
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Truth of duration calculus formulae in timed frames

C.A. Middelburg

Software Engineering (SEN)

SEN-R9812 August, 1998

Report SEN-R9812
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Truth of Duration Calculus Formulae in Timed Frames

C.A. Middelburg
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Department of Philosophy, Utrecht University

P.O. Box 80126, 3508 TC Utrecht, The Netherlands

Email: cam@cwi.nl

ABSTRACT

Duration calculus is a logical formalism designed for expressing and refining real-time requirements for systems.

Timed frames are essentially transition systems meant for modeling the time-dependent behaviour of programs.

We investigate the interpretation of duration calculus formulae in timed frames. We elaborate this topic from

different angles and show that they agree with each other. The resulting interpretation is expected to make it

generally easier to establish semantic links between duration calculus and formalisms aimed at programming.

Such semantic links are prerequisites for a solid underpinning of approaches to system development that cover

requirement capture through coding using both duration calculus and some formalism(s) aimed at programming.

1991 Mathematics Subject Classification: 68Q55, 68Q60

1991 Computing Reviews Classification System: D.2.1, D.2.4, D.3.1, F.3.1, F.3.2

Keywords and Phrases: duration calculus, real-time requirements, timed frames, time-dependent behaviour,

verification

Note: The work presented in this paper has been largely carried out while the author was at UNU/IIST (United

Nations University, International Institute for Software Technology).

Note: This paper is a revised version of [23].

1. Introduction

Duration calculus [18, 36] is an interval temporal logic intended for expressing real-time requirements
for systems and refining these requirements to specifications for one or more computer hardware and
software components. Formalisms aimed at programming should subsequently be used for the stepwise
development of the software components of the system to be realized. In the ProCoS project [19],
a particular approach has been developed to safeguard that the resulting system conforms to the
requirements expressed for it. The programming language considered is an occam-like language with
real-time features, called PL. A timed version of the readiness model [27] is the basis of the semantics
of PL. To bridge the gap between the state-based duration calculus and the event-based PL, a speci-
fication language for reactive systems with time constraints is introduced. This language, called SL,
is closely related to the model that is the basis of the semantics of PL.

SL and PL have been given a semantics using duration calculus formulae to describe the meaning
of SL specifications and using timing diagrams to describe the meaning of PL programs [32]. Because
timing diagrams are in essence the objects with respect to which the truth of duration calculus formulae
is usually defined, thus semantic links between duration calculus, SL and PL have been established
that provide the ProCoS approach with a solid underpinning.

Several variations on the ProCoS approach are conceivable. Interesting ones may be obtained
by retaining duration calculus as requirement language but choosing another specification language
and/or programming language, e.g. RSL [29] is chosen in [34]. The mathematical model that is the

1. Introduction 2

basis of the semantics of the language(s) concerned will bring on certain basic concepts and special
notations. To describe the meaning of the language constructs, the use of these concepts and notations
are most probably preferable to the use of timing diagrams and duration calculus formulae. A main
objection to the use of duration calculus, which is geared to state-based description of systems, is
that it does not match most languages related to programming real-time reactive systems, which are
geared to event-based description, nicely. In this connection, it is interesting to see that it is not
entirely clear how the definitions of the semantics of SL and PL presented in [32] relate to the earlier
definitions, presented in [31] and [16, 25], which they replace. A main purpose of this paper is to
make it generally easier to establish semantic links between duration calculus and formalisms aimed
at programming.

Various mathematical models have been developed that are suited to be used as a semantic basis for
programming languages and specification languages aimed at programming. The objects that underlie
many of these models are transition systems. In most process algebras, for example, transition systems
modulo an appropriate “process equivalence” are considered. Therefore it will often be relatively
simple to establish a semantic link between duration calculus and the language(s) concerned in case
a suitable interpretation of duration calculus formulae in transition systems is available. There exist
several kinds of transition systems. The basic transition systems for the time free case have been
extended to cope with time-dependent behaviour by adding time-stamps to states, transitions or both
and/or by introducing special time transitions. Besides the time scale on which time is measured may
be continuous or discrete and timing may be absolute or relative. The nature of the time scale makes
all the difference.

In this paper, the interpretation of duration calculus formulae in timed frames is studied. Timed
frames [7] cover virtually all kinds of transition systems for the discrete time case. Timed frames are
in essence the two-phase transition systems considered in [6] as the objects underlying discrete time
process algebras. They underlie well known discrete time process algebras such as ATP [26] and the
discrete time extension of ACP presented in [5]. Two-phase transition systems are closely related to
the real-time transition systems that underlie the real-time extension of ACP presented in [3]. In [4], it
is shown that the model of the discrete time extension of ACP based on two-phase transition systems
is isomorphic to a model based on the real-time transition systems that are discretized. For discretized
real-time transition systems, it holds that transitions that may occur at some time between n and
n + 1, may also occur at any other time between n and n + 1. Note that the real-time transition
systems of [3] are more complicated than necessary and a simpler kind of transition systems is used
in [15]. They are also closely related to the transition systems underlying Timed CCS [12] and the
timed transition systems proposed in [21].

The discrete time case is considered suitable for formalisms aimed at programming. It permits to
consider systems at a more abstract level than the continuous time case, a level where time is measured
with finite precision. Often this level does not differ materially from the implementation level: software
components of a system are executed on processors where the measure of time is provided by a discrete
clock and, in case a physical system is controlled, the state of the physical system is sampled and
adjusted at discrete points in time. Besides, the abstraction makes the time-dependent behaviour of
programs amenable to analysis. Usually, the real-time requirements expressed for a system are meant
to be interpreted in continuous time. In such cases, a step from continuous time to discrete time has
to be made at some stage of the refinement of the requirements for the system to the specifications
for its components. This is necessary to achieve that the requirements are met in continuous time if
all of the specifications are satisfied in discrete time. The problem of refining real-time requirements
to such specifications in the setting of duration calculus is addressed in [13].

In duration calculus, real-time requirements are formulated as properties about the duration of
phases of system behaviour. These phases, which are called state variables, are interpreted as functions
from the time domain R+ to the Boolean domain {0, 1}. One way to connect duration calculus to
timed frames is to extract interpretations of state variables from paths in frames. Another way is
to give the meaning of formulae directly with respect to paths in frames. In this paper, we connect

2. Timed frames 3

duration calculus to timed frames in both ways and show that truth for a path is equivalent to truth
under the interpretation induced by that path. Connecting duration calculus to timed frames by
embedding of duration calculus into a classical first-order logic for timed frames, called timed frame
logic [8], is doomed to fail, but embedding of an interesting fragment is feasible. This matter is treated
as well in this paper.

To put it differently, the truth of duration calculus formulae in timed frames is presented in three
ways: (1) by starting from the original (discrete time) semantics of duration calculus, (2) by intro-
ducing a new semantics directed at timed frames and (3) by giving a translation to timed frame logic
that leaves validity unchanged. Because the first presentation is equivalent to the second presentation,
whichever one of them is most convenient for a particular purpose may be used at any time. Seeing
that the first presentation just takes paths in timed frames as representations of interpretations of
state variables and thus provides a very simple interface between duration calculus and timed frames,
it is considered to be the primary presentation. However, the second presentation is, for example,
more suited for building a model-checking tool to verify automatically whether the time-dependent
behaviour of a program, as modeled by a timed frame, meets a timing constraint expressed for it in
duration calculus. The third presentation is equivalent to the others for the fragment concerned, be-
cause the translation leaves validity unchanged. Therefore, this presentation may also be used at any
time that it is sufficient to look at the fragment. It may be convenient when devising a ProCoS-like
approach with a logic closely related to timed frame logic, e.g. a timed version of Dicky logic [1] or
Hennessy-Milner logic [20], as specification language.

Strictly speaking, we consider an extension of the original duration calculus, known as the mean
value calculus [37], which allows to deal with point intervals and consequently with events. We also
consider timed frames of which the states can be equipped with propositions, called signal inserted
timed frames. This addition enables us to represent phases of system behaviour.

The structure of this paper is as follows. First of all, we give a survey of timed frame algebra
(Section 2) and timed frame logic (Section 3). Next, we present the syntax and semantics of the mean
value calculus (Section 4). After that, we connect the mean value calculus to timed frames (Section 5).
Finally, we discuss the connection between the mean value calculus and timed frame logic (Section 6).

