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1. Introduction

Constraint logic programming is a very expressive langdagevriting programs in a declarative way
and for specifying and verifying properties of softwareteyss [9]. When writing programs in a declar-
ative style or writing specifications, one often usagstential variablesthat is, variables which occur in
the body of a clause and not in its head. However, the use sfeetial variables may give rise to inef-
ficient or even nonterminating computations (and this mgpbka when an existential variable denotes
an intermediate data structure or when an existential Mari@nges over an infinite set). For this reason
some transformation techniques have been proposed fanatimg those variables from logic programs
and constraint logic programs [13, 14]. These techniquesernae of thainfolding andfolding rules
which have been first proposed in the context of functionag@mming by Burstall and Darlington [5],
and then extended to logic programming [19, 20] and to caimgtfogic programming [3, 7, 8, 11].

For instance, let us consider the problem of checking whetheot a listZ of rational numbers has
a prefix P such that the sum of all elements Bfis at least)M. A constraint logic program that solves
this problem is the following:
prefizsum(L, M) «— N>M A app(P,S,L) N\ sum(P, N)
app([],Y,Y) <
app([H|X],Y,[H|Z]) < app(X,Y, Z)
sum([],0) «

5. sum([H|X],N) < N=H+R A sum(X,R)

When answering queries which are instances of the ateifivsum (L, M), the program computes val-
ues for the variable®, S, and N, which are the existential variables of clause 1 and are eetled in
the final answer. We can eliminate these existential vasahhd improve the efficiency of the program,
by applying the unfolding and folding rules as follows. Frofause 1, by applying the unfolding rule
several times, we derive:

6. prefizsum(L, M) — 0> M

7. prefixzsum([H|T],M) — N>M N N=H+R A app(P,S,T) N sum(P, R)

Now we fold clause 7 by using clause 1 and we derive:

8. prefizsum([H|T], M) « prefizsum (T, M — H)

For this folding step we have used the fact that, in our thebgonstraints, clause 7 is equivalent to the
clauseprefizsum ([H|T), M) «— R>M—H A app(P, S,T) A sum(P, R), whose body is an instance of
the body of clause 1. The final program, consisting of claésasd 8, has no existential variables and,
thus, does not construct unnecessary intermediate valuesrputing the relatioprefizsum.

As shown in the above example, the folding rule plays a paéity relevant role in the techniques for
eliminating existential variables. (In particular, it wdihave been impossible to eliminate all existential
variables from the clauses definipgefizsum by using the unfolding rule only.) For that reason in this
paper we focus our attention on the folding rule, which indgbaeral case can be defined as follows.

Let (i) H andK be atoms, (i andd be constraints, and (iir and B be goals (that is, conjunctions
of literals). Given two clauses: H «— ¢ A G andé: K «— d A B, if there exist a constraint, a
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substitution, and a goalk such thatd < ¢ A G is equivalent (w.r.t. a given theory of constraints) to
H — e A (d N B)Y AR, thenv is folded into the clause: H «— e A K9 A R. In order to use the
folding rule to eliminate existential variables we alsouieg that every variable occurring iR also
occurs inH.

In the literature no algorithm is provided to determine vileetor not, given a theory of constraints,
the suitables, ¥}, and R which are required for folding, do exist [3, 7, 8, 11]. In thaper we propose an
algorithm based on linear algebra and term rewriting tespes for computing, +%, andR, if they exist,
in the case when the constraints are linear inequationstiogeational numbers. The techniques we will
present are valid without relevant changes also when trguat®ns are over the real numbers. As an
example of application of the folding algorithm, let us cdes the following clauses:

y: p(Xl,Xg,Xg) — X1<1IANXi>2Z1+1 AN Zyg>0 A q(Zl,f(Xg), ZQ) A T(Xg)

d: S(H,Yé,}%) — Wi<0AYI—=3>2W1 A Wy>0 A q(Wl,YEJ,,WQ)
and suppose that we want to fejdisingd for eliminating the existential variablés andZ, occurring in
~. Our folding algorithmFA computes (see Examples 4.1-4.4 in Section 4): (i) the ainst: X; <1,

(i) the substitutiond: {Y1/2X1+1, Ya/a,Ys/f(X3),W1/Z1,Wa/Z>}, wherea is an arbitrary new
constant, and (iii) the goak: r(X5), and the clause derived by foldingusingo is:

. p(Xl,XQ,Xg) — Xi<1A S(2X1—|—1, a, f(Xg)) AN T’(Xg)
which has no existential variables. (The correctness affthiding step can easily be checked by un-
folding n w.r.t. s(2X;+1,a, f(X3)).) In general, a triplde, 9, R) that satisfies the conditions for the
applicability of the folding rule may not exist or may not b@que. For this reason our folding algorithm
is nondeterministic and, in different executions, it maynpaite different folded clauses.

The paper is organized as follows. In Section 2 we introduseesbasic definitions concerning
constraint logic programs. In Section 3 we present the rigldule which we use for eliminating exis-
tential variables. In Section 4 we describe our algorithmafaplying the folding rule and we prove the
soundness and completeness of this algorithm with respdtietdeclarative specification of the rule.
In Section 5 we analyze the complexity of our folding algamt We also describe an implementation
of that algorithm and we evaluate its performance by préasgrsome experimental results. Finally, in
Section 6 we discuss the related work and we suggest sonatialire for future investigations.

2. Preliminary Definitions

In this section we recall some basic definitions concernimgstraint logic programs, where the con-
straints are conjunctions of linear inequations over thi®mmal humbers. As already mentioned, the
results we will present in this paper are valid without ral@vchanges also when the constraints are
conjunctions of linear inequations over the real numbei®. ietions not defined here the reader may
refer to [9, 10].

Let us consider a first order languagegiven by a setVar of variables, a sefun of function
symbols, and a sePred of predicate symbols. Let denote addition; denote multiplication, and)
denote the set of rational numbers. We assume{that} U Q C Fun (in particular, every rational
number is assumed to be a 0-ary function symbol). We alsorasthat the predicate symbotsand >
denoting inequality and strict inequality, respectivélglong toPred.

