P such that air(R,) - air(RT‘+1)?
r =1,...,m. By induction hypothesis:

wAi.(al,...,an) = wA‘.l(cl,...,ck_l,ail(Pk),...,ail(Pn))

where ¢; = 4, (Qi), ! = 1,...,k — 1. Note that o;, (Q1)) = o;(Q;) =b = a;. Then:

wa,(ag,...,a,) .

wa;, (ail (Ql)’ ceey Gy (Qk—l), ay, (Rl), a5, (Pk+l), ce Oy (Pn))
Wa;, (ail (Ql)’ cee Oy (Qk—l)a Qy, (RZ), a, (Pk‘+l)a R 2 (Pn))
ai, (w(Q1,...,Qk-1,R2, Pey1,...,Py))

ai, (w(Q1,...,Qk-1,Ra, Pes1,---, Pa))

w4, (0, (@1),.-., 0 (Qk—l), a;, (R2), iy (Prt1)s -« - s a;, (P))
way, (06, (Q1); - -+, @iy (Qr—1), 03 (R3), iy (Pr1), - - - @iy (Pa))

By induction we get:

Il

I

wa,(ag,-..,a,)

Wa,,, (i (Q1),. .., ¥ (Qr—1), @iy (Rm+1)s @iy (Prt1), - - -5 i, (P.))
wa; (e(Q1)s - - -, 0 (Qi-1), 05 (Qk), & (Pict1), - - -, @ (P))

wa; (b1 .y bk—1, bk, @ (Piyr), - -+, 5 (Pn))

]

18

For each constant symbol a we put a4 = [a]. For each n-ary operator symbol w, n > 1,
we put:
wal€y, .- &) = [walar, ... a.)]

where ¢ € I and ay,...,a, € A;, [a)] = &, ! = 1,...,n. Note that this operator w, is
welldefined because of the claim and the assumption that «; is surjective. Hence A is a
T-algebra with a(z) = [a(z)] = [ai(o(z))] = a(o(z)) and

o W(Py,....,P)) = [aw(P,...,P,))]

= [wa(a(P),...,q(P))]
= wala(Py),...,a(PR,)).

Hence a is compositional. O

Theorem 3.11 Let (;)icr be a family of compositional semantics. Then there exists a
compositional semantics a such that:

(1) Each of the semantics ¢o; is an abstraction of a.

(2) Whenever B is a semantics also satisfying (1) then « is an abstraction of 3.

Proof: Let a : P — A be defined as in the proof of Theorem 2.12. Then o satisfies
(1) and (2). We show the compositionality of a: If a is a constant symbol then we put
as = (aa;)ier- If wis an n-ary operator symbol (n > 1) then we put:

wA(é‘l""agn) = (wAi(fi(gl)w"’fi(fn)))iEI

Then A is a ¥-algebra and it is easy to see that a is compositional. O

3.3 Weak consistency of compositional semantics

The following lemma shows that in order to establish - an abstraction between two
compositional semantics one has to look for a homomorphism [28].

Lemma 3.12 Leta: P = A, 8: P — B be compositional semantics and f : A — B an
abstraction from o to 8. If o is surjective then f is a homomorphism.

Proof: For each constant symbol a: f(as) = f(a(a)) = B(a) = ap. For each n-ary
operator symbol w: If { = wa(é;,...,&,) then § = a(P;) for some program P,. Then

B(F) = f(a(R)) = f(&).
Since a is compositional:
£ = wala(P),...,a(P,)) = a(w(Py,...,P,))
Since § is compositional and foa = :

f(f) = f(a(w(Pla'-an)) = ﬂ(w(Pl,-w,Pn))

= wB(,@(Pl),...,,B(Pn)) = wB(f(gl)a-"af(fn))

L.e. f is a homomorphism. O

19

Lemma 3.13 Let A and B two X-algebras and f : A - B a homomorphism from A to
B. If a: P — A is compositional then f o a is a compositional semantics on B.

Proof: by structural induction. O

In the next section we make use of Lemma 3.12 and Lemma 3.13 and present criterions
such that for given compositional semantics o : P -+ A and f: P — B and a given
homomorphism f : A — B the semantics f o @ agrees with 3 thus yielding a weak
consistency result for a and 3.

Lemma 3.14 Let 8 : P — B be a compositional semantics and f : A = B a surjection
where A is an arbitrary set. Then there ezist semantic operators on A which turn A into
a X-algebra and f into a homomorphism and a compositional semanticsa: P — A on A
such that o and (8 are strongly consistent.

Proof: As stated in the proof of Lemma 2.16 there exist a function g : B — A with
f 0 g = idp and the semantics @ = go § and # = f o a are strongly consistent.

For each n-ary operator symbol w we put:

wap A" — A1 wA(él) e aé‘n) = g(‘”B(f(&la)? cee af(gn)))
Then A is a X-algebra, f a homorphism and

afo(z)) = 9(B(a(2)) = 9(8(z)) = o(z)

and for each n-ary operator symbol w:

a(w(Pl,---aPn)) = g(ﬂ(w(Ply- ,Pn)))
= g(ws(B(P1),...,8(F)))
9(ws(f(a(P1)),.. ., f(e(P))))

Hence a is compositional. O

Lemma 3.15 Leta : P — A be a compositional semantics and f : A — B be a surjection
such that for each n-ary operator symbol w:

If f&) = f(&), i=1,...,n, thenwa(&y,..., &) = wal(fy,...,&).

. Then there exist semantic operators on B which turn B into a X-algebra and f into a
homomorphism. Hence by Lemma 3.13 f o a is a compositional semantics on B (which
s an abstraction of a).