2. Timed frames

Simple timed frames are built from states and labelled transitions. There are two kinds of transitions,
which we shall call action steps and time steps. They represent the execution of actions and the
passage of time to the next time slice, respectively. Time determinism is not built into timed frames:
states may have more than one outgoing time steps. By the addition of an operation, called signal
insertion, it becomes possible to assign propositional formulae to the states of a timed frame. The
propositional formula assigned to a certain state is considered to hold in that state. This section
contains a survey of simple timed frame algebra and its extension with signal insertion. We refer to [7]
for further details, which include results about the connection between timed frames and discrete time
processes. The survey is preceded by a small example to illustrate the use of timed frames.

2.1 Example
The example concerns a simple telephone answering machine. We use timed frame algebra for the
description of the control component of the telephone answering machine. The example is based on a
specification in SDL [14] due to Mauw [22].

In order to control the telephone answering, the control component of the answering machine has to
communicate with the recorder component of the answering machine, the telephone connected with
the answering machine, and the telephone network. When an incoming call is detected, the answering
is not started immediately. If the incoming call is broken off or the receiver of the telephone is lifted
within a period of 10 time units, answering is discontinued. Otherwise, an off-hook signal is issued to
the network when this period has elapsed and a pre-recorded message is played. Upon termination
of the message, a beep signal is issued to the network and the recorder is started. The recorder is

2. Timed frames 4

stopped when the call is broken off, or when 30 time units have passed in case the call has not been
broken off earlier. Thereafter, an on-hook signal is issued to the network.

We will use action steps and time steps to describe this time-dependent behaviour of the controller.
Time steps are denoted by terms of the form s σ−−→ s′ and action steps are denoted by terms of the
form s

a−−→ s′, where a is an action. Action steps and time steps are considered timed frames and the
frame union operator ⊕ is used to put together larger timed frames. Natural numbers are taken as
states. The behaviour of the controller is represented by the timed frame TAMC0 defined by

TAMC0 =

(0 σ−−→ 0)⊕ (0 r(incoming call)−−−−−−−−−−−→ 1)⊕⊕10
i=1((i

σ−−→ S(i))⊕ (i r(rcv lifted)−−−−−−−−→ 0)⊕ (i r(end call)−−−−−−−→ 0))⊕
(11 s(off-hook)−−−−−−−→ 12)⊕ (12 s(play msg)−−−−−−−−→ 13)⊕
(13 σ−−→ 13)⊕ (13 r(end msg)−−−−−−−→ 14)⊕ (13 r(end call)−−−−−−−→ 48)⊕
(14 s(beep)−−−−−→ 15)⊕ (15 s(start rec)−−−−−−−→ 16)⊕⊕45

j=16((j
σ−−→ S(j))⊕ (j r(end call)−−−−−−−→ 47))⊕

(46 s(stop rec)−−−−−−−→ 48)⊕ (47 s(stop rec)−−−−−−−→ 48)⊕ (48 s(on-hook)−−−−−−−→ 0)

By designating state 0 as the root state, we obtain a transition system. Instead of its usual graphical
representation, we give here a term for it.

It may be useful to know whether the state of the answering machine is one of playing, recording or
otherwise. Using the signal insertion operator q̂ to assign to each state of TAMC0 a propositional
formula that indicates whether it is a state of playing, recording or otherwise, we get the signal inserted
timed frame TAMC1 defined by

TAMC1 =

TAMC0 ⊕
⊕11

i=0((¬playing ∧ ¬recording) q̂ i)⊕
((playing ∧ ¬recording) q̂ 13)⊕

⊕46
j=16((¬playing ∧ recording) q̂ j)

The frames TAMC0 and TAMC1 defined here differ slightly from the ones defined in [7]. There
states 46 and 47 were identified, because both were considered states of playing. Here the latter state
is considered an internal state of which nothing should be made visible via a propositional formula
assigned to it. Further distinctions could have been made, e.g. between states of idling and states of
waiting to answer for the states of not playing and not recording.

2.2 Simple timed frames
Simple timed frames are built from states and transitions between states. The states are obtained by
an embedding of natural numbers in states, and a pairing function on states. Simple timed frames
contain two kinds of transitions: action steps and time steps. We consider action steps with a label
from a finite set A of actions.

The signature of (simple) timed frames is as follows:

2. Timed frames 5

Sorts:
N natural numbers;
S states ;
Ft timed frames ;

Constants & Functions:
0 : N zero;
S : N→ N successor;

ıN : N→ S embedding of natural numbers in states;
〉−〈 : S2 → S pairing of states;

∅ : Ft empty timed frame;
ıS : S→ Ft embedding of states in timed frames;

a−−→: S2 → Ft action step construction (one for each a ∈ A);
σ−−→: S2 → Ft time step construction;
⊕ : F2

t → Ft timed frame union.

Given the signature, (closed) terms are constructed in the usual way. We shall use the meta-variables
n and m to stand for arbitrary terms of sort N, the meta-variables s, s′ and s′′ to stand for arbitrary
terms of sort S, and the meta-variables X , Y and Z to stand for arbitrary terms of sort Ft. We write
n instead of ıN(n) or ıS(ıN(n)) as well as s instead of ıS(s) when this causes no ambiguity. Terms of
the forms ıS(s), s a−−→ s′ and s σ−−→ s′ denote atomic timed frames, i.e. timed frames that contain
a single state or transition. The constant ∅ denotes the timed frame that contains neither states
nor transitions. The operator ⊕ on timed frames gives the union of the states and transitions of its
arguments. Pairing (〉−〈) is a simple means to define “fresh” states – in [11], it is used to define frame
product. The axioms for timed frames are given in Table 1. These axioms characterize timed frames

(FA1) X ⊕ Y = Y ⊕X

(FA2) X ⊕ (Y ⊕ Z) = (X ⊕ Y)⊕ Z

(FA3) X ⊕X = X

(FA4) X ⊕ ∅ = X

(FA5) s⊕ (s a−−→ s′) = s
a−−→ s′

(FA6) s′ ⊕ (s a−−→ s′) = s a−−→ s′

(TFA1) s⊕ (s σ−−→ s′) = s σ−−→ s′

(TFA2) s′ ⊕ (s σ−−→ s′) = s
σ−−→ s′

Table 1: Axioms for timed frames.

as objects consisting of a finite set of states and a finite set of transitions (axioms (FA1)–(FA4)). In
addition, timed frames are identified if they are the same after addition of the states occurring in the
transitions to the set of states (axioms (FA5), (FA6), (TFA1) and (TFA2)). Notice that time steps are
not treated different from action steps in the axioms for simple timed frames. However, the distinction
between action steps and time steps is needed for the extension with signal insertion. Besides, it is of
vital importance to relate timed frames to discrete time processes.

We define iterated frame union by⊕k
i=nXi =

{ ∅ if k < n,
Xn ⊕

⊕k
i=n+1Xi otherwise.

Every frame has a finite number of states and transitions, and can be denoted by a term of the
form

⊕m
i=1Xi, where the Xi are atomic. In [11], frame polynomials are introduced to deal with the

2. Timed frames 6

countably infinite case as well. However, in this paper only frames with a finite number of states and
transitions – which correspond to regular discrete time processes as defined in [5] – are considered.

2.3 Signal inserted timed frames
In simple timed frames, states are not labelled. In signal inserted timed frames, we consider states with
a label from the set of propositional formulae that can be built from a set Pat of atomic propositions,
t, f, and the connectives ¬ and→. The propositional formula assigned to a state is considered to hold
in that state.

The signature for signal inserted timed frames is the signature of timed frames, where the sort Ft

is renamed to 〈Ft,P〉, extended with the following:

Sorts:
P propositions;

Constants & Functions:
p : P for each p ∈ Pat;
t : P true;
f : P false;
¬ : P→ P negation;
→ : P2 → P implication;
q̂: P× 〈Ft,P〉 → 〈Ft,P〉 signal insertion.

The signature of signal inserted timed frames is graphically presented in Figure 1. We shall use the

-

?

��
?

�
� 6
��
����

��-

��
�

��
�

"!

"!

"!

"!

?

��
?