In order to distinguish terms representing rational nurmlbem other terms (which may be viewed
as finite trees), we assume thais a typed language [10] with two basic typesat, which is the type of
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the rational numbers, and-ee, which is the type of the finite trees. We also consider typestucted
from basic types by the usual type constructerand—. A variable X € Var has either typerat or
type tree. We denote bylary,, and Vary,.. the set of variables of typeat andtree, respectively.
A predicate symbol of arity, and a function symbol of arity in £ have types of the form, x - - - x 7,
andry x - - - X1, — 711, respectively, for some types, ..., 7,, T,+1 € {rat,tree}. In particular, the
predicate symbols and> have typeratxrat, the function symbolg- and- have typeratxrat — rat,
and the rational numbers have typet. The function symbols iR+, -} UQ are the only symbols whose
type isty X - -+ X1, —rat, for some typesq, ..., 7, wWithn > 0.

A termu is either aterm of typerat or aterm of typetree. A term p of type rat is alinear
polynomial of the forma; X7 + ... + a, X, + any1, Whereaq,...,a,1 are rational numbers and
Xy,...,X, are variables inVar.,, (amonomialof the forma X stands for the term- X). A term¢ of
type tree is either a variableX in Variee Or a term of the formf(uq, ..., u,), wheref is a function
symbol of typer; x - - - x 71, —tree, anduq,. .., u, are terms of type, . .., m,, respectively.

An atomic constraintis a linear inequation of the form; > p, or p; > po. A constraintis a
conjunctioncy A ... A ¢,, Wherecy, . .., ¢, are atomic constraints. When= 0 we writec; A ... A ¢,
astrue. A constraint of the fornp; > ps A po > p1 is abbreviated as the equatipn=p, (which, thus, is
not an atomic constraint).

An atomis of the formr(uy,...,u,), wherer is a predicate symbol, not i§>, >}, of type
Ty X...XT, anduyq, ..., u, are terms of type, ..., 7, respectively. Aiteral is either an atom (called
apositive litera) or a negated atom (callednegative litera). A goalis a conjunction’; A ... A L,, of
literals, withn. > 0. The conjunction o6 literals is denoted byrue. A constrained goais a conjunction
¢ A\ G, wherec is a constraint andr is a goal. Aclauseis of the formH « ¢ A G, whereH is an atom
andc A G is a constrained goal. onstraint logic programs a set of clauses. formulaof the language
L is constructed as usual in first order logic from the symbolg§ by using the logical connectives,
VvV, -, —, <, <, and the quantifiers, V.

If fis aterm or a formula then b¥ars . (f) and Varsree(f) We denote, respectively, the set of
variables of typerat and of typetree occurring inf. By Vars(f) we denote the set of all variables
occurring inf, that is, Vars,a. (f) U Varseree (f). A similar notation will also be used for the variables
occurring in sets of terms and sets of formulas. Given aelau$l — cAG, by EVars(~y) we denote the
set of theexistential variable®f v, which is defined to bé/ars(c A G) — Vars(H). Theconstraint-local
variables ofy are the variables in the séurs(c) — Vars({H,G}). GivenasetX = {X;,..., X,,} of
variables and a formula, by VX ¢ we denote the formul&X; ...VX,, ¢ and by3X ¢ we denote the
formula3X; ...3X, ¢. By V() and3(¢) we denote theiniversal closureand theexistential closure
of ¢, respectively. In what follows we will use the notion siibstitutionas defined in [10] with the
following extra condition on types: given any substitutioX, /¢1,..., X, /t,}, fori = 1,...,n, the
type of X; is equal to the type of;.

Let £, denote the sublanguage 6fgiven by the setVar,,, Of variables, the sef+,-} U Q of
function symbols, and the sét, >} of predicate symbols. Throughout the paper we will denot@by
the interpretation which assigns to every symbd|in -} UQU {>, >} the expected function or relation
on Q. For a formulay of L., (and, in particular, for a constraint), the satisfactiolatien Q = ¢ is
defined as usual in first order logic. @-interpretationis an interpretation for the typed languagé€
which agrees withQ for each formulap of £,.:, that is, for eachy of Lo, [ = ¢ iff Q = . The
definition of aQ-interpretation for typed languages is a straightforwatgsion of the one for untyped
languages [9]. We say that@-interpretation/ is a @-modelof a programP if for every clausey € P
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we have that |= V(). Similarly to the case of logic programs, we can deStratified constraint logic
programs and in [8, 9, 11] it is shown that every such progfatnas aperfect Q-model, denoted by
M(P).

A solutionof a setC of constraints is a ground substitutionof the form{X; /a1,..., X,,/an},
where{X1,...,X,} = Vars(C) anday,...,a, € Q, such thatQ = co for everyc € C. A set of
constraints is said to beatisfiableif it has a solution.

We assume that we are given a functiarve that takes as input a sét of constraints and returns
a solutiono of C, if C is satisfiable, andhil otherwise. The functiosolve can be implemented, for
instance, by using the Fourier-Motzkin algorithm or the Bligan algorithm [16]. We assume that we
are also given a functioproject such that for every constraintand for every finite set of variables C
Varear, @ = VX ((3Y ¢) < project(c, X)), whereY = Vars(c) — X and Vars(project(c, X)) C X.
The project function can be implemented, for instance, by using the iEciiotzkin algorithm or the
algorithm presented in [22].

Aclausey: H «— ¢ A G is said to be imormal formif (i) every term of typerat occurring inG is a
variable, (ii) each variable of typeat occurs at most once i, (i) Varsyas (H)N Varsya (G) = (), and
(iv) v has no constraint-local variables. It is always possiblgansform any clause; into a clausey
such thaty, has the sam@-models asy; and~, is in normal form. Clauses is calleda normal form
of v1. In particular, from a clause;, we can compute a clausg that satisfies conditions (i)—(iii)
by introducing a new variable and a corresponding equatioreéch outermost occurrence of a term
of typerat in G. Clausey] is computed in linear time w.r.t. the size 9f. By applying theproject
function, we can eliminate the constraint-local varialitesn v} and obtain a clausg, that satisfies also
condition (iv). In the worst case, the application of fhreject function takes exponential time in the
number of variables to be eliminated [22]. Without loss afgmlity, when presenting the folding rule
and the algorithm for its application, we will assume that thauses are in normal form.