Proof: If w is an n-ary operator symbol then we put:

wB(nla' . . 77171) = f(wA(gl,- . 7571))

where & € f~1(m:), i = 1,...,n. Note that by the assumptions about f the operators wg
are welldefined. It is easy to see that f is a homomorphism. O

20

4 Adequacy and full abstractness

Often when relating an operational with a denotational semantics of a language P as in
section 3 the notions of adequacy and full abstraction are employed. We extend these
notions to arbitrary semantics a and §.

Definition 4.1 A semantics o is called adequate w.r.t. a semantics 8 iff for all programs
P, Q:

a(P) = a(Q) imphies V C[] = B(C[P]) = B(C[Q]).
o is called fully abstract w.r.t. § iff

VCIl : BCIP]) = B(CIQ]) implies a(P) = a(Q).

Here C['] ranges over the set of contexts for P, i.e. the set of ’programs’ in P containing
one or more holes. C[P] is the program which is obtained by substituting P for the holes

Theorem 4.2 Let a be a compositional semantics. Then: a is adequate w.r.t. 3 if and
only if B is an abstraction of a.

Proof: Let A be the range of a. Every context C[-] induces a mapping C4 : A — A with
a(C[P]) = Cala(P)) foral Pe P. If foa = f and a(P) = a(Q) then for all
contexts C[-]:

B(CIP]) = f(a(CIP]) = f(Cala(P)) = F(Ca(a(Q) = F(a(CIQ]) = B(CIQ).

If a is adequate w.r.t. (3 then for all P and Q: If o(P) = «(Q) then we consider the
context C[-] consisting of a whole (i.e. C[S] = S for all S € P) and get 3(P) = 3(Q).
Hence [is an abstraction of . O

The next theorem shows the existence of a compositional semantics which is adequate and
fully abstract w.r.t. a given semantics 3 under the assumption that 8 does not distinguish
between a procedure name z and its body o(z) in every context.

Theorem 4.3 For each semantics 3 there ezists a unique (up to strong consistency)
semantics o which is adequate and fully abstract w.r.t. 3.
If B(C[z]) = B(Clo(z)]) for all variables z and all contexts C[] then there ezists a com-

positional semantics a which is adequate and fully abstract w.r.t. (.

Proof: First we show the uniqueness up to strong consistency: If a and o' are semantics
which are adequate and fully abstract w.r.t. § then a and o' identify exactly the same
programs. Hence a and o are strongly consistent.

« can be constructed with help of Theorem 2.4: Let a : P - P/ =5 be the canonical
function where

P=Q <« VCI:BCP) = BCIQ).

(Then a is the most abstract semantics which is suitable for the specification formalism
Props = P/ =p.) a identifies two programs P and Q if and only if P =5 Q, i.e. ais

21

adequate and fully abstract w.r.t. 5. Semantic operators on the range A = P/ =5 of a
can be defined by:

(JJA([Pl]Eﬂ7"'7[Pﬂ]Eﬁ) = [w(Pl,...,P.n)]EE

where w is an n-ary operator symbol. It is easy to see that a is compositional if 8(C[z]) =

B(Clo()]). O.

5 Weak consistency results for denotational seman-
tics

As we have seen before, establishing some form of consistency result always involves the
construction of an abstraction from one semantics to another. This is by definition true
for weak (strong) consistency, §-consistency and by Theorem 2.10 for consistency w.r.t.
a specification formalism. Hence the task of establishing a weak consistency result plays
a central role. In this section we show how weak consistency results can be obtained sys-
tematically in a certain setting. We assume that we are given a language P with signature
Y together with a denotational semantics a and present conditions for the existence of
an abstraction from a semantics ¢ to . By Lemma 3.12 every abstraction between
denotational (compositional) semantics is a homomorphism. Hence in order to establish
weak consistency results for denotational semantics one has to look for homomorphisms
between the underlying X-algebras.

Two main strategies for defining denotational semantics for a language that includes
some notion of recursion can be distinguished: one is based on partial orders, the other
on metric spaces. The idea of the partial order resp. metric approach is to ensure the
existence of a least resp. a unique fixed point of the operator ®* of Lemma 3.5 by
Tarski’s resp. Banach’s fixed point theorem. Then this fixed point is the least resp.
unique compositional semantics on the underlying T-algebra. In order to apply the fixed
point theorems of Tarski or Banach one has to ensure the continuity of ®4 resp. that &4
is a contraction. The usual way to do so is to require that the semantic operators are
continuous resp. non-distance-increasing/contracting.

If there are two cpo’s (D,C) and (D,C’) with the semantic operators being continuous
with respect to both orderings then the least meaning functions with range (D, C) resp.
(D,C') will be different in general. On the other hand if we have complete metric spaces
(M, d) and (M,d’) such that the operators are non-distance-increasing respectively con-
tracting on both then the meaning functions with range (M, d) resp. (M, d’) coincide, i.e.
the metric plays a lesser role. This is the reason for the different behaviour of the metric
and partial order approach with respect to weak consistency results which we discuss
in this section. Given a compositional semantics & on an arbitrary T-algebra A and a
homomorphism f : A =+ M where M is a complete metric space as above then f o a
equals @™, the unique compositional semantics on M (Theorem 5.7). In order to obtain
the corresponding result f o a = a® (where f : A — D is a homomorphism and P is
the least compositional semantics on the cpo D) we need additional assumptions either
about A and f or about D which ensure that f preserves corresponding fixed points. We

22

discuss the cases that A is cpo (Theorem 5.14) or a complete metric space (Theorem 5.18)
and the case that D can be endowed with a suitable metric (Theorem 5.26).