- N0 ıN

ıS

q̂

a−−→
σ−−→

(for all a ∈ A)

S

S

P

〉−〈

∅

p, q, ... ∈ Pat t, f

⊕

→

¬ 〈Ft,P〉

6

Figure 1: Signature of signal inserted timed frames.

meta-variables φ and ψ to stand for arbitrary terms of sort P. As usual, we write φ ∨ ψ for ¬φ→ ψ,
φ∧ψ for ¬(¬φ∨¬ψ), and φ↔ ψ for (φ→ ψ)∧ (ψ → φ). In Table 2 we give a complete proof system
for propositional logic. The signal insertion operation q̂ assigns propositional formulae to the states
contained in frames. The axioms for signal inserted timed frames are the axioms given in Table 1 (see
Section 2.2) and the axioms given in Table 3. Additionally, we can use identities φ = ψ iff φ ↔ ψ
is provable from the axiom schemas and the inference rule given in Table 2. The axioms in Table 3
express that signal insertion to a frame is tantamount to signal insertion to all its states, taken as
frames (axioms (Ins1), (Ins5), (Ins6) and (TIns1)). The axioms (Ins2)–(Ins4) cover the special cases
where signal insertion is not applied once, but zero times or more than once. A signal inserted state
f
q̂s, i.e. a state where f holds, is an inconsistent state which absorbs all its incoming and outgoing

action steps (axioms (Ins7) and (Ins8)). The axiom (TIns2) reflects the intuition that the passage

3. Timed frame logic 7

(P1) φ→ (ψ → φ)

(P2) (φ→ (ψ → ξ))→ ((φ→ ψ)→ (φ→ ξ))

(P3) (¬φ→ ¬ψ)→ (ψ → φ)

(P4) t↔ (p→ p)

(P5) f ↔ ¬ t

(MP)
φ φ→ ψ

ψ

Table 2: A proof system for propositional logic.

(Ins1) φ q̂ ∅ = ∅
(Ins2) t

q̂X = X

(Ins3) φ q̂ (ψ q̂X) = (φ ∧ ψ) q̂X

(Ins4) (φ q̂X)⊕ (ψ q̂X) = (φ ∧ ψ) q̂X

(Ins5) φ q̂ (X ⊕ Y) = (φ q̂X)⊕ (φ q̂ Y)

(Ins6) φ q̂ (s a−−→ s′) = (φ q̂ s)⊕ (s a−−→ s′)⊕ (φ q̂ s′)

(Ins7) (f q̂s)⊕ (s a−−→ s′) = (f q̂s)⊕ s′

(Ins8) (s a−−→ s′)⊕ (f q̂s′) = s⊕ (f q̂s′)

(TIns1) φ q̂ (s σ−−→ s′) = (φ q̂ s)⊕ (s σ−−→ s′)⊕ (φ q̂ s′)

(TIns2) (φ q̂ s)⊕ (s σ−−→ s′) = (s σ−−→ s′)⊕ (φ q̂ s′)

Table 3: Additional axioms for signal insertion.

of time cannot change the propositions that hold in the current state. Axiom (TIns2) entails that
inconsistent states remain inconsistent with progress of time. Thus, one inconsistent state would
render all states inconsistent if there were also counterparts of the axioms (Ins7) and (Ins8) for time
steps. Note that the equation s⊕ (φ q̂ s) = φ q̂ s (reminiscent of the axioms (FA5) and (FA6)) is
derivable from the axioms (Ins2) and (Ins4).

3. Timed frame logic

Timed Frame Logic (TFL) is a classical first-order logic with:

1. quantification over natural numbers, states, transition labels and paths;
2. standard constants and functions concerning natural numbers, states, propositions, transition

labels and paths;
3. equality and some additional standard predicates concerning paths.

TFL was first proposed as a logic for timed frames in [8]. That paper reports in detail about various
issues, including the distinctive power of TFL and the embedding of other logics (CTL and Dicky
logic) in TFL. In this section, we only present the syntax and semantics of TFL.

3.1 Syntax
The signature for the terms of TFL is the signature of signal inserted timed frames restricted to
natural numbers, states and propositions, and extended with the following:

3. Timed frame logic 8

Sorts:
L transition labels;
Π paths ;

Constants & Functions:
+ : N2 → N addition;

a : L for each a ∈ A;
σ : L time step label;

ıS : S→ Π embedding of states in paths;
.−−→: Π× L× S→ Π appending of transitions to paths.

For the sorts N, S, L and Π, we assume countably infinite sets of variables VN, VS, VL and VΠ,
respectively. Terms of these sorts are constructed from the variables and the constant and function
symbols in the usual way. For the sort P, we only consider variable-free terms. We shall use the
meta-variables t and t′ to stand for arbitrary terms of any sort, the meta-variable µ to stand for an
arbitrary term of sort L and the meta-variable π to stand for an arbitrary term of sort Π.

The atomic formulae of TFL are inductively defined by the following formation rules:

1. if t, t′ are terms of the same sort, then t = t′ is an atomic formula;
2. if n, π, and s are terms of sort N, Π and S, respectively, then Ss(n, π, s) is an atomic formula;
3. if n, π, and µ are terms of sort N, Π and L, respectively, then Sl(n, π, µ) is an atomic formula;
4. if π is a term of sort Π, then E(π) is an atomic formula;
5. if φ is a variable-free term of sort P and s is a term of sort S, then H(φ, s) is an atomic formula.

The formulae of TFL are inductively defined by the following formation rules:

1. atomic formulae are formulae;
2. if Φ is a formula, then ¬Φ is a formula;
3. if Φ, Ψ are formulae, then Φ ∧Ψ is a formula;
4. if x ∈ VD, where D ∈ {N, S,L, Π}, and Φ is a formula, then ∀x ∈ D · Φ is a formula.

The meaning of the atomic formulae of the first form is as usual. The meaning of the atomic formulae
of the last four forms can informally be explained as follows: Ss(n, π, s) is true iff s is the (n + 1)-th
state in path π, Sl(n, π, µ) is true iff µ is the label of the (n + 1)-th transition in path π, E(π) is
true in a frame iff the path π exists in the frame, and H(φ, s) is true in a frame iff the proposition φ
holds in the state s of the frame. Obviously, the truth of the atomic formula of the forms Ss(n, π, s)
and Sl(n, π, µ) are not frame dependent. For the selection of states and transition labels from paths,
standard predicates are provided instead of standard functions because the latter would be partial
functions.

Additional connectives (∨, →, ↔) and the existential quantifier are introduced as abbreviations in
the usual way. The abbreviation t 6= t′ for ¬(t = t′) is also used.

3.2 Example
In Section 2.1, the control component of a telephone answering machine was modelled by a timed
frame. One of its properties is the following:

When the off-hook signal is issued to the telephone network, nothing has happened since
the detection of the last incoming call and meanwhile 10 time units have passed.

This property can be expressed in TFL as follows:

∀π ∈ Π · ∀n ∈ N·
E(π) ∧ Sl(0, π, r(incoming call)) ∧ Sl(n + 1, π, s(off-hook))∧
(∀m ∈ N · 1 ≤ m ≤ n→ ¬Sl(m, π, r(incoming call)))→

n = 10 ∧ ∀k ∈ N · 1 ≤ k ≤ n→ Sl(k, π, σ)

3. Timed frame logic 9

Here we write l ≤ m ≤ n for ∃k ∈ N · k + l = m ∧ ∃k′ ∈ N · k′ + m = n.

3.3 Semantics
The interpretation of the sort, constant and function symbols from the signature of the TFL terms
is the interpretation in the initial model for this signature and the usual equations concerning 0, S
and +. This interpretation can be extended to the TFL terms in the usual way. We write [[t]]α for the
interpretation of term t under an assignment α. An assignment is a function mapping each variable to
an element of the interpretation of its sort in the initial model. If D is a sort symbol, we write D for
its interpretation as well. It is always clear from the context whether the symbol or its interpretation
is meant.

The predicates symbols Ss, Sl, E and H have also a standard meaning which was explained informally
above. In case of Ss and Sl, the meaning is frame independent. These symbols stand for the ternary
relations Ss ⊆ N×Π× S and Sl ⊆ N×Π× L inductively defined by

i ≤ n ⇒ (i, s1
µ1−−→ s2 . . .

µn−−→ sn+1, si+1) ∈ Ss

and
i < n ⇒ (i, s1

µ1−−→ s2 . . .
µn−−→ sn+1, µi+1) ∈ Sl

In case of E and H, the meaning is frame dependent. For each frame F , these symbols stand for the
unary relation E(F) ⊆ Π and the binary relation H(F) ⊆ P× S inductively defined by

s1 ⊕ F = F ⇒ s1 ∈ E(F),⊕n
i=1(si

µi−−→ si+1)⊕ F = F ⇒ s1
µ1−−→ s2 . . .