Definition 2.1. Given two clauses; and~,, we writey; = - if there exist a normal fornkl «— ¢y A By

of ~1, a normal formH < ¢y A By of 9, and a renaming substitutignsuch that: (1)H = Hp, (2)

B1 =ac Bap, and (3)Q | V (¢1 < c2p), Where=4¢ denotes equality modulo the equational theory
of associativity and commutativity of conjunction. We widfer to this theory as thaC, theory[1].

Proposition 2.1. (i) The relation= is an equivalence relation. (i) H§; = ~» then, for everyQ-inter-
pretationl, I =~ iff T = vs. (iii) If 2 is @ normal form ofy; thenvy; = ~s.

3. The Folding Rule

In this section we introduce our folding transformationeruthich is a variant of the folding rules con-

sidered in the literature [3, 7, 8, 11, 19, 20]. In particutar using our variant of the folding rule we may

replace a constrained goal occurring in the body of a cladsrevsome existential variables occur, by
an atom which has no existential variables in the foldedsgau

Definition 3.1. (Folding Rule)

Lety: H «— ¢AG andd: K «— d A B be clauses in normal form without variables in common. Sappo
also that there exist a constrainia substitution?, and a goak such that: (1)y & H «— eAd9ABYAR,
(2) for every variableX in EVars(0), the following conditions hold: (2.1X is a variable not occurring
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in {H,e, R}, and (2.2)X v does not occur in the teri¥id, for every variabléY” occurring ind A B and
different from X; (3) Vars(K4) C Vars(H). By folding clausey using clause) we derive the clause
n:H—eNKJANR.

Condition (3) ensures that no existential variablenabccurs in K. However, ine or R some
existential variables may still occur. These variables meyeliminated by further folding steps using
again clause or other clauses. In Theorem 3.1 below we will establish treectness of the folding
rule w.r.t. the perfect model semantics. This correctnesslt follows immediately from [19].

In order to state Theorem 3.1 we need the following notiotraAsformation sequends a sequence
Py, ..., P, of programs such that, fér= 0, ...,n—1, programpP;_ is derived from progran®; by an
application of one of the following transformation rulekefinition unfolding(w.r.t. positiveliterals), and
folding. For a detailed presentation of the definition and unfoldinigs for constraint logic programs
we refer to [8]. An application of the folding rule is definesl fallows. Fork = 0, ..., n, by Defs, we
denote the set of clauses introduced by the definition rulegthe construction ofy, . .., P,. Program
P41 is derived from progranP, by an application of the folding rule iP.; = (P, — {v}) U {n},
where~ is a clause inP, J is a clause inDefs;,, andn is the clause derived by folding usingé as
indicated in Definition 3.1.

Theorem 3.1. Let P, be a stratified program and |€}, . . ., P, be a transformation sequence. Suppose
that, fork = 0,...,n—1, if P4 is derived fromP, by folding clausey using claus& € Defs,,, then
there existsj, with 0 < j < n, such thaty € P; and P;, is derived fromP; by unfoldingd w.r.t. a
positive literal in its body. The®, U Defs,, and P,, are stratified and/(Fy U Defs,,) = M (P,).

4. An Algorithm for Applying the Folding Rule

Now we will present an algorithm for determining whether ot a clausey : H «— ¢ A G can be folded
using a clausé : K «— d A B, according to Definition 3.1. The objective of our foldingatithm is to
find a constraint, a substitution?, and a goaR such that Point (1) (thatis, = H «— eAdyABJAR),
Point (2), and Point (3) of Definition 3.1 hold. Our algorithmomputese, 9, and R, if they exist,
by applying two procedures: (i) thgoal matching procedurecalled GM, which matches the godF
againstB and returns a substitutiom and a goalR such thatG =4¢ Ba A R, and (ii) theconstraint
matching procedurecalledCM, which matches the constraintgainstd o and returns a substitutioh
and a constraint such that is equivalent teAd o 3 in the theory of constraints. The substitutiémo be
found is the composition, denoteds, of the substitutions: and 5. The output of the folding algorithm
is either the clause: H «— e A K A R, if folding is possible, offail, if folding is not possible. Since
Definition 3.1 does not uniquely determiagd, and R, our folding algorithm is nondeterministic and,
as already mentioned, in different executions it may complifferent folded clauses.

4.1. Goal Matching

Let us now present the goal matching procedaM. This procedure uses the notion of binding which
is defined as follows: hindingis a pair of the forne; /e,, wheree; ande, are either both goals or both
terms. Thus, the notion @fet of bindingss a generalization of the notion of substitution.
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Goal Matching Procedure: GM

Input: two clauses in normal form without variables in commonH «— ¢ A G andd: K — d A B.
Output: a substitutiona and a goalR such that: (1)G =4¢ Ba A R; (2) for every variableX in
EVars(0), (2.1) X« is a variable not occurring ii, R}, and (2.2)X « does not occur in the teric,
for every variablel” occurring ind A B and different fromX; (3) Varsiree(Ka) C Vars(H). If sucha
and R do not exist, therail.

Consider a seBnds of bindings initialized to the singletofi(B A T')/G}, whereT is a new symbol
denoting a variable ranging over goals. Consider also tweteerules (i)—(x) listed below. In the left
hand sides of these rules, whenever we wfitel Bnds, for any setS of bindings, we assume that
S N Bnds = 0.

(@ {(Ll/\Bl/\T) / (Gl/\Lg/\Gg)} U Bnds — {Ll/LQ, (Bl /\T)/(Gl /\Gg)} U Bnds
where: (1)L, and L, are either both positive or both negative literals and hheesame predicate

symbol with the same arity, and (2, GG;, andGs, are (possibly empty) conjunctions of literals;
(i) {—A1/-A2} U Bnds = {A1/A2} U Bnds;
(i) {a(s1,...,sn)/a(ti,...,ty)} U Bnds = {s1/t1,...,$n/tn} U Bnds;
(iv) {a(s1,-..,8m)/b(t1,...,tn)} U Bnds = fail, if a is different fromb or m # n;
(v) {a(s1,...,8,)/X} U Bnds = fail, if X € Vars(y);

(vi) {X/s} U Bnds = fail, if X € Vars(0) and X/t € Bnds for somet syntactically different
from s;

(vii) {X/s}UBnds = fail, if X € EVars(d) and one of the following three conditions holds: £1¥
not a variable, or (2y € Vars(H), or (3) there existy” € Vars(d A B) different from X such
that (3.1)Y/t € Bnds, for some ternt, and (3.2)s € Vars(t);

(viii)y {X/s, T/G1} U Bnds = fail, if X € EVars(d) ands € Vars(G1);
(iX) {X/s} U Bnds = fail, if X € Varsyree(K) and Vars(s) € Vars(H);

(X) Bnds = {X/s} U Bnds, wheres is an arbitrary term of typeree such thatVars(s) C
Vars(H), if X € Varsiree(IK) — Vars(B) and there is no terrhsuch thatX /¢t € Bnds.