5.1 Denotational semantics in the metric approach

In this section we present the concept of a X-complete-metric-space (Z-cms for short) as
it was introduced in [4]. The concept of I-cms’s constitutes an abstraction of all those
properties that are necessary to define semantics on the basis of complete metric spaces
and Banach’s fixed point theorem. Given any Y-cms M there is by Theorem 5.6 an
automatic way to obtain a unique compositional semantics o™ with range M. Hence
providing a semantics using the metric approach really means constructing a suitable
Y-cms.

Notation 5.1 A symbol-algebra with guardedness conditions s a symbol-algebra T which
is endowed with a function deg: Op — INy such that 0 < deg(w) < |w| for each operator
symbol w. deg(w) is called the degree of guardedness of w. The set of guarded statements
over X is given by the production system: '

¢ == a | w(C, --)CuoksS1s--,5k)

where a is a constant symbol, w an n-ary operator symbol with n > 1 and k = deg(w),
81,...,Sk are statements and (y,...,(u—r guarded statements.

In the following we assume that for the declaration ¢ : Idf — L(X, Idf) under considera-
tion the statements o(z) are guarded.

Example 5.2 The guardedness conditions in the symbol-algebra ¥ccg as defined in Ex-
ample 3.2 are given by: The prefixing operator symbols -, are guarded operator symbols,
ie. deg(ve) = |7 = 1 for all @ € Act. The other operator symbols have 0 as the
degree of guradedness, i.e. deg(+) = deg(|]) = deg(pr) = deg(¢y) = 0. Hence a
statement s € L(Z¢ces, Idf) is guarded if and only if each occurrence of an identifier =
in s is in the scope of a prefixing operator symbol. This is equivalent to Milners definition
of guarded CCS-terms without recursion (see [32]). O

Example 5.3 Guardedness of statements of the language £y (see Example3.3) in the
sense of [7] can be obtained when we define deg(+) = deg(]]) = 0 and deg(;) = 1.
A statement s € Lg is guarded if and only if each occurrence of an identifier = in s is
contained in the second argument of a sequential composition, i.e. there exists a subterm
51; 2 of s such that the occurrence of z is in s5. O

Definition 5.4 A ¥-cms is a X-algebra M which is endowed with a metric§ 0 <8< 1)
such that (M,d) is a complete metric space and such that for each operator symbol w
with |w] =n > 1, deg(w) = k the associated operator wy : M™ — M s non-distance-
increasing and contracting in its last k arguments:

6(wkl(fla“-vgn)v wxW(gi,aé‘:u)) S max{ max 6(617&% % max 6({7,{;) }

1<i<n—k n—k+1<j<n

forallé,, ... &, &,....6. e M.

23

In [4] it was shown that the function @™ (which is defined as in Lemma 3.5) is a contracting
self-mapping of the complete metric space P —+ M. By Banach’s fixed point theorem ®™
has exactly one fixed point in P - M.

Definition 5.5 Let o be a declaration M an I-cms. The unique fized point of ®M is
denoted by aM.

Theorem 5.6 (see [4]) Let M be a L-cms. Then o™ : P — M is the unique composi-
tional semantics on M.

In [4] we established the following consistency result: Given two ¥-cms’s N and M and a
homomorphism f : N = M then foa” = aM. In Theorem 5.7 we extend this result in
the form that N may be an arbitrary X-algebra.

Theorem 5.7 Let M be a £-cms, A a ¥-algebra, a : P = A a compositional semantics
and f: A = M a homomorphism from A to M. Then f is an abstraction from o to a™,
ie. foa = oM.

Proof: By Theorem 3.13 we have that f o a is a compositional semantics. By the
uniqueness of the semantics in Theorem 5.6 we get foa =aM. O

Note that in Theorem 5.7 A is an arbitrary L-algebra and there is no restriction on the
way in which we got the semantics on A. o could be defined by the metric or by the cpo
approach or in another way.

Example 5.8 The trace resp. tree semantics of [6] on the complete metric spaces
Poc(Act™®) and M can be related by Theorem 5.7: Let N = P,.(Act*™) be the col-
lection of all nonempty and closed subsets of Act™ (finite or infinite sequences over Act)
endowed with the Haussdorff-metric and M, the unique complete metric space satisfying
the domain equation M o~ Pgged(Act x M). Then N and M, endowed with suitable
semantic operators are ¥o-cms and Y¢cg-cms. The trace resp. tree semantics on N and
M, of [6] coincide with the unique compositional semantics on NV resp. M, in the sense
of Theorem 5.6. In the following we will denote them by trace.,s resp. tree.,,. Let
e : Mo = Pelosed(Act X M) be an isometry and let f: My — Pu(Act™®) be the unique
function M, — P,(Act™) satisfying the equation

F(X) = {af(¥) : (a,Y)€e(X)}.

The existence and uniqueness of such a function f can be concluded by the fact that
M. = Puc(Act™) is a complete metric space and that f is the unique fixed point of the
contracting operator

U (My = Poe(Act™®)) = (Mg = Poc(Act™))

which is given by
: Y(F)X) = {a.F() : (a,Y) €e(X) }.
It is easy to see that f is homomorphism and we get f o treecms = traceoms.

Theorem 5.7 can also be applied to show the consistency of two noninterleaving metric

semantics: an event structure semantics in the style of [3, 18] and the pomset semantics
of [7] (cf. [4]). O

24

5.2 Denotational semantics in the cpo approach

In this section we interprete the cpo approach in our algebraic context. As it was shown
in [4] the semantics on some Z-cpo D can be defined as the least compositional semantics
on D. In contrast to the metric case it is possible that there exist other compositional
semantics. Hence we cannot guarantee the consistency of the semantics of homomorphic
3 -algebras.