µn−−→ sn+1 ∈ E(F)

and
(φ q̂ s)⊕ F = F ⇒ (φ, s) ∈H(F)

The truth of a formula Φ in frame F under assignment α, written F |=α Φ, is inductively defined
by

F |=α t = t′ ⇔ [[t]]α = [[t′]]α,

F |=α Ss(n, π, s) ⇔ ([[n]]α, [[π]]α, [[s]]α) ∈ Ss,
F |=α Sl(n, π, µ) ⇔ ([[n]]α, [[π]]α, [[µ]]α) ∈ Sl,

F |=α E(π) ⇔ [[π]]α ∈ E(F),

F |=α H(φ, s) ⇔ ([[φ]]α, [[s]]α) ∈H(F),

F |=α ¬Φ ⇔ not F |=α Φ,

F |=α Φ ∧Ψ ⇔ F |=α Φ and F |=α Ψ,

F |=α ∀x ∈ D ·Φ ⇔ for all d ∈ D, F |=α(x→d) Φ

(for D ∈ {N, S,L, Π}).

Here we write α(x→ d) for the assignment α′ such that α′(y) = α(y) if y 6= x and α′(x) = d.
A formula Φ is valid in a frame F , written F |= Φ, iff F |=α Φ for all assignments α. A formula Φ

is valid , written |= Φ, iff F |= Φ for all frames F .
A frame F has inconsistent states iff there is a state s such that (f q̂s) ⊕ F = F . The following

results concerning the distinctive power of TFL were proved in [8]:

1. F 6= F ′ ⇒ (for some Φ, F |= Φ 6⇔ F ′ |= Φ)
2. if F and F ′ have no inconsistent states:

(for some Φ, F |= Φ 6⇔ F ′ |= Φ) ⇒ F 6= F ′

This means that for frames without inconsistent states equality coincides with the nonexistence of a
distinguishing TFL formula.

4. Duration calculus 10

4. Duration calculus

The original Duration Calculus (DC) was introduced in [36]. Its discrete time semantics can be found
in e.g. [17]. Several extensions have been proposed, notably the Mean Value Calculus (MVC) in [37]
and the Extended Duration Calculus (EDC) in [38]. As explained in Section 1, we consider MVC with
discrete time semantics.

In both DC and MVC, a system is modelled by a number of functions from the time domain R+

to the Boolean domain {0, 1}. These functions are called the state variables of the system. State
variables, durations and the chop modality are the distinctive features of DC. For a state variable (or
a Boolean combination of state variables) P , its duration in a time interval, written

∫
P in DC, is the

integral of P over the time interval. For formulae Φ and Ψ, the formula Φ ; Ψ, where ; denotes the
chop modality, can be formed. This formula is true at a time interval that can be divided into two
intervals where Φ is true at the first interval and Ψ is true at the second interval. In MVC, durations
are replaced by mean values and interval-lengths. For a state variable (or a Boolean combination of
state variables) P , its mean value, written P , is the mean value of P over a time interval if the interval
is not a point interval, and the value of P at the point otherwise. ` stands for the length of a time
interval. In MVC, the duration of P can be written P ∗ `.

4.1 Syntax
We assume a countably infinite set of logical variables V and a countably infinite set of state variables
SV . Furthermore, we assume a finite sets of function symbols (each with an associated arity) and a
finite set of predicate symbols (each with an associated arity). In MVC we have, in addition to the
syntactic categories of terms and formulae, the syntactic category of state expressions.

The state expressions are inductively defined by the following formation rules:

1. 0 and 1 are state expressions;
2. each v ∈ SV is a state expression;
3. if P is a state expression, then ¬P is a state expression;
4. if P, Q are state expressions, then P ∧Q is a state expression.

The terms of MVC are inductively defined by the following formation rules:

1. ` is a term;
2. each x ∈ V is a term;
3. if P is a state expression, then P is a term;
4. if r1, . . . , rn are terms and f is an n-ary function symbol, then f(r1, . . . , rn) is a term.

The formulae of MVC are inductively defined by the following formation rules:

1. t is a formula;
2. if r, r′ are terms, then r = r′ is a formula;
3. if r1, . . . , rn are terms and p is an n-ary predicate symbol, then p(r1, . . . , rn) is a formula;
4. if Φ is a formula, then ¬Φ is a formula;
5. if Φ, Ψ are formulae, then Φ ∧Ψ and Φ ; Ψ are formulae;
6. if x ∈ V and Φ is a formula, then ∀x ·Φ is a formula.

Additional connectives (∨, →, ↔) and the existential quantifier are introduced as abbreviations in
the usual way.

The following abbreviations are also frequently used: dP e0 for ` = 0 ∧ P = 1 and dP e for ` >

0∧¬(` > 0 ; d¬P e0 ; ` > 0). Their meaning can be informally explained as follows: dP e0 is true at an
interval iff the interval is a point interval and P has the value 1 at that point, and dP e is true at an
interval iff the interval is not a point interval and P has the value 1 everywhere inside the interval –
P may have the value 0 at the begin-point and the end-point.

5. Duration calculus for timed frames 11

4.2 Semantics
We assume that there is a function f : Rn → R associated with each n-ary function symbol f and a
relation p : Rn with each n-ary predicate symbol p. We write [b, e], where b, e ∈ R+ and b ≤ e, for
bounded and closed intervals.

The truth of MVC formulae is defined below with respect to an interpretation of state variables and
an assignment of logical variables. Let N ∈ N. Then a (discrete) interpretation I over the interval
[0, N] is a function I : SV → ([0, N] → {0, 1}) where, for each v ∈ SV , the discontinuity points of
I(v) belong to N. Likewise, we only consider discrete intervals, i.e. intervals [b, e] where b, e ∈ N. We
write Intv(N) for {[b, e] | b, e ∈ N, 0 ≤ b ≤ e ≤ N}. An assignment α is a function α : V → R.

The value of a state expression P under interpretation I over [0, N] is the function [[P]]I : [0, N]→
{0, 1} inductively defined by

[[0]]I(t) = 0,

[[1]]I(t) = 1,

[[v]]I(t) = I(v)(t),

[[¬P]]I(t) = 1− [[P]]I(t),

[[P ∧Q]]I(t) =
{

1 if [[P]]I(t) = 1 and [[Q]]I(t) = 1
0 otherwise.

The value of a term r under interpretation I over [0, N] and assignment α is the function [[r]]Iα :
Intv(N)→ R inductively defined by

[[`]]Iα([b, e]) = e− b,

[[x]]Iα([b, e]) = α(x),

[[P]]
I
α([b, e]) =


∫ e

b

[[P]]I(t)dt/(e− b) if e− b > 0

[[P]]I(e) otherwise,

[[f(r1, . . . , rn)]]Iα([b, e]) = f([[r1]]
I
α([b, e]), . . . , [[rn]]Iα([b, e])).

The truth of a formula Φ at interval [b, e] ∈ Intv(N) under interpretation I over [0, N] and assign-
ment α, written I, [b, e] |=α Φ, is inductively defined by

I, [b, e] |=α t,

I, [b, e] |=α r = r′ ⇔ [[r]]Iα([b, e]) = [[r′]]Iα([b, e]),

I, [b, e] |=α p(r1, . . . , rn) ⇔ ([[r1]]
I
α([b, e]), . . . , [[rn]]Iα([b, e])) ∈ p,

I, [b, e] |=α ¬Φ ⇔ not I, [b, e] |=α Φ,

I, [b, e] |=α Φ ∧Ψ ⇔ I, [b, e] |=α Φ and I, [b, e] |=α Ψ,

I, [b, e] |=α Φ ; Ψ ⇔ for some m ∈ N where m ∈ [b, e],
I, [b, m] |=α Φ and I, [m, e] |=α Ψ,

I, [b, e] |=α ∀x · Φ ⇔ for all d ∈ R, I, [b, e] |=α(x→d) Φ.

We write I, [b, e] |= Φ to indicate that I, [b, e] |=α Φ for all assignments α.
A formula Φ is valid in an interpretation I over [0, N], written I |= Φ, iff I, [0, N] |= Φ. A formula

Φ is valid , written |= Φ, iff I |= Φ for all interpretations I over [0, N], for all N .

5. Duration calculus for timed frames

In this section, we consider the truth of MVC formulae in signal inserted timed frames. First of all,
we show how paths in a frame induce interpretations of state variables and we take the truth of an

5. Duration calculus for timed frames 12

MVC formula under all interpretations induced by paths in a frame as the validity of the formula in
that frame. After that, we make a more direct connection by introducing the truth of MVC formulae
for paths in frames. Truth for a path is equivalent to truth under the interpretation induced by the
path. In other words, we consider the truth of MVC formulae in signal inserted timed frames from
two different angles that agree with each other: an angle that focusses on the original semantics of
MVC and an angle that focusses on a new semantics directed at signal inserted timed frames. Each of
the two resulting presentations of the truth of MVC formulae in signal inserted timed frames can be
safely used at different times. The usefulness of this is further discussed in Section 1. An additional
advantage of an elaboration from more than one angle is that it leads to definitions that are not biased
by a particular angle.