IF there exist a set of bindings (which, by construction, is a substitution) and a g&abkuch that:
(c1){(BAT)/G} =* aU{T/R} (whereT'/R ¢ «) and (c2) naBnds exists such that U{T'/R} —
Bnds (that is, informally,ae U {T'/ R} is a maximally rewritten, non-failing set of bindings deil/from
the singleton{(B A T')/G})

THEN returna and R ELSE returnfail.

Rule (i) associates each literal i with a literal in G in a nondeterministic way. Rules (ii)—(vi) are a
specialization to our case of the usual rules for matchidd [Rules (vii)—(x) ensure that any pdit, R)
computed byGM satisfies Conditions (2) and (3) of the folding rule, or if nmls pair exists, the@®M
returnsfail .
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Example 4.1. Let us apply the procedufdM to the clauses andj presented in the Introduction, where
the predicatep, ¢, r, ands are of typerat xtree xtree,rat Xxtree xrat, tree, andrat xtreextree,
respectively, and the functiofiis of typetree—tree. The clauses andd are in normal form and have
no variables in common. The proced® performs the following rewritings, where the arrev:
denotes an application of the rewrite rute

{aW, Y3, Wo) AT/ (q( 20, f(X3), Z2) Ar(X2))}
= {q(W1, Y3, Wa)/q(Z1, f(X3), Z2), T/r(X2)}

iii

— {W1/Z1, Y3/f(X3), Wa/Zs, T/r(X2)}
= {W1/Z1, Y3/f(X3), Wa/Zs, Ya/a, T/r(Xs)}

In the final set of bindings, the termis an arbitrary constant of typeree. The output ofGM is the
substitutiona: {W1 /71, Y3/ f(X3), Wa/Z3, Ya/a} and the goaR: r(Xs).

The goal matching procedu@M is soundin the sense that iIEM returns a substitutionx and a
goal R, thena and R satisfy the output conditions @M . The goal matching procedure is alsmmplete
in the sense that if there exist a substitutioand a goalR that satisfy the output conditions GM, then
GM does not returffiail. The termination of the goal matching procedure can be shdiavan argument
based on the multiset ordering of the size of the bindingdedd, each of the rules (i)—(ix) replaces a
binding by a finite number of smaller bindings, and rule (%) ba applied at most once for each variable
occurring in the head of clauge A detailed proof of the soundness, completeness, andnatiomn of
GM can be found in [18].

4.2. Constraint Matching

Let us assume that given two clauses in normal formH «— ¢ A G andé: K «— d A B, the goal
matching procedur&M returns the substitutionr and the goalR. By usinga and R, we construct the
two clauses in normal formH < ¢ A Ba A Rand Ko « da A Ba such thatG =4 Ba A R. The
constraint matching procedu@M takes as input these two clauses we have constructed. Foneaf
simplicity, we rename them ag: H < ¢ A B’ A Randd’ : K’ < d' A B’, respectively. The procedure
CM returns as output a constrainand a substitutio? such that: (1Y = H <« e Ad'8 A B’ A R,
(2) B's=B', (3) Vars(K') C Vars(H), and (4) Vars(e) C Vars({H, R}). If suche and do not
exist, then the procedu@M returnsfail .

Let € denote the constrainiroject(c, X), whereX = Vars(c) — Vars(B') (the definition of the
project function is given in Section 2). By Lemma 4.1 below, the prhae CM does not lose any
solution if it returns as constrairnt the value ofe, and then compute a substitutishsuch thatQ =
V(c— (endp)), B’ =B andVars(K'() C Vars(H) hold.

Lemmad4.l.Lety: H «— ¢AB'"ARand¥ : K' — d A B’ be the input clauses to the constraint
matching procedure. For every substitutiGnthere exists a constraiatsuch that the following four
conditions hold: (1 ¥ H «— e ANd'BANB' AR, (2) B'3 = B', (3) Vars(K'3) C Vars(H), and
(4) Vars(e) C Vars({H, R}) iff Q =V(c+ (¢ Ad'(3))and Conditions (2) and (3) hold.

The following example illustrates the fact that if the prdaee CM returns for the constrairt the
value ofe, thenCM may compute the substitutighby solving a set of constraints over the ebf the
rational numbers.
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Example 4.2. Let us consider again the clausgsndd of the Introduction. Letv andr(X2) be the
substitution and the goal computed by applying the proee@M to v and§ as shown in the above
Example 4.1. Let us then consider the following claugesH < ¢ A B’ A Randd' : K' «— d N B’
which are equal tey andda, respectively:

"}/: p(Xl,XQ,Xg) — Xi<1 ANX1>2Z1+1 N Zy3>0 A q(Zl,f(Xg),Zg) VAN T(XQ)

o S(Yl, a, f(Xg)) — I<O0ANY1—=3>2Z21 N Zy>0A q(Zl, f(Xg), Zg)
Thus, the constraintis X1 <1 A X1 >Z1+1 A Zy >0 and the goaB’ is ¢(Z1, f(X3), Z2). Those
two clauses)y’ and¢’ are the input to the procedu@M . The constraing returned by the procedu@M
is project((X1 <1 AN X1 >Z1+1 A Z3>0),{X;}), which is equivalent toY; < 1.
Now we will compute a substitutiofi such that: ()@ = V(c < (¢ Ad’3)) holds, and (ii) Conditions (2)
and (3) as stated in Lemma 4.1, hold. These three conditienasafollows:

Q l: V(X1<1 ANX1>2Z1+1ANZ5>0 & Xi<1A (Zl<0 ANY1—=3>271 N\ ZQ>O)5) (fO)

q(Zv, f(X3), Z2)B = q(Z1, f(X3), Z2)  (thatis,Z18 = Z1, X308 = X3, Z2f3 = Z») (2)