We assume the reader to be familar with basic notions of domain theory which can be
found e.g. in [2, 17]. In order to prevent confusions we explain the notion of a cpo
(complete partial order) as it is used here. By a cpo we mean a partially ordered set with
a bottom element such that each monotone sequence has a least upper bound. A function
f between cpo’s is called continuous iff f is monotone and preserves least upper bounds
of monotone sequences.

Definition 5.9 A X-cpo is a Z-algebra D endowed with a partial order T on D such
that (D,C) is a cpo and such that for each operator symbolw € Op, |w| = n > 1, the
associated operator wp : D™ — D is continuous with respect to C.

In [4] it was shown that for each Z-cpo D the function &P is a continuous self-mapping
of the cpo P — D. By Tarski’s fixed point theorem the least fixed point of & exists.

Definition 5.10 Let D be a E-cpo. The least fized point of ®P is denoted by aP.

Theorem 5.11 (see [4]) Let D be a -cpo. Then aP : P — D is the least compositional
semmantics on D.

Example 5.12 In [42] resp. [43] the concept of L-cpo’s is used to define denotational
semantics for CCS on trees and labelled (prime) event structures. In the following Tree
resp. PrimeEv denote the ¥¢¢g-cpo of (synchronisation) trees resp. labelled prime event
structures in the sense of [42] resp. [43]. treecp, Tesp. evey, denote the least compositional
semantics on Tree resp. PrimeEv for the language P(Zccs, Idf).

Also a trace semantics for programs over Xy or L¢cs in the style of [22] can be defined us-
ing the X-cpo concept. The underlying -cpo is P J,(Actf/), the collection of all nonempty
and leftclosed (w.r.t. the prefixing order) subsets of

Actl) = Ac* U {ty/:t€ Act" }

endowed with suitable semantic operators and the subset-relation as partial order (see

[22]). Here / is a 'new’ symbol (not contained in Act) for representing successfull termi-
nation. O

In the metric approach we obtained as a special case of Theorem 5.7 the following con-
sistency result: Whenever f is a homomorphism between two ¥-cms’s then the semantics
are consistent. In [4] we gave examples which show that this result is wrong when we
deal with E-cpo’s even if we require that f is cpo-continuous or that f is the least ho-
momorphism between the given X-cpo’s. The reason for this difference of the metric and
partial order setting is founded in the fact that the choice of the metric does not influence
the meaning function whereas in the cpo approach the meaning function depends on the
underlying partial order.

25

Remark 5.13 By Lemma 3.12 and Theorem 5.11 we get: If D isa X-cpo,a:P - A a
compositional semantics and f : A & D a homomorphism then:

o C foa

This is not a consistency result in our sense. Nevertheless it might be useful for verifying
the correctness of programs:

1. If the elements on D can be considered as processes and if the partial order C
on D can be interpreted in such a way that ¢ C ¢ implies that & simulates ¢
(which means that each possible behaviour of ¢ is a possible behaviour of £) then
the result a® C foa might be helpful for verifying safety properties (which assert
that 'nothing bad happens’):

We assume a(P) to be a high-level representation of P (e.g. the implementation)
and o (P) to be a semantics for which it is shown that it meets the specification (or
we assume a?(P) to be the specification itself). Then aP(P) T f(a(P)) asserts
that each possible behaviour of the implementation is allowed by the specification.
Here we assume that f(a(P)) can be considered as a simulation of a(P). In general
this is not enough to verify the correctness of the implementation. In addition one
has to check some liveness (progress) properties (which assert that ’something good
will happen’).

As far as we know the only denotational cpo semantics which allows such an inter-
pretation of the partial order is the failure semantics of {11]. In most other cases the
partial order has the opposite meaning, i.e. £ T ¢ implies that £ simulates ¢’ and
not vice versa (e.g. Winskels partial order on trees [42] or prime event structures
[43]). If the underlying semantic domain D is a complete lattice (instead of a cpo)
then one can deal with greatest instead of least fixed points. This leads to a greatest
compositional semantics o” and hence to a consistency result f oo T aP” which
might be helpful to prove safety properties as described above.

2. Another situation where the result «”? £ f o a might be useful is the following:
we assume a logic L and functions F : D — I, F' : A — I’ where I, I are sets of
interpretations for L such that:

e { C ¢ implies that for each formula ¢ of L: If £ satisfies ¢ then & satisfies
. More precisely: If F(£) is a model for ¢ then F(£') is a model of ¢.

e For each formula ¢ of L and each element a € A: If f(a) satisfies ¢ then a
satisfies . More precisely: If F(f(a)) is a model of ¢ then F’(a) is a model of
®.

The second condition can be omitted in the case I =I' and Fo f = F'.

Assume that the specification of a program P is a set of formulas of L and that
aP(P) meets the specification, i.e. F(aP(P)) is a model for all such formulas. Then
by the first assumption: F(f(a(P))) satisfies all formulas of the specification. And
hence by the second assumption: a(P) meets the specification. Hence instead of
proving the correctness of P via the semantics a one might use the more abstract
semantics a? to prove the correctness of P.