To begin with, we introduce some auxiliary notions and notations to make the main definitions
easier to comprehend.
A proper path is a path of the form s1

µ1−−→ s2 . . .
µn−−→ sn+1 where µn 6= σ. So proper paths can not

end in a time step. We write π ∈Πp to indicate that π is a proper path.
The partial path composition function • : Π×Π→ Π is inductively defined by

s • s = s

(π µ−−→ s) • s = π
µ−−→ s

π1 • π2 = π3 ⇒ π1 • (π2
µ−−→ s) = π3

µ−−→ s

Path composition yields the concatenation of two paths, provided that the last state of the first path
equals the first state of the second path. Otherwise its result is undefined.
A timed action step s

t,a−−→ s′ (t ∈ N) is a path of the form s
σ−−→ s1 . . .

σ−−→ st
a−−→ s′.

Similarly, a timed action path s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 is a path of the form (s1
t1,a1−−−→ s2) • . . . •

(sn
tn,an−−−−→ sn+1).

Note that a timed action path s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 hides the states si1, . . . , siti between
si and si+1 (for 1 ≤ i ≤ n). However, the propositions that hold in these states are the same as the
ones that hold in si. In the definitions to come, all paths of the form corresponding to the same timed
action path may be identified. Therefore we will loosely write π = s1

t1,a1−−−→ s2 . . . sn
tn,an−−−−→ sn+1.

Note also that the timed action paths cover exactly the proper paths.

5.1 Interpretations induced by paths
First of all, we consider the case where state variables simply correspond to atomic propositions that
may hold in the states of a frame. Next, we admit state variables to correspond alternatively to
sequences of actions that may be performed from the states till time passes to the next time slice.
This latter case must be considered to be more appropriate for signal inserted timed frames, because
they exhibit the interplay between the performance of actions and the consequent visible state changes.

Atomic propositions as state variables In this case, we take the set Pat of atomic propositions as the
set SV of state variables.

Let π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 be a proper path. Then the time length of π, written `(π),
is defined by

`(π) =
n∑

i=1

ti

Let F be a frame and π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 be a proper path such that π ∈ E(F). Then

5. Duration calculus for timed frames 13

the set of atomic propositions that hold for π at time t, written P (F)(π, t), is defined by

p ∈ P (F)(π, t) ⇔

∃k ∈ N · k + 1 ≤ n ∧
k∑

i=1

ti ≤ t <
k+1∑
i=1

ti ∧ (p q̂ sk+1)⊕ F = F∨

t =
n∑

i=1

ti ∧ (p q̂ sn+1)⊕ F = F

With immediate transitions, i.e. with ti = 0 for some i (1 ≤ i ≤ n), several actions seem to take
place in sequence at the same discrete time point. Before proceeding, we have a look at the origin of
this peculiarity. Timed frames are meant for modeling the time-dependent behaviour of programs at
a level of abstraction where time is measured with finite precision by using a discrete time scale. It
means that the discrete time points just divide real time into time slices and, although actions and
state changes take place in real time, only the time slices in which actions and state changes take place
are considered to be of importance. Discrete time process algebras such as ATP [26] and the discrete
time extension of ACP presented in [5] offer exactly this abstraction. Naturally, it is in accordance
with the intended meaning of a time step – the passage of time to the next time slice – for it derives
this meaning from its use in these discrete time process algebras. However, the discrete time semantics
of MVC does not offer a similar abstraction because it only allows for state changes at the discrete
time points. For this reason, the sequence of actions taking place within a time slice must be treated
as a single transition that yields only one state change.

We define the interpretation IF
π over [0, `(π)] induced by a proper path π in frame F by

IF
π (v)(t) =

{
1 if v ∈ P (F)(π, t)
0 otherwise

In this way, proper paths in a frame correspond to interpretations for MVC.
A formula Φ is valid in a frame F , written F |= Φ, iff IF

π , [0, `(π)] |= Φ for all proper paths π such
that π ∈ E(F).

Sequences of actions as state variables Now we add the set A+ of non-empty sequences of actions to
the set SV of state variables.

Let F be a frame and π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 be a proper path such that π ∈ E(F).
Then the set of sequences of actions that happen in π at time t, written A(F)(π, t), is defined by

a′1 . . . a′m ∈ A(F)(π, t) ⇔

∃k ∈ N · k + m ≤ n ∧
k+1∑
i=1

ti = t =
k+m∑
i=1

ti∧

(k 6= 0 ⇒
k∑

i=1

ti < t) ∧ (k + m 6= n ⇒ t <
k+m+1∑

i=1

ti) ∧
m∧

j=1

(ak+j = a′j)

Note that the set A(F)(π, t) is either the empty set or a singleton set. In the former case, no sequence
of actions happens at time t. In the latter case, t must be a discrete time point and the sequence
of actions is the complete sequence of actions that happens at that time point. Only the complete
sequence is considered to happen because only the state change corresponding to the complete sequence
is visible.

We re-define the interpretation IF
π over [0, `(π)] induced by a proper path π in frame F by

IF
π (v)(t) =

{
1 if v ∈ P (F)(π, t) or v ∈ A(F)(π, t)
0 otherwise

5. Duration calculus for timed frames 14

5.2 Example
In Section 2.1, the control component of a telephone answering machine was modelled by a signal
inserted timed frame. One of its properties is the following:

The waiting-to-answer phase lasts for at most 10 time units.

This property is easy to express in MVC using both atomic propositions and sequences of actions as
state variables:

dr(incoming call)e0 ; d¬playing ∧ ¬recordinge → ` ≤ 10

In Section 3.2, the following property was expressed in TFL:

When the off-hook signal is issued to the telephone network, nothing has happened since
the detection of the last incoming call and meanwhile 10 time units have passed.

This property can be expressed in MVC as well:

dr(incoming call)e0 ; d¬r(incoming call)e ; ds(off-hook)s(play msg)e0 →

` = 10 ∧ dr(incoming call)e0 ; d¬
∨

e∈A+

ee ; ds(off-hook)s(play msg)e0

The formula d¬
∨

e∈A+

ee is used to characterize a non-point interval in which no actions happen.

5.3 Truth for paths in frames
We can also define the truth of a formula Φ for a proper path in a frame (instead of under its
induced interpretation). Only the chop modality needs some special attention. We can not simply
chop a proper path π in any two proper paths π1 and π2 for which π = π1 • π2. Not all (proper)
subpaths π′ with `(π′) = 0 consist of a single state. However, in order to be in accordance with
the interpretation induced by the path, such instant subpaths have to be treated in a way like single
states. To accommodate this, we introduce the set of admissible divisions for a proper path π, written
D(π). It is defined by

(π1, π2) ∈D(π) ⇔
π1, π2 ∈Πp∧
∃π′1, π′, π′2 ∈ Π·

π1 = π′1 • π′ ∧ π2 = π′ • π′2 ∧ π = π′1 • π′ • π′2 ∧ π′ ∈Πp ∧ `(π′) = 0∧
¬(∃π′′1 , π′′ ∈ Π · π′1 6= π′′1 ∧ π′1 = π′′1 • π′′ ∧ π′′ ∈ Πp ∧ `(π′′) = 0)∧
¬(∃π′′, π′′2 ∈ Π · π′2 6= π′′2 ∧ π′2 = π′′ • π′′2 ∧ π′′ ∈ Πp ∧ `(π′′) = 0)

Suppose π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 and let π′ = s′i+1
0,ai+1−−−−→ si+2 . . . si+m

0,ai+m−−−−−→ si+m+1

(0 ≤ i ≤ n, 1 ≤ m ≤ n − i) be a subpath of π that can not be extended at either side to a longer
subpath without time steps. The preceding definition makes precise the way in which admissible
divisions (π1, π2) of π treat π′ like a single state, viz. π1 ends at si+m+1 if and only if π2 begins at
s′i+1, π1 never ends at another state of π′ and π2 never begins at another state of π′.

Atomic propositions as state variables To begin with, we consider the case where state variables
correspond to atomic propositions.