VaTS(S(Yi,a,f(X3))ﬁ) - {X17X27X3} (3)
We have that Equivalendg.0) holds if the following equivalencesf.1), (f.2), and(f.3), and implica-
tion (f.4) hold:

QEV(Xi<1le X;<1) (f1)
QEV(X12Z1+1 « (Y1-3>271)B) (f.2)
QEVY(Z;>0 < (Z3>0)p) (f3)
Ql:V(X1<1/\X1221+1/\Z2>0 — (Z1<0)B) (f4)

Equivalence(f.1) trivially holds. Equivalence f.2) can be reduced to an equation over the rational
numbers because Equivalen@e2) holds if there exists a rational number- 0 such that

QEV(k(X1—2Z1—-1) = (1-3-22)0)
holds. By Condition (2), the substitutighis the identity onZ; and, hence, the equatiéfiX,—2,—1) =
(Y1—3—271)4 holds for anys such that

Y18= (2—-k)Z1+kX1+3—k
Now we determine the value of the parameteand, hence, the substitutioh as follows. Since by
Condition (3) Vars(s(Y1, a, f(X3))5) C{X1, X2, X3} we get that, for every value d¢f;, (2—k)Z; = 0.
Thus,k =2 and, by replacing: by 2 in the equation above, we get the new equaiipfi = 2.X;+1. This
equation is satisfied if the binding, /(2X; +1) belongs to3. Finally, we have that Equivalencég.3)
and(f.4) hold for 5={Y1/(2X;+1)}. We will see that, indeed, the substitutiGrwe have obtained is
the one returned by the constraint matching proce@Mewe will introduce ibelow.

The crucial steps in Example 4.2 have been the following {fyahe reduction of Equivalencef.0)
to a set of equivalences betweatomicconstraints (se€f.1)—(f.3)) or implications withatomiccon-
clusions (se€ f.4)), and (ii) the reduction of one of these equivalences, narfigR), to an equation
over the rational numbers, via the introduction of the aawil rational parametek.

Now we introduce some notions and we state some propergesL@mma 4.2 and Theorem 4.1)
which will be exploited by the constraint matching procedd@M for performing in the general case
those two reduction steps. Indeed, the procedilveconsists of a set of rewrite rules which reduce the
equivalence betweenande A d’'(3 to a set of equations and inequations over the rational nisniia
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the introduction of suitable auxiliary parameters. Theperties we now state also provide sufficient
conditions which guarantee the construction of the desitdsstitutions, if there exists one.

A conjunctionay A ... A a,, Of (Not necessarily distinct) atomic constraiats. . . , a,, is said to be
redundantf Q = V((a1 A ... Aaj—1 Aait1 A ... ANay) — a;) forsome: € {1,...,m}. In this case
we say that; is redundant iy A ... A a,,. Thus, the empty conjunctiainue is non-redundant and an
atomic constraint: is redundant iff@ = V(a). Given a redundant constraiatwe can always derive a
non-redundant constraint which is equivalent te, that is,Q = V(¢ < ¢’), by repeatedly eliminating
from the constraint at hand an atomic constraint which isimednt in that constraint.

Without loss of generality, we may assume that any giventcainsc is of the formp; >10A ... A
Pm Dm0, Withm >0 andq, ..., >p€ {>,>}. We define thenterior of ¢, denotedinterior(c), to
be the constraing; >0 A ... A p,, >0.

A constraintc is said to beadmissibldf both c andinterior(c) are satisfiable and non-redundant. For
instance, the constraint: X—-Y >0AY >0 is admissible, while the constraiat: X—Y >0AY >0A
X >0 is not admissible (indeed; is non-redundant, butiterior(ca): X =Y >0AY >0A X >01s
redundant). The following Lemma 4.2 characterizes thevadgice between two constraints whenever
one of them is admissible.

Lemma 4.2. Let us consider an admissible constrairtf the forma; A ... A a,, and a constraink of

the formby A ... A b,, Whereaq, ..., am,b1,...,b, are atomic constraints (in particular, they are not
equalities). We have th& = V (a < b) holds iff there exists an injection: {1,...,m} — {1,...,n}
suchthatfori=1,...,m, Q |= V(a; < byy) and forj=1,...,n,if j & {u(i) | 1 <i<m}, then

Q ): \V/ (a — b])

In Lemma 4.2 we have required that the constraibé admissible. This is a needed hypothesis as the
following example shows. Let us consider the non-admissibhstraingy: X —Y >0AY >0A X >0
and the constraints: X -Y >0AY >0 A X+Y >0. We have thaQ = V(c2 < ¢3) and yet there is
no injectiony, which has the properties stated in Lemma 4.2.

Given the clauses’: H <« ¢ A B’ A Rand¥ : K' «— d' A B’ such that: (i)c is an admissible
constraint of the formu; A ... A a,,, and (ii) e A d’' is a constraint of the fornd; A ... A b,, where
€ is project(c, Vars(c) — Vars(B')), the constraint matching procedu@M may exploit Lemma 4.2
and compute a substitutioft which satisfiesQ = V(¢ < (¢ A d'3)) and Conditions (2) and (3) of
Lemma 4.1, according to the following algorithm: first @M computes an injectiop from {1, ..., m}
to{1,...,n}, (see rule (i) in the procedueM below) and then (2) it computgssuch that:

i) fori=1,...,m, Q = V¥(a; < b, ), and
(2iiyforj=1,...,n,if 5 & {p(i) | 1<i<m}, thenQ = VY(c — b; )
(see rules (ii)—(v) in the procedufeM below).

By Lemma 4.2, one can show that if the constraiigadmissible, the above algorithm for computing
the substitution3 which satisfiesQ = V(¢ < (¢ A d'3)) and Conditions (2) and (3) of Lemma 4.1
is completein the sense that it computes such a substitutioifl there exists one. Note that, if the
constraintc is non-admissible then it can be the case that there is notimfe,, which satisfies the
conditions provided in Lemma 4.2 and yet clausean be folded using, according to Definition 3.1.
In this case, the proceduf&M fails.