26

An example for a cpo which satisfies the condition of above is the treelike domain
D of [1]. [1] shows that ¢ T ¢ implies HML,(§) C HML,(¢') where HML,(¢)
denotes the set of formulas ¢ of the Hennessy-Milner logic (without negation, infinite
conjunction or disjunction) such that the transition system of £ is a model of . In
our terminology: L is the Hennessy-Milner logic HML,, and I the set of transition
systems in the sense of {1]. The function F can be assumed to be the inclusion
D — I since the elements of D are special kinds of labelled trees which can be
considered as transition systems in the sense of [1]. Then £ T ¢’ implies that for
each Hennessy-Milner formula ¢: If ¢ satisfies ¢ (i.e. F(§) is a model of) then ¢
satisfies ¢ (i.e. F(£') is a model of). O

In the rest of this section we show how weak consistency results of the form foa =
aP can be established where a” is a cpo semantics. We deal with the cases that «
is a cpo semantics (Theorem 5.14), a metric semantics (Theorem 5.18) or an arbitrary

compositional semantics (Theorem 5.20 and 5.26).

Theorem 5.14 (see [4]) Let D, E be T-cpo’s. If there ezists a strict and continuous
homomorphism f : D — E then foa? = af.

Example 5.15 By Theorem 5.14 we may conclude the weak consistency of Winskels
partial order semantics treeq,, and eve,, (see Example 5.12). Let f : PrimeEv — Tree
denote the least function with

f(&) = Z { act(e).f(E\e) : e &[1]}.

Here 3°T; means the tree which we get by taking the union of nodes and edges where we
assume that all trees T; have the same root and no other node in common. «.7 means
prefixing. If £ is a prime event structure then £[1] denotes the set of events of depth 1,
i.e. the set of events without any predecessor. If e € £[1] then £ \ e means the prime
event structure which arises from £ by removing e and all events in conflict with e. act
denotes the labelling function on £, i.e. act(e) is the action which is represented by e.
The existence of f can be seen as follows: PrimeEv — Tree is a cpo and the operator

VU : (PrimeEv — Tree) — (PrimeEv — Tree),

T(F)E) = Y {act(e)F(E\e) : ec&[1] }

1s continuous. Hence there exists a least fixed point f of ¥. It is easy to see that f is
a homomorphism which is strict and continuous. Hence we conclude by Theorem 5.14
foevep, = treep,. O

Next we present conditions which ensure the weak consistency of a given metric semantics

a™ and a given cpo semantics a”. As aspecial case of Theorem 5.7 we have: If f: D - M

is a homomorphism then foaP? = oV,

Example 5.16 This result can be applied to show the weak consistency of Winskels
partial order tree semantics treecyo (Example 5.12) and the treelike semantics tree.ms on

27

the complete metric space M, (Example 5.8): Since Tree — M, is a complete metric
space and since

U : (Tree > M,) — (Tree = M),

YFNT) = e'({(a,F(5) : T = S})

is contracting there exists a unique fixed point f of ¥. Here e: My — Peiosea(Act X M)
is an isometry and T = S means that there exists a son w of the root v of T such that
the edge < v, w > is labelled by a and S is the subtree of T' with root w. It is easy to see
that f : Tree = M, is a homomorphism from the ¥ccg-cpo Tree into the Yocg-cms !
Hence we get: f o treeo = treeems. O

cl-

Our aim is to find conditions such that for a given homomorphism f : M — D the weak
consistency result f o™ = aP can be guaranteed. By Remark 3.6: fo®M = ®Pof
This leads to the general situation: Let f : M — D be a functionsuch that foy = ¢o f
where ¢ : M — M is a contracting selfmapping of a complete metric space M and
¢ : D — D is a continuous selfmapping of a cpo D. Then we have to ensure that the
image of the unique fixed point fix(¢)) under f is the least fixed point Ifp(¢) of ¢.

Lemma 5.17 Let M be a complete metric space, ¥ : M — M a contracting function, D
a cpo, ¢ : D = D a continuous function and f : M — D a function which satisfies the
following conditions:

(i) Lp € f(M)

(i) If (§a)n>1 is a Cauchy sequence in M such that (f(£.))a>1 s @ monotone sequence

in D then f(lim &) = U f(&).
(iii) foy) = dof

Then f(fix(y)) = IUp(¢) where fix(y) denotes the unique fized point of v in M
and lfp(¢p) denotes the least fixed point of ¢ in D.

Proof: Let £ € M, f(§) = Lp (condition (i)). Then f(¢"(£)) = ¢"(L) by condition
(iii). By Banach’s resp. Tarski’s fixed point theorem and condition (ii):

p(xw)) = f(Jim vn©) = U f6°@) = = U 6"©) = 1fe).

n-—>co
n>0 n>0
0O

By Lemma 5.17 (with P — M instead of M and P — D instead of D) and Remark 3.6
we get:

Theorem 5.18 Let M be a £-cms, D a X-cpo and f : M — D a homomorphism such
that Lp € f(M) and f(limz,) = U f(z.) for each Cauchy sequence (x,) in M such
that (f(z.)) is a monotone sequence in D. Then

foaM = aP.

28

Example 5.19 The trace semantics tracec,, of [22] on the Tg-cpo D = P [(Act?)
(Example 5.12) and the trace semantics trace.ms of [6] on the Lo-cms M = P, (Act™)
(Example 5.8) can be related by Theorem 5.18: Let f : M — D be given by

f(X) = XL U {t/:teXnAc" }

where X | = {t€ Act* : 3’ € X t Tt } and where T denotes the prefix ordering.
Then f is a homomorphism with f({0}) = {0} = Llp and f(limX,) = U f(X,).
Hence we get f o tracecms = tracecp,. O

Having in mind the consistency result of Theorem 5.7 involving metric, one way of ob-
taining a consistency result involving cpo could be to ’construct’ a metric on a given cpo
and then proceeding in analogy to Theorem 5.7. The notion of partial order on D itself is
too weak to provide an interesting metric on D. If, however, we add some kind of length
or rank information to (D, C) as it has been done in [5, 29] then interesting and relevant
metrics arise for a subspace M of D. If we are able to provide a rank for a X-cpo (D, E)
then we obtain a result that is analogous to Theorem 5.7.