Let F be a frame and π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1 be a proper path such that π ∈ E(F).
The value of a state expression P for path π in F is the function [[P]](F,π) : S → {0, 1} inductively

defined by

5. Duration calculus for timed frames 15

[[0]](F,π)(s) = 0,

[[1]](F,π)(s) = 1,

[[v]](F,π)(s) =
{

1 if (v q̂ s)⊕ F = F
0 otherwise,

[[¬P]](F,π)(s) = 1− [[P]](F,π)(s),

[[P ∧Q]](F,π)(s) =
{

1 if [[P]](F,π)(s) = 1 and [[Q]](F,π)(s) = 1
0 otherwise.

The value of a term r for path π in F under assignment α is the value [[r]](F,π)
α : R inductively defined

by

[[`]](F,π)
α = `(π),

[[x]](F,π)
α = α(x),

[[P]]
(F,π)

α =

 (
n∑

i=1

[[P]](F,π)(si)× ti)/`(π) if `(π) > 0

[[P]](F,π)(sn+1) otherwise,

[[f(r1, . . . , rn)]](F,π)
α = f([[r1]]

(F,π)
α , . . . , [[rn]](F,π)

α).

The truth of a formula Φ for path π in F under assignment α, written F, π |=α Φ, is inductively
defined by

F, π |=α t,

F, π |=α r = r′ ⇔ [[r]](F,π)
α = [[r′]](F,π)

α ,

F, π |=α p(r1, . . . , rn) ⇔ ([[r1]]
(F,π)
α , . . . , [[rn]](F,π)

α) ∈ p,
F, π |=α ¬Φ ⇔ not F, π |=α Φ,

F, π |=α Φ ∧Ψ ⇔ F, π |=α Φ and F, π |=α Ψ,

F, π |=α Φ ; Ψ ⇔ for some (π1, π2) ∈D(π),
F, π1 |=α Φ and F, π2 |=α Ψ,

F, π |=α ∀x ·Φ ⇔ for all d ∈ R, F, π |=α(x→d) Φ.

We write F, π |= Φ to indicate that F, π |=α Φ for all assignments α.
The following result relates the truth of formulae for paths with the interpretations induced by

paths.

Lemma 1. Truth for a path and truth under the interpretation induced by the path are equivalent:

for all paths π ∈ Πp, F, π |=α Φ ⇔ IF
π , [0, `(π)] |=α Φ

Proof. Let π = s1
t1,a1−−−→ s2 . . . sn

tn,an−−−−→ sn+1. It follows immediately from the definition of IF
π

that [[v]](F,π)(sk+1) = [[v]]I
F
π (t) if

∑k
i=1 ti ≤ t <

∑k+1
i=1 ti, for k < n; and [[v]](F,π)(sn+1) = [[v]]I

F
π (t)

if t =
∑n

i=1 ti. It is easy to show by induction on the construction of state expressions that this
extends from state variables to state expressions. Hence we obtain by induction on the construction
of terms [[r]](F,π)

α = [[r]]I
F
π

α ([0, `(π)]). From this it follows by induction on the construction of formulae
that F, π |=α Φ ⇔ IF

π , [0, `(π)] |=α Φ. Only the case of formulae of the form Φ ; Ψ is not trivial. It
requires to show that paths π1, π2 and π such that (π1, π2) ∈ D(π) determine uniquely an m ∈ N,
where m ∈ [0, `(π)], such that IF

π1
, [0, `(π1)] |=α Φ ⇔ IF

π , [0, m] |=α Φ and IF
π2

, [0, `(π2)] |=α Φ

6. From duration calculus to timed frame logic 16

⇔ IF
π , [m, `(π)] |=α Φ. From the definition of truth under an interpretation it readily follows by

induction on the construction of formulae that I, [b, e] |=α Φ ⇔ I [b,e], [0, e− b] |=α Φ where I [b,e] is
the interpretation over [0, e− b] defined by I [b,e](v)(t) = I(v)(t− b). So it suffice to show that π1, π2

and π determine uniquely an m such that IF
π1

= (IF
π)[0,m] and IF

π2
= (IF

π)[m,`(π)]. This follows rather
directly from the definitions of IF

π and D(π). 2

Corollary. The validity of a formula Φ in a frame F can be characterized by

F |= Φ ⇔ for all paths π ∈ Πp such that π ∈ E(F), F, π |= Φ

Sequences of actions as state variables The definitions given above for the case where only atomic
propositions are taken as state variables are standard with the exception of the clauses concerning
the distinctive features of MVC: state variables, interval-lenghts, mean values and the chop modality.
With respect to paths in frames, their meaning turns out to be quite natural. The possible presence of
immediate transitions in paths is largely responsible for the small complication with the chop modality.

If we take sequences of actions as state variables as well, we get the following additional clause in
the definition of the value of state expressions:

[[a′1 . . . a′m]](F,π)(s) =
{

1 if `(π) = 0, s = sn+1 and a′1 . . . a′m = a1 . . . an

0 otherwise

It is questionable whether this counts for natural. The possible presence of immediate transitions in
paths is largely responsible here as well. Lemma 1 goes through for this case.

6. From duration calculus to timed frame logic

In this section, we discuss the connection between MVC and TFL. First, we touch upon the impossi-
bility of embedding MVC into TFL. Thereafter, we show that an interesting fragment of MVC can be
embedded. An embedding of (a fragment of) MVC into TFL is a mapping that translates the formulae
of (the fragment of) MVC to TFL formulae such that validity in a frame, as defined in Section 5.1,
remains the same after translation. In Section 5, we presented the truth of MVC formulae in timed
frames in two ways: (1) by starting from the original discrete time semantics of duration calculus and
(2) by introducing a new semantics directed at timed frames. In this section, we present it in a third
way for a fragment of MVC: by giving a translation to TFL that leaves validity unchanged. Therefore
this presentation is equivalent to the first and second one for the fragment concerned – a propositional
fragment which allows only the use of integrals and point values instead of the unrestricted use of
mean values.

6.1 Embedding
The angle from which we consider the truth of MVC formulae in timed frames in this section focusses
on the embedding of an interesting fragment of MVC into TFL. The resulting presentation of the
truth of formulae from this fragment in timed frames can be safely used whenever restriction to the
fragment suffices. The use of this is further discussed in Section 1. Besides, it is considered useful to
gain a better understanding of how MVC and a logic designed for expressing and verifying properties
of timed frames relate to each other. Notice that the current angle is rather different from the ones of
Section 5. Both previous angles led to main definitions referring to timed frames, whereas the current
angle involves an a priori choice not to have main definitions referring to timed frames. Even so, the
characterization of validity of MVC formulae in timed frames, as given in Section 5.3, is deemed to
facilitate devising an embedding of MVC into TFL.

The embedding of MVC into TFL will immediately fail because TFL does not support real numbers.
Let us therefore just assume that the sort R of real numbers, and sufficient standard functions and
predicates concerning real numbers, have been added to TFL. We find that all standard predicates of

6. From duration calculus to timed frame logic 17

TFL are necessary. The path existence predicate E is needed for the implicit universal quantification
over all paths in a frame. The proposition presence predicate H is needed to represent state variables
by atomic propositions. The state and transition label selection predicates Ss and Sl are needed
to model the chop modality. However, the standard predicates of TFL are not sufficient. In order
to deal with interval-lenghts and mean values, more is needed. Obviously, support for recursion –
e.g. countably infinite disjunction or a fixpoint operator – will do.

At first sight, it seems that TFL lacks expressive power. However, in Section 3.3 we pointed out
the fact, proved in [8], that any timed frame can be distinguished from another one. So at least any
finite set of frames is definable in TFL. This is not the case in MVC, because its distinctive power
with respect to frames is less. This follows immediately from the fact that certain state changes are
considered to be invisible. In this connection, recall that the interpretation induced by a path in a
frame, as defined in Section 5.1, is independent of the intermediate states in each timed action step
of the path.

In retrospect, it is not very surprising that MVC and TFL are not more closely related. MVC was
designed to be a logic for specifying and reasoning about real-time requirements for systems. TFL
was designed to be a logic for expressing and verifying properties of objects that are meant to model
programs with timing constraints – derived from the real-time requirements for the system in which
the program concerned is embedded. In consequence, MVC has been geared to properties about the
duration of phases of system behaviour – which may comprise many states and state changes – within
a given time interval, while TFL is more suited for properties about the time points at which program
actions – which yield a single state change – are performed. In other words, these logics are originally
meant to be used for quite different purposes. For instance, MVC is not intended to be used for
describing that certain actions must be performed cyclically, whereas TFL is not intended to be used
for specifying bounds on the duration of a certain state over time periods exceeding some minimal
length. Certainly, this does not mean that there are no tricks to use either logic to a certain extent
for the purpose the other is meant to be used for.