In order to computed satisfying Point (2.i) above, the procedu@® makes use of the following
Property P1: given the satisfiable, non-redundant atomic constraints0 andg > 0, we have that

(i
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Q = VY(p>0 < ¢>0) holds iff there exists a rational numblr- 0 such thatQ = V(kp — ¢ = 0) holds.
PropertyP1 holds also if we consider(p >0 < ¢>0), instead ofV(p>0 < ¢>0).

In order to computes satisfying Point (2.ii) above, the procedutd! makes use of the following
Theorem 4.1 which is a generalization of the above Propeitand it is an extension of Farkas’ Lemma
to the case of systems of weéik) and strict(>) inequalities [16], rather than weak inequalities only.

Theorem 4.1. Suppose thap; 10, ..., pm >m 0, Pm+1 >m+1 0 @are atomic constraints such that, for
i=1,...,m+1,>,€{>>}andQ = I(p1 >10A. . . AP >, 0). ThenQ = V(p1 >10 A. . . AP >0, 0

— Pm+1>m410) iff there existky; >0, ..., k1 >0suchthat(i) Q EV (kip1+- - -+ kmpm+hme1 =
Pm+1), and(ii) if >4 1 is>then (>, ; ki) >0, wherel = {i | 1<i<m+1, >; is >}.

As we will see, the constraint matching procedGM may construcbilinear polynomials (see rules
()—(iii)), which defined as follows. Let be a polynomial andP; , P») be a partition of a (proper or not)
superset ofVars(p). The polynomialp is said to bebilinear in the partition(P;, P») if there exists a
polynomialg such thatQ = V (p = ¢) andq is a sum of monomials, each of which is of the foraither
(i) K VU, wherek is a rational numbely € Py, andU € P,, or (ii) kU, wherek is a rational number and
U € P, U Py, or (iii) k, wherek is a rational number.

Given a polynomiap which is bilinear in the partitiodP;, P,), whereP, = {Uy, ..., U, }, anormal
formof p, denotednf (p), w.r.t. a given linear ordef/y, ..., U,, of the variables inP,, is anypolynomial
which is derived fronp by: (i) computing a polynomial of the formy Uy + - - - + U, + 7ma1 SUCH
that: 1.1)Q =V (p=mrUi+--+7rmUn+rm+1), and (i.2)r1, . .., rm41 are linear polynomials whose
variables are irP;, and (ii) erasing from that polynomial every summant; such thatQ = V (r;=0).

In what follows, we will extend our terminology and we willlca constraint any conjunctioa; A
... A ¢, of formulas, where foi = 1,...,n, ¢; is of the formp > 0 orp > 0 andp is a bilinear
polynomial.

Constraint Matching Procedure: CM

Input: two clauses in normal form, possibly with variables in coomne’ : H «— ¢ A B’ A R and
0:K'—d NDB.

Output: a constraint and a substitutior? such that: (1Y =~ H «— eAd'8AB' AR, (2) B’ = B/,
(3) Vars(K'B) C Vars(H), and (4)Vars(e) C Vars({H, R}). If suche and3 do not exist, theffail .
IF cis unsatisfiable THEN return an arbitrary unsatisfiable trairst e such thatVars(e) C Vars({H, R})
and a substitutiop of the form{U; /a1, ..., Us/as}, where{Us, ..., Us} = Varsyar(K') anday, . . . , as
are arbitrary terms of typeat such that, for = 1,...,s, Vars(a;) C Vars(H)

ELSE proceed as follows.

Let X be the setVars(c) — Varsrat(B’), Y be the setVars(d') — Varsear(B’), and Z be the set
Varsyar (B'). Lete be the constrainproject (¢, X). Without loss of generality, we may assume that:

— cis a constraint of the form; >10A. .. Ap,, >, 0, wherefori = 1,...,m, p; is alinear polynomial
andr; € {>, >}, and

— e A d' is a constraint of the formp; >1 0 A ... A g, >, 0, where for; = 1,...,n, ¢ is a linear
polynomial and>; € {>, >}.
Let us consider the following rewrite rules (i)—(v) whicheaall of the form:
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(fi = g1, 51, 01) = (f2 < g2, 52, 02)

where: (1.1)f; and f> are constraints, (1.2} andg, are conjunctions of constraints of the form> 0,
whereg is a bilinear polynomial and- € {>, >}, (2) S; andS, are sets of constraints of the fogm> 0,
wheregq is a bilinear polynomial and- € {>, >}, and (3)o; and o, are substitutions. Recall that an
equation between polynomials of the fopm= p stands for the two inequatiops > p» andps > p;. The
polynomials occurring iy, g2, S1, andSs are all bilinear in the partitiolV, XUY UZ), wherel is the
set of the new variables introduced during the applicatiothe rewrite rules (i)—(v). The normal forms
of those bilinear polynomials are all defined w.r.t. any fix@giable ordering of the formZ,, ..., 7,
Yi,..., Y, Xq,..., Xy, Where{Zy,.... Z,} = Z,{V1,..., Y} =Y, and{Xq,..., Xy} = X. Inthe
rewrite rules (iv) and (v), whers is written asA U S, we assume that N .S = (.

() p>OAfogAq>O0Aga, S, o) = (f < q1Ag2, {nf(Vp—q) =0,V >0}US, o)
whereV is a new variable and either both occurrences @fre > or both occurrences of are>;

(i) (true < q>0Ag, S, o) =
<tTU6 g, {nf(lel-l- . +Vmpm+vm+1_q):0> 1%l 207 AR Vm+1 20} U 57 0>

whereV, ..., V,,+1 are new variables and the constraiim clausey’ isp; >10A. .. Apm > 0;

(i) (true < q>0Ag, S, 0) =
(true < g, {nf (Vip1+...+Vipm+Vini1—4¢) =0,
‘/1207"'7VM+1207 (2261‘/1)>0}US7 0>

whereVy, ..., V41 are new variables ={i | 1 <i<m+1, >; is >}, and the constraintin
clausey' isp1 >10A ... A pp > 0;

(V) (f < g, {pU+q = 0}US, o) = (f < g, {p =0,¢ = 0}US, o)
if U e XULZ,

V) (f < g, {aU+q = 0}US, 0) =
(f = @U/=2H), {nf(p{U/=2}) >0 | p0€ S}, o{U/=1})
if UeY, Vars(q) N Vars(R) = 0, a € (Q — {0}), and>€ {>,>};