Theorem 5.20 Let D be a T-cpo and M a subset of D with L.p € M and which is closed
w.r.t. the semantic operators wp, w € X. If there exists a metric d on M which turns M
into an L-cms (where the underlying semantic operators on M are the restrictions of the
semantic operators wp on M) and such that limé, = |&, for each Cauchy sequence
(&) in M which is monotone in D then

(8 = .

In this case: If a: P = A is a compositional semantics and f : A — D a homomorphism
with f(A) C M then
foa = oP.

Proof: follows by Theorem 5.18 (where f : M — D is the inclusion) and by Theorem
5.7. 0O

As a conclusion of Theorem 5.20 we get:

Theorem 5.21 Let A be a X-algebra. If there exists a partial order T on A and a metric
d on A such that A endowed with C and d is both, a T-cpo and a T-cms, and such that
lim & = U & for each monotone Cauchy sequence (£,) in A then

A A

QXems = QAepo-

Here o, : = A denotes the unique compositional semantics on A as a X-cms (Theorem

5.6) and af,, : P — A the least compositional semantics on A as a ©-cpo (Theorem 5.11).

In the following we present conditions to define a metric on a subspace M of a E-cpo D
which turns M into a ¥-cms and such that the limit of a monotone Cauchy sequence in
M equals its least upper bound in D. Then the ’cpo semantics’ on D as a £-cpo and
the 'metric semantics’ on M as an E-cms coincide (Theorem 5.20). We use the concept
of pseudo rank ordered cpo’s which are introduced in [5] The concept of (pseudo) rank
orderings is closely related to the rankings considered in [12] and the projection spaces
introduced in [15].

29

Definition 5.22 Let D be a cpo. A pseudo rank ordering on D is a family & = (7,)n>0
consisting of continuous function 7, : D — D such that

(i) mo(§) = Lp forall{ € D
(#) Tp © My = Ty 0Ty = My, for allm >n >0

(i) m, C idp foralln>0

An element £ € D is called approximable (w.r.t.) iff € = Unso ml(§). M(D,7)
denotes the set of approrimable elements, i.e. ‘

M(D,7) = {feD &= n"(f)}.

n>0

A pseudo rank ordering @ on D is called a rank ordering on D iff M(D,7) = D. A
pseudo rank ordered cpo is a pair (D,) consisting of a cpo D and a pseudo rank ordering
T on D.

In [5] it is shown that for each pseudo rank ordered cpo (D, #): M(D,7) is a cpo which
contains L and the sets m,(D). The restrictions of the functions m, on M(D,7) yield
a rank ordering on M(D, 7). The following lemma shows that the completeness in the
partial order setting enforces the completeness in the metric setting and that the limits
of monotone Cauchy sequences coincide with the least upper bounds. We omit the proof
which is given in (5]. '

Lemma 5.23 Let (D,7) be a pseudo rank ordered cpo. Then M = M(D,7) endowed
with the distance

Al &) = int { 0 ml&) = me))

is a complete ultrametric space. For each Cauchy sequence (&,) in M which is monotone
in D we have lim &, = | &,.

If A:D™ = D s a function with \(M™) C M and m,0X = m,0Xo (am~* 7k _))

for alln > 1 then AM™ — M is non-distance-increasing and contracting in its last k
arguments. Here m > 1, 0< k < m.

In order to apply Theorem 5.20 we have to ensure that M(D, #) is a £-cms. This means
that we have to require that the semantic operators on D preserve approximibility and
that the induced operators on M(D, %) are non-distance-increasing resp. contracting.

Definition 5.24 Let (D,7) be a pseudo rank ordered cpo. Then (D, 7) is called a S-pro-

cpo (X-pseudo-rank-ordered-cpo) iff D is a L-cpo such that for each operator symbol w,
lw| = m, deg(w) = k:

* wp(M(D, 7)™) C M(D,%)

® T,0wp = My 0 wp o(n™* nk_|} foralln>1.

30

Lemma 5.25 Let (D, %) be a -pro-cpo. Then M = M(D,) is a L-cms and we have:

Proof: follows by Theorem 5.20 and Lemma 5.23. O

Theorem 5.26 Let (D, 7) be a L-pro-cpo, A a L-algebra and a : P — A a compositional
semantics. If f : A — D is a homomorphism with f(A) C M(D,%) then

foa = adb.

Proof: Since f is a homorphism from the X-algebra A into the L-algebra D, f is also a
homorphism from the X-algebra A into the X-cms M(D, 7). By Theorem 5.7 we get that
f o a is the unique compositional semantics on M(D, 7). By Lemma5.25: foa = aoP.
O

Example 5.27 The concept of pseudo rank ordered cpo’s can be applied to Winskels
cpo’s of trees and prime event structures. Here m,(£) is the n-cut of £ (i.e. the tree/prime
event structure which arises from £ by removing all nodes/events of depth > n). Then
all elements are approximable. It is easy to see that Winskels semantic operators satisfy
the conditions of Definition 5.24. Hence Winskels semantic domains of trees resp. prime
event structures are Xocg-pro-cpo’s. As an application of Theorem 5.26 one gets the weak
consistency result of Example 5.15 by establishing a homomorphism from prime event
structures to trees. Applying Theorem 5.26 instead of Theorem 5.14 has the advantage
that there is no need to show the continuity or strictness of this homomorphism. O

6 Conclusion and related work

We introduced the notions of weak, strong and S-consistency and consistency w.r.t. a
specification formalism, i.e. a set Prop of properties. It is shown that the various 'con-
sistency’ results from the literature fit into our framework. The connection between
B-consistency and consistency w.r.t. a specification formalism is studied (Theorem 2.10).
We showed that there is always a unique most abstract semantics suitable for verification
(Theorem 2.4). Under the assumption that the underlying specification formalism allows
for modular verification this semantics is compositional (Theorem 3.9). We also gave spe-
cial attention to compositionality and verification of programs that are built by stepwise
refinement. We showed that each (operational) semantics 8 with §(C[z]) = B(Clo[z])
possesses a unique denotational semantics which is adequate and fully abstract w.r.t. 3
(Theorem 4.3). Finally, we presented conditions for establishing weak consistency results
for denotational semantics.