6.2 Fragments
Although MVC and TFL are meant to be used for different purposes, it is still useful to investigate
whether there exist fragments of MVC that can be embedded into TFL. The latter logic is more
suitable than MVC to express and verify properties of frames and has more distinctive power with
respect to frames. Besides, it will presumably be refinements of real-time requirements for which it
is interesting to verify whether they are met by frames. These refinements will be formulated in a
fragment of MVC anyhow, e.g. the fragment consisting of the implementables introduced in [30].

Identifying a fragment of MVC that can be embedded into TFL is not too difficult if one realizes
that: (1) with the discrete time semantics the value of terms of the form P ∗ ` (i.e.

∫
P) is always in

N, and (2) the main reason for replacing integrals (
∫

P) by mean values (P) in MVC was to add the
possibility to deal with point values (dP e0).

In the fragment that we have in view, the terms and formulae are restricted with respect to the
occurrences of terms of the form ` or P such that integrals and point values are covered. Further
restrictions on the function symbols ensure that the value of all terms is always in N. However, since
TFL has no support for recursion, more restrictions on the (atomic) formulae are needed – mainly
with respect to the occurrences of logical variables and terms in which state expressions occur. For
example, TFL can not deal with formulae of the form ∃x · P ∗ ` = x, not even if the range of x is
restricted to N, or P ∗ ` = Q. These restrictions make quantification as well as terms other than
constants for natural numbers useless, and thus they result in a simple propositional fragment of
MVC. Nevertheless, this fragment is powerful enough to represent all forms of implementables used
in [30]. Besides, the fragment embedded into TFL here is closely related to the fragment of DC for
which model-checking is covered in [17].

6. From duration calculus to timed frame logic 18

We assume a constant for each natural number. We shall use the meta-variable k to stand for an
arbitrary such a term. The formulae of the fragment are inductively defined by the following formation
rules:

1. t is a formula;
2. if P is a state expression, then ` = 0 ∧ P = 1 is a formula;
3. if P is a state expression and k a constant, then P ∗ ` = k is a formula;
4. if Φ is a formula, then ¬Φ is a formula;
5. if Φ, Ψ are formulae, then Φ ∧Ψ and Φ ; Ψ are formulae.

Note that we introduced in Section 4 the abbreviations
∫
P and dP e0 for P ∗ ` and ` = 0 ∧ P = 1,

respectively. We shall use these abbreviations from now on. Note further that we can represent∫
P ≥ k and ` ≥ k by

∫
P = k ; t and

∫
1 = k ; t, respectively. It is easy to check that all forms of

implementables from [30] can be represented as well.
In the definition of the translation, we write:

nrtr(π, n) for (∃s ∈ S · Ss(n, π, s)) ∧ ¬(∃s ∈ S · Ss(n+1, π, s))

proper (π) for
{
¬nrtr(π, 0)→
∃n ∈ N · nrtr(π, n+1,) ∧ ∃µ ∈ L · Sl(n, π, µ) ∧ µ 6= σ

com(π1, π2, π) for


∃m ∈ N · nrtr(π1, m) ∧ ∀n ∈ N·

(n ≤ m→ ∀s ∈ S · Ss(n, π1, s)↔ Ss(n, π, s))∧
(n < m→ ∀µ ∈ L · Sl(n, π1, µ)↔ Sl(n, π, µ))∧
(∀s ∈ S · Ss(n, π2, s)↔ Ss(m+n, π, s))∧
(∀µ ∈ L · Sl(n, π2, µ)↔ Sl(m+n, π, µ))

div (π, π1, π2) for



proper (π) ∧ proper (π1) ∧ proper (π2)∧
∃π′1 ∈ Π · ∃π′ ∈ Π · ∃π′2 ∈ Π·

com(π′1, π
′, π1) ∧ com(π′, π′2, π2) ∧ com(π1, π

′
2, π)∧

proper (π′) ∧ ¬(∃n ∈ N · Sl(n, π′, σ))∧
¬(∃π′′1 ∈ Π · ∃π′′ ∈ Π · π′1 6= π′′1 ∧ com(π′′1 , π′′, π′1) ∧

proper (π′′) ∧ ¬(∃n ∈ N · Sl(n, π′′, σ)))∧
¬(∃π′′ ∈ Π · ∃π′′2 ∈ Π · π′2 6= π′′2 ∧ com(π′′, π′′2 , π′2) ∧

proper (π′′) ∧ ¬(∃n ∈ N · Sl(n, π′′, σ)))

These abbreviations can informally be explained as follows: nrtr(π, n) is true iff there are n transitions
in π, proper (π) is true iff π is a proper path, com(π1, π2, π) is true iff π is the path composition of
π1 and π2, and div (π, π1, π2) is true iff (π1, π2) is an admissible division of π. The abbreviation
com(π1, π2, π) is only used to define div (π, π1, π2). The abbreviation div (π, π1, π2) has been chosen
to stand for a formula that resembles the definition of D(π) in Section 5.3 strongly.

The translation of a MVC formula Φ from the fragment is the TFL formula ∀π ∈ Π · proper (π) ∧
E(π)→ ([Φ]), where ([Φ]) is inductively defined by

6. From duration calculus to timed frame logic 19

([t]) = t,

([dP e0]) =

 ¬(∃n′ ∈ N · Sl(n′, π, σ))∧
∃n ∈ N · ∃s ∈ S·

Ss(n, π, s) ∧ nrtr(π, n) ∧ ([P]),

([
∫

P = k]) =



∃n1 ∈ N · . . .∃nk ∈ N·
k∧

i=1

((
i−1∧
j=1

ni 6= nj) ∧ ∃n ∈ N · ∃s ∈ S·

Ss(n, π, s) ∧ Sl(n, π, σ) ∧ n = ni ∧ ([P]))∧
¬∃nk+1 ∈ N·

(
k∧

j=1

nk+1 6= nj) ∧ ∃n ∈ N · ∃s ∈ S·

Ss(n, π, s) ∧ Sl(n, π, σ) ∧ n = nk+1 ∧ ([P]),

([¬Φ]) = ¬([Φ]),

([Φ ∧Ψ]) = ([Φ]) ∧ ([Ψ]),

([Φ ; Ψ]) =
{
∃π1 ∈ Π · ∃π2 ∈ Π · div (π, π1, π2)∧

(∃π ∈ Π · π = π1 ∧ ([Φ])) ∧ (∃π ∈ Π · π = π2 ∧ ([Ψ])).

For state expressions P , the TFL formula ([P]) is inductively defined by

([0]) = H(f, s),

([1]) = H(t, s),

([p]) = H(p, s),

([a1 . . . am]) = nrtr(π, n) ∧ n = m ∧
m−1∧
i=0

Sl(i, π, ai+1),

([¬P]) = ¬([P]),

([P ∧Q]) = ([P]) ∧ ([Q]).

The translation appears to be rather intricate. This is mainly due to the use of predicates in TFL to
represent partial functions for the selection of states and transition labels from paths. Notice that the
translation of

∫
P = k can be paraphrased as follows: path π has exactly k different states with an

outgoing time step where P holds.
The following result shows that the translation from MVC formulae to TFL formulae is an embed-

ding.

Lemma 2. Validity remains the same after translation:

F |= Φ ⇔ F |= ∀π ∈ Π · proper(π) ∧ E(π)→ ([Φ])

Proof. We take the characterization of F |= Φ in the corollary of Lemma 1 as its definition. It is
straightforward to derive from the clauses for the truth of formulae with respect to paths in frames
special clauses for formulae of the forms dP e0 and

∫
P = k. Hence the proof proceeds by induction

on the construction of state expressions and formulae of the fragment. Again the case of formulae of
the form Φ ; Ψ is relatively hard. In order to verify that the TFL formula div (π, π1, π2) expresses that
(π1, π2) ∈D(π), it has to be checked whether com(π1, π2, π) expresses that π1•π2 = π, i.e. π1•π2 = π
⇔ |= com(π1, π2, π). This follows from the definition of • by induction on the construction of paths.