IF there exist a sef’ of atomic constraints and a substitutiop such that: (c1jc < eAd’, 0, §) =*
(true < true, C, oy), (c2) for everyf € C, we have thaff is of the formp > 0, wherep is a linear
polynomial and> € {>,>}, and Vars(f) C W, whereW is the set of the new variables introduced
during the rewriting steps fronx < e A d’, (), 0) to (true < true, C, oy ), and (c3)C is satisfiable
andsolve(C) = oy,

THEN construct a ground substitution; of the form {U; /a1,..., Us/as}, where{U,...,Us} =
Varsyas (K'oyow)— Vars(H) anday, . . ., as are arbitrary terms of typeat such that, foi = 1,... s,
Vars(a;) C Vars(H), and return the constraiatand the substitutio® = ¢, o, Wherey, is the sub-
stitution o0 restricted to the sét,

ELSE returnfail .
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Note that the procedur€M is nondeterministic (in particular, rule (i) associatesatzmic constraint in
¢ with an atomic constraint inA d’ in a nondeterministic way). Note also that in order to applgs (iv)
and (v),pU anda U should be the leftmost monomials in the bilinear polynosyall +¢ anda U+ ¢,
respectively.

The procedur€M is soundin the sense that if it returns the constrai@ind the substitutiof, thene
andg satisfy the output Conditions (1)—(4) GM. Now we sketch the proof of this soundness property.
A detailed proof is given in [18]. By Lemma 4.1 it is enough tww that, fore = project(c, X),

Q EV (c < eAdp)and the output Conditions (2) and (3) hold. By the definitibthe setsX, Y, Z,
and W of variables we may assume, without loss of generality, gt = X, Z73 = Z, andZ N
Vars(Y ) = 0, andW g3 = W, that is, the substitutiof¥ is a mapping front” to terms with variables
not in Z (for a proof of these facts, see [18]). Hence, it is enougthtmsthat the substitutiof¥ is such
that Q = V(¢ « (e A d')p) (note thats is applied also to the constraiat and Conditions (2) and (3)
hold.

The procedur€M starts from the initial tripléc < e A d’, (), ) and nondeterministically constructs
a sequence of triples by applying the rewrite rules (i)—(wilConditions (c1)—(c3) are satisfied. If no
such sequence exisBM returnsfail. We will say that a substitutiod satisfiesa triple (f < g, S, o)
if there exists a value for the variables in theBésuch that® = VX VZ (f < gf), Q =EVXVZ (50),
and, for every variabl&’ € Y, Q = V(Uo = U3) (note that a variable of the sBf may occur either
in the constraing, or in the setS, or in the substitutiomr).

Now we show that each rewrite rule which constructs from ahtaple (f; < g1, S1, o1) a new
triple (fo < g2, Sa, o02), is sound in the sense that, for all substitutighsif § satisfies the triple
(fa < g2, S2, 09) then satisfies also the triplef; < g1, S1, o1). Moreover, if3 satisfies the initial
triple (c < e A d’, 0, () theng is a correct output substitution.

Let us now consider each of the rewrite rules (i)—(v) and $e$how that this rule is sound.

Let us start from rule (i). When applying this rule, for eatbraic constraintp > 0 in f; CM
selects an atomic constraigt>> 0 in fy. Thus, by a sequence of applications of rule (i) startingnfro
the initial triple (c < e A d’,0,0), CM constructs an injective mapping from the atomic constsaint
in ¢ to the atomic constraints ia A d’. If such an injective mapping does not exi€iyl returnsfail.
Rule (i) deletes the selected atomic constraints0 andq >0 and adds to the second component of the
triple the equatiomf(Vp — ¢) = 0 and the constraint’ > 0. The soundness of rule (i) follows from
Property P1, which ensures tha® = V (p > 0 < (¢ > 0)3) iff there exists a rational numbéf > 0
such thatQ = Y (nf (Vp — ¢B) = 0).

Rules (ii) and (iii) are applied when the first component &f titiple at hand is of the formrue < g,
that is, none of the atomic constraintsgrbelongs to the image of the injection computed by rule (i).
Every application of rules (ii) and (iii) deletes an atomamstraintg > 0 from ¢ and adds to the second
component of the triple the equatiotf (Vip; + ... + Viupm + Vins1r — q¢) = 0 and a se{V; > 0,
..., Ving1 > 0} of constraints (with an additional constraint of the fofdn,_; V;) > 0 in case of
rule (iii)). The soundness of rules (ii) and (iii) followsoim the fact that is a constraint of the form
p1 >1 OA ... Apy > 0and, by Theorem 4.1, we have th@tE= V(¢ — (¢ > 0)0) iff there exist
rational numberd; > 0,...,V,,41 > 0such thatQ =V (nf (Vipi + ... + Viupm + Vine1 — q8) = 0)
(with the additional constrain®}_,.; V;) >0 in case of rule (iii)).

The soundness of rules (iv) and (v) is based on the followirgperty P2: Q = V((pU + ¢ = 0) <

(p=0Ag=0)V(p#0AU=-1)).
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Rule (iv) replaces an equatigi/ + ¢ = 0, whereU € X U Z, by the two equations = 0 andg = 0.
The soundness of this rule follows from the fact that, for ealye of the variable$’, ..., V, ¢ W, Q =
VT ((pU +q)B =0)iff Q =VT (p=0)andQ = VT (¢8 = 0), whereT = Vars((pU)S, q8,p) — W.
This equivalence follows from Properfy2, by observing that: (1jpU)3 = pU becausd/ € X U Z
andpU + q is bilinear in (W, X UY U Z) and, thereforeVars(p) C W, and (2) the case whe@ =
vT'(U = —%) is impossible because, for amy U ¢ Vars(¢f) (indeed: (2.1) sinceU + ¢ is in
normal form, we have thdl ¢ Vars(q), (2.2) sinceZ N Vars(Y 3) = 0, if U € Z then we have that
U ¢ Vars(qB), and (2.3) since by the variable ordering we use for comgutiormal forms we have
that no variable in the sé&t occurs inpU + ¢ to the right of a variable in the séf, if U € X then we
have thatt” N Vars(q) = 0 and, thusgS = q).