As far as we know the only other work which deals with a general framework for es-
tablishing weak consistency result is [25] which presents a method for proving that an
operational semantics is an abstraction of a denotational semantics defined in the metric
approach.

Larsen [27] presents a general framework to compare the expressivity of specification for-
malisms. The notion of a specification formalism used in [27] differs a little bit from ours:

31

A specification formalism in the sense of [27] can be identified with the strong consistency
equivalence classes of semantics in our sense. Each strong consistency equivalence class
S = [a] can be described by the set of properties F with o | E:

Prop(S) = {ECP : S E E}

where S | FE iff o | F for all/some semantics a € S (Lemma 2.14). ’'Relative
expressivity’ in the sense of [27] adapted to our framework is weak consistency: Following
[27], we say that S is at last as expressive as ' iff S’ |= F implies S | E. With
Lemma 2.3: The strong consistency equivalence class [] is as least as expressive as [¢/]
if and only if @ is an abstraction of a. Larsen’s notion of 'supporting decomposition’ is
closely related to our notion of modularity of a specification formalism where [27] deals
with contexts instead of operator symbols.

A A categorical characterization of consistency

The results of Theorem 2.4, 2.11, 2.12, 3.9, 3.10 and 3.11 can be formulated in terms of
category theory:

Notation A.1 Sem(P) denotes the category of surjective semantics (as objects) and
abstractions (as morphisms). If Prop is a specification formalism then Sem(P, Prop) de-
notes the subcategories of semantics a such that « |= E for all E € Prop. If P is a
set of programs as in section 3 then Comp(P) denotes the category of surjective compo-
sitional semantics (as objects) and homomorphisms (as morphisms) and Comp(P, Prop)
the subcategory of compositional semantics suitable for checking all properties in Prop.

The surjectivity is not really a restriction since every semantics can be identified with
the surjection one gets by shrinking the range. The surjectivity implies that for given
semantics a, 3 there exists at most one arrow from a to 3. Hence one might think of
"abstraction’ as a preorder on semantics. If the semantics @ in Lemma 2.3 is surjective
then condition (a) in Lemma 2.3 can be replaced by

(a’) There exists a unique abstraction from a to 3.
Requiring that a and 3 are surjective condition (a) in Lemma 2.14 can be replaced by
(a’) a and g are isomorphic.

Hence isomorphism in Sem(P) is strong consistency. Establishing a weak consistency
result for semantics a, § means defining a morphism between « and £.

Theorem A.2 The categories Sem(P) and Comp(P) have products and coproducts for
arbitrary families of (compositional) semantics.

Proof: see Theorem 2.11, Theorem 3.10, Theorem 2.12 and Theorem 3.11. The prod-
uct is the most abstract common refinement, the coproduct the most concrete common
abstraction. O

32

Theorem A.3 For each specification formalism Prop the category Sem(P, Prop) has a
final object. If Prop is modular then Comp(P, Prop) has a final object.

Proof: follows by Theorem 2.4 and Theorem 3.9. O

If a is a semantics that is fully abstract and adequate w.r.t. 8 then « is the most abstract
semantics which is adequate w.r.t. [(i.e. it is the final object in the subcategory of
semantics which are adequate w.r.t.) and the most concrete semantics which is fully
abstract w.r.t. § (i.e. it is the initial object in the subcategory of semantics which are
fully abstract w.r.t. g).

It is an open problem if similar results can be established for suitable categories of metric
semantics or cpo semantics.

References

[1] S. Abramsky: A Domain Equation for Bisimulation, Information and Computation, Vol.
92, 1991.

(2] S. Abramsky, A. Jung: Domain Theory, In S. Abramsky, D.M. Gabbay and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, Vol. 3, Clarendon Press, 1994.

[3] C.Baier, M.E. Majster-Cederbaum: The Connection between an Event Structure Semantics
and an Operational Semantics for TCSP, Acta Informatica 31, 1994.

[4] C. Baier, M.E. Majster-Cederbaum: Denotational Semantics in the cpo and Metric Ap-
proach, Theoretical Computer Science, Vol. 135, 1994.

[5] C. Baier, M.E. Majster-Cederbaum: Construction of a CMS on a given CPO, Techn. Report
28/95, Universitit Mannheim, 1994, submitted for publication.

[6] J.W. de Bakker, J.J.Ch. Meyer: Metric Semantics for Concurrency, Report CS-R8803,
Centre for Mathematics and Computer Science, Amsterdam, 1988.

[7] J.W. de Bakker, J.H.A. Warmerdam: Metric Pomset Semantics for a Concurrent Lan-
guage with Recursion, Report CS-R9033, Centre for Mathematics and Computer Science,
Amsterdam, July 1990.

[8] J.W. de Bakker, J.I.Zucker: Processes and the Denotational Semantics of Concurrency,
Information and Control, Vol.54, No. 1/2, 1982.

[9] G. Boudol, I.Castellani: Concurrency and Atomicity, Theoretical Computer Science, Vol.
59, 1988.