2

7. Closing remarks 20

7. Closing remarks

In Section 5.1, we defined the truth of MVC formulae in timed frames by defining how to extract
interpretations of state variables from paths in timed frames and then, using the standard discrete
time semantics of MVC, how to establish validity of MVC formulae in timed frames. In Section 5.3,
we characterized the truth of MVC formulae in timed frames by introducing a new semantics for MVC
that describes the meaning of MVC terms and formulae with respect to paths in timed frames instead
of interpretations of state variables. Because the presentations are equivalent, either presentation can
be safely used as the primary one at different times. In Section 6, we found that only fragments of
MVC can be embedded into TFL and we worked out the embedding of an interesting fragment. Thus,
we presented the truth of formulae from this fragment in timed frames in still another, indirect way.
In the rest of this section, we discuss some points which were raised by the material in Sections 5
and 6, but for which space could not be found there.

Timed frames are meant for modeling the time-dependent behaviour of programs at a level of
abstraction where time is measured with finite precision by using a discrete time scale. The discrete
time semantics of MVC does not offer such an abstraction because it only allows for state changes
at discrete time points. Therefore, the sequence of actions taking place within a time slice had to be
treated in Section 5 as a single transition that yields only one state change. However, this leads to
the peculiarity that several actions seem to take place in sequence at the same time point. Ongoing
work on duration calculus aims to deal with such cases, both in discrete and continuous time, in a
more satisfactory way by introducing a micro time (see e.g. [28, 35]).

In [7], results concerning the connection between timed frames and discrete time processes are given
in the setting of the discrete time extension of ACP presented in [5]. This extension has already been
used as the basis of the semantics of some languages related to programming, e.g. the language T of
the ToolBus software interconnection architecture [9] and a semantically clear subset of SDL [10];
and it is envisaged to use it for the semantics of other languages related to programming as well,
e.g. a tractable subset of a widely used modern programming language such as C++ [33] or Java [2].
A useful topic for further work is the lifting of the results from Section 5 concerning the connection
of duration calculus with timed frames to processes as studied in the setting of the discrete time
extension of ACP. This should be relatively easy using the above-mentioned results from [7]. After
that, semantic links of MVC with languages with a semantics based on this process algebra can be
established virtually without further effort.

Embedding Dicky logic [1] or Hennessy-Milner logic [20] into TFL is a considerably easier job
than embedding an interesting fragment of MVC into TFL. This is also the case for the extension
of Hennessy-Milner logic where states have propositions assigned to them and where a special label,
standing for a time step, is added to the set of transition labels. Because of the simplicity of their
embedding into TFL, we consider these logics to be closely related to TFL. The use of Hennessy-Milner
logic as a basic specification language for reactive systems has been illustrated in, for example, [24].
The extension outlined above allows for specifying time constraints. Therefore, it may well be used as
specification language in a ProCoS-like approach. The results from Section 6 concerning the embedding
of MVC into TFL facilitate devising such an approach, for a semantic link between MVC and the
extension of Hennessy-Milner logic can now be established by just giving the simple embedding of the
extension of Hennessy-Milner logic into TFL .

References

1. A. Arnold. Finite Transition Systems. Prentice-Hall, 1994.

2. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, 1996.

3. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of Computing,
3:142–188, 1991.

4. J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (extended abstract). In W.R.
Cleaveland, editor, CONCUR’92, pages 401–420. LNCS 630, Springer-Verlag, 1992. Full version:

References 21

Report P9208b, Programming Research Group, University of Amsterdam.

5. J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects of Computing,
8:188–208, 1996.

6. J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra: Absolute time, relative time and
parametric time. Fundamenta Informaticae, 29:51–76, 1997.

7. J.A. Bergstra, W.J. Fokkink, and C.A. Middelburg. Algebra of timed frames. International
Journal of Computer Mathematics, 61:227–255, 1996.

8. J.A. Bergstra, W.J. Fokkink, and C.A. Middelburg. A logic for signal inserted timed frames. Logic
Group Preprint Series 155, Utrecht University, Department of Philosophy, January 1996.

9. J.A. Bergstra and P. Klint. The discrete time ToolBuS – A software coordination architecture.
Science of Computer Programming, 31:205–229, 1998.

10. J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete time process algebra and the semantics
of SDL. CWI Report SEN-R9809, Centre for Mathematics and Computer Science, June 1998.
To appear in J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of Process Algebra,
Elsevier.

11. J.A. Bergstra and A. Ponse. Frame algebra with synchronous communication. In R.J. Wieringa
and R.B. Feenstra, editors, Information Systems – Correctness and Reusability, pages 3–15. World
Scientific, 1995.

12. L. Chen. An interleaving model for real-time systems. In A. Nerode and M. Taitslin, editors,
Symposium on Logical Foundations of Computer Science, pages 81–92. LNCS 620, Springer-Verlag,
1992.

13. Dang Van Hung and Phan Hong Giang. A sampling semantics of duration calculus. In B. Jonsson
and J. Parrow, editors, Formal Techniques for Real-Time and Fault Tolerant Systems, pages
188–207. LNCS 1135, Springer-Verlag, 1996.

14. J. Ellsberger, D. Hogrefe, and A. Sarma. SDL, Formal Object-oriented Language for Communi-
cating Systems. Prentice-Hall, 1997.

15. W.J. Fokkink and A.S. Klusener. An effective axiomatization for real time ACP. Information and
Computation, 122:286–299, 1995.

16. M. Fränzle and B. von Karger. Proposal for a programming language core for ProCoS II. ProCoS
II document [Kiel MF 11/3], Christian-Albrechts-Universität Kiel, 1993.

17. M.R. Hansen. Model checking discrete duration calculus. Formal Aspects of Computing,
6A:826–845, 1994.

18. M.R. Hansen and Zhou Chaochen. Duration calculus: Logical foundations. Formal Aspects of
Computing, 9:283–330, 1997.

19. He Jifeng, C.A.R. Hoare, M. Fränzle, M. Müller-Olm, E.-R. Olderog, M. Schenke, M.R. Hansen,
A.P. Ravn, and H. Rischel. Provably correct systems. In H. Langmaack, W.-P. de Roever, and
J. Vytopil, editors, Formal Techniques for Real-Time and Fault Tolerant Systems, pages 288–335.
LNCS 863, Springer-Verlag, 1994.

20. M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency. Journal of the
ACM, 32:137–161, 1985.

21. Z. Manna and A. Pnueli. Models of reactivity. Acta Informatica, 30:609–678, 1993.

22. S. Mauw. Example specifications in ϕSDL. Computing Science Report 96-04, Eindhoven Univer-
sity of Technology, Department of Mathematics and Computing Science, 1996.

23. C.A. Middelburg. Truth of duration calculus formulae in timed frames. Research Report 82,
United Nations University, International Institute for Software Technology, September 1996.

References 22

24. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

25. M. Müller-Olm. A new proposal for TimedPL’s semantics. ProCoS II document [Kiel MMO 10/1],
Christian-Albrechts-Universität Kiel, 1994.

26. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application. Infor-
mation and Computation, 114:131–178, 1994.

27. E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating processes.
Acta Informatica, 23:9–66, 1986.

28. P.K. Pandya and Dang Van Hung. Duration calculus of weakly monotonic time. Research Report
122, United Nations University, International Institute for Software Technology, October 1997.
To appear in Proceedings of Formal Techniques for Real-Time and Fault Tolerant Systems, 1998.

29. RAISE Language Group. The RAISE Specification Language. Prentice-Hall, 1992.

30. A.P. Ravn. Design of Embedded Real-Time Computing Systems. PhD thesis, Technical University
of Denmark, 1995.

31. M. Schenke. A timed specification language for concurrent reactive systems. In D.J. Andrews,
J.F. Groote, and C.A. Middelburg, editors, Semantics of Specification Languages, pages 152–167.
Workshop in Computing Series, Springer-Verlag, 1994.

32. M. Schenke. Development of Correct Real-Time Systems by Refinement. PhD thesis, Fachbereich
Informatik, Universität Oldenburg, 1997.

33. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

34. Xia Yong. DC/RJ−: A justification assistant for duration calculus. Research Report 126, United
Nations University, International Institute for Software Technology, November 1997.

35. Zhou Chaochen and M.R. Hansen. Chopping a point. In He Jifeng, J. Cooke, and P. Wallis, editors,
BCS-FACS 7th Refinement Workshop. Electronic Workshop in Computing Series, Springer-Verlag,
1996.

36. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing
Letters, 40:269–276, 1991.

37. Zhou Chaochen and Li Xiaoshan. A mean value calculus of durations. In A.W. Roscoe, editor, A
Classical Mind: Essays in Honour of C.A.R. Hoare, pages 431–451. Prentice-Hall, 1994.

38. Zhou Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for hybrid real-time
systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, pages
36–59. LNCS 736, Springer-Verlag, 1993.