[10] G. Boudol, I.Castellani: Three Equivalent Semantics for CC'S, Lecture Notes in Computer
Science 469, Springer-Verlag, 1990.

[11] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe: A Theory of Communicating Sequential Pro-
cesses, Journal of the ACM, Vol. 31, No. 3, July 1984.

[12] K. Bruce, J.C. Mitchell: PER Models of Subtyping, Recursive Types and Higher-order
Polymorphism, Proc. 19th ACM Symp. on Principles of Programming Languages, pp 316-
327, 1992.

33

[13] E.M. Clarke, E.A. Emerson: Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic, Proc. Workshop on Logics of Programs, Lecture Notes in
Computer Science 131, 1981.

(14] P. Degano, R. De Nicola, U. Montanari: On the Consistency of *Truly Concurrent’ Op-
erational and Denotational Semantics, Proc. Symposium on Logic in Computer Science,
Edinburgh, 1988.

[15] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, M. Grofle-Rohde:
Combining Data Type Specifications using Projection Algebras, Theoretical Computer Sci-
ence, Vol. 71, pp 347-380, 1990.

[16] R. Engelking: General Topology, Sigma Series in Rure Mathematics, Vol. 6, Heldermann
Verlag Berlin, 1989.

[17] G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott: A Compendium of
Continuous Lattices, Springer-Verlag, 1980.

[18] U. Goltz, R. Loogen: Modelling Nondeterministic Concurrent Processes with Event Struc-
tures, Fundamenta Informaticae, Vol. 14, No.1, 1991.

[19] U. Goltz, A. Mycroft: On the Relationship of CCS and Petri Nets, Proc. ICALP 84,
Lecture Notes in Computer Science 172, Springer-Verlag, 1984.

[20] M. Hennessy: Axiomatising Finite Delay Operators, Acta Informatica, Vol. 21, 1984.

[21] M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, in Automata,
Languages and Programming, Lecture Notes in Computer Science 85, 1980.

[22] C.A.R. Hoare: Communicating Sequential Processes, Prentice Hall, 1985.

[23] C.A.R. Hoare, P.E. Lauer: Consistent and Complementary Formal Theories of the Seman-
tics of Programming Languages, Acta Informatica, Vol. 3, 1974.

[24] E. Horita: A Fully Abstract Model for a Nonuniform Concurrent Language with
Parametrization and Locality, in Proc. REX Workshop 92, Lecture Notes in Computer
Science 666, Springer-Verlag 1993.

[25] J.N. Kok, J.J.M.M. Rutten: Contractions in Comparing Concurrency Semantics, Report
CS-R8755, Centre for Mathematics and Computer Science, November 1987.

[26] L. Lamport: Specifying Concurrent Program Modules, ACM Transactions on Programming
Languages and Systems, Vol. 5, No. 2, 1983.

[27] K. Larsen: Ideal Specification Formalism = Expressivity + Compositionality + Decid-
ability + Testability + ..., Proc. CONCUR’90, Theories of Concurrency: Unification and
Extension, Lecture Notes in Computer Science 458, pp 33-56, 1990.

[28] M. Majster-Cederbaum: General Properties of Semantics, Habilitation Thesis, Technische
Universitat Miinchen, 1983.

[29] M. Majster-Cederbaum, C. Baier: Metric Completion versus Ideal Completion, to appear
in Theoretical Computer Science, Vol. 170.

(Extended abstract in Proc. STRICT 95, J. Desel (ed.), Springer-Verlag.)

34

(30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

M. Majster-Cederbaum, F. Zetzsche: The Comparison of a CPO-Based with a CMS-Based
Semantics for CSP, Theoretical Computer Science, Vol. 124, 1994.

R. Milner: A Calculus of Communicating Systems, Lecture Notes in Computer Science 92,
Springer-Verlag, 1980.

R. Milner: Communication and Concurrency, Prentice Hall, 1989.

M.W. Mislove, F.J. Oles: Full Abstraction and Unnested Recursion, in Proc. REX Work- -
shop ’92, Lecture Notes in Computer Science 666, Springer-Verlag, 1993.

R. de Nicola, M. Hennessy: Testing Equivalences for Processes, Theoretical Computer
Science, Vol. 34, 1984.

E.R. Olderog: TCSP: Theory of Communicating Sequential Processes, Advances in Petri-
Nets 1986, Lecture Notes in Computer Science 255, Springer-Verlag, 1987.

E.R. Olderog: Operational Petri-Net Semantics for CCSP, Advances in Petri-Nets 1987,
Lecture Notes in Computer Science 266, Springer-Verlag, 1987.

G.D. Plotkin: An Operational Semantics for CSP, Formal Description of Programming
Concepts II, D. Bjorner, North Holland, 1983.

A. Pnueli: The Temporal Logic of Programs, 18th Ann. Symp. on Foundations of Computer
Science, Providence, 1977.

W. Reisig: Partial Order Semantics versus Interleaving Semantics for CSP-like Languages
and its Impact on Fairness, Proc. ICALP 84, Lecture Notes in Computer Science 172,
Springer-Verlag, 1984,

W. Reisig: Elements of a Temporal Logic Coping with Concurrency, SEB-Bericht 342/23,
92A, Techn. Universitat Miinchen, 1992.

M. Spanier: Vergleich zweier Theorien nebenlaufiger Prozesse, Ph.D.Thesis, Universitat
Mannheim, 1993.

G. Winskel: Synchronisation Trees, Theoretical Computer Science, Vol. 34, pp 33-82, 1984.

G. Winskel: An introduction to event structures, Lecture Notes in Computer Science 354,
pp 364-397, Springer-Verlag, 1988.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036