Rule (v) deletes an equatia/ 4+ ¢ = 0, whereU € Y, Vars(q) N Vars(R) = 0, anda € Q — {0},
and applies the substitutidii// — £} to all components of the triple at hand. (Note thatioes not occur
in f.) The soundness of this rule follows from the fact that, for ealue of the variableg;, ..., V. € W,
QEVYT ((aU+q)B =0)iff Q=VT (US = —%), wherel’ = Vars(UpS, q3) — W. This equivalence
follows from PropertyP2, because: € Q — {0}. (Note that the conditiorVars(q) N Vars(R) = () is
required to satisfy the output Condition (3)©M.)

If the rewriting process terminates and from the initigblgi(c < e A d’, 0, () we derive, by a se-
quence of applications of rules (i)—(v), a new tripteve — true, C, oy ) such that Conditions (c1)—(c3)
listed at the end of the procedure hold, then no rule can bieedgp the triple(true < true, C, oy ) and,
hence, in the set' there is no occurrence of a variableXnU Y U Z. Moreover,C' is a set of constraints
on the variables in the s&ét’. Since by Condition (c3) the set of constraint€ims satisfiable and singe
is defined asp, o, Whereyp, is the restriction of the substitution, o, to the setY” of variables, we
have that the substitutiofi satisfies the triplétrue — true, C, o, ). Therefore, by the soundness of the
rewrite rules shown above, we get that the substitui@@omputed by the procedufeM satisfies also
the initial triple (¢ < e A d', ), () and, thus, it is a correct output substitution.

As already mentioned, by using Lemma 4.2, it can be showriftikas an admissible constraint, the
procedureCM is alsocomplete in the sense that if there exist a constrairgnd a substitutiors that
satisfy the output conditions &M, thenCM does not returffail (see [18] for a detailed proof).

The termination of the constraint matching procedure is@equence of the following facts: (1) each
application of rules (i), (ii), and (iii) reduces the numlzéiatomic constraints occurring iin the triple
(f < g, S, o) athand; (2) each application of rule (iv) does not modifyftr& component of the triple
(f < g, S, o) athand, does not introduce any new variables, and redueesithber of occurrences in
S of the variables in the set U Z; (3) each application of rule (v) does not modify the numlfeatomic
constraints in the first component of the triglg < g, S, o) at hand and eliminates all occurrences
in S of a variable in the seY’". Thus, the termination €M can be proved by a suitable lexicographic
ordering on the number of the atomic constraints and vasallhe details of the termination proof can
be found in [18].

The following example illustrates an execution of the pohce CM.

Example 4.3. Let us consider again the clauseandd of the Introduction and let be the substitution
computed by applying the proceduBM to v andé§ as shown in Example 4.1. Let us also consider the
clausesy’ andd’, wherey' isy andd’ is d«, that is,

v op(X1, X2, X3) — X1 <1 A Xu>Z1+1 A Z2>0 A q(Zy, f(X3), Z2) A 7(X2)

o S(Yi,a,f(Xg)) — Zl <0 A Y1—32221 A\ Zg >0 A q(Zl,f(Xg), Zg)
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Now we apply the procedur€M to clausesy’ andd’. The constraintX; <1 A X1 >Z1+1A Zy>0
occurring iny’ is satisfiable. The procedut&M starts off by computing the constraint\We get:

e= project(X1<1 ANX1>Z1+1 AN Zy>0, {Xl}) =X1«<1

ThenCM performs a sequence of rewritings which we list below, whéJeall polynomials are bilinear
in the partition({V4, ..., Vz},{X1, Y1, Z1, Z2}), (i) their normal forms are computed w.r.t. the variable
orderingZ,, Z», Y1, X1, and (i) =* denotesk applications of rule.. (In the following sequence of
rewritings we have underlined the constraints that areitemrby the application of a rule. Note also
that the atomic constraints occurring in the initial triple the ones in’ andd’, rewritten into the form
p>00rp=>0)

<(1—X1>0/\X1—Zl—120/\22>0) — (1—X1>0/\—Zl>0/\Y1—3—221 ZO/\ZQ>O), (Z), (Z)>

= (X1—=Z1—120A Z3>0) « (—Z1>0 A Y1=3-2Z1 >0 A Zo>0),
{(1—V1)X1+‘/Y1—1:0,‘/Y1>0}, ®>
N <Z2>O — (—Zl>0/\ Z5>0),

{1-M)X14+V1—1=0,V1 >0, (2-V2)Z1 -Y1+Vo X1 —V2+3=0,V2>0}, 0)

= (true « —Z; >0,

{1-V)X14+V1—-1=0,V1 >0, (2—-V2)Z; - Y1+ Vo X1 —Vo+3=0,V2>0,
(V3—1)Z2=0,V3>0}, 0)

== (true « true,

{1-V)X14+V1—1=0,V1>0, (2—V2)Z1 Y1+ Vo X1 —Vo+3=0,V2>0,
(V3—1)Z=0,V3>0, (1-V5)Z1+ Vi Zo+ (V5 —V4) X1+ V4 — V5 + V7 =0,
Vi>0,V5>0,V6>0,V7>0, V3 +V+V7>0}, 0)

=5 (true « true,

{1-11=0,V1—1=0,V1>0, 2—Vo=0, Y1 + V5 X1 —V5+3=0, V5 >0,
V3—1=0,V3>0, 1-V3=0,V5=0,V5—-V; =0,V —V5+ V7 =0,
Vi>0,V5>0,V6>0,V7>0, V3 +V+V7>0}, 0)

== (true < true,

(1-Vi=0,V1—1=0,V; >0, 2—Vo=0, V5 >0, ()
V3—1=0,V3>0, 1-V3=0,V5=0,V5—-V; =0,V —V5+ V7 =0, ()
Vi>0,V5>0,Vs>0,V7>0, Vi+Vs+V7 >0}, (1)

Y1/ Va X1 —V2+3}) (tt

Let C be the set of constraints occurring in the lines markehyWe have tha€ is satisfiable and has
a unique solution given by the following substitution:

ow = solve(C) = {V1/1,Va/2,V5/1,V,/1,V5/1,Vs/0,V7/0}

The substitutions,, computed in the line marked by) is {Y1/V2X; — V2 + 3}. Hence, the sub-
stitution ¢,-, which is defined a®, oy, restricted to{Y1}, is {¥;1/2X; + 1}. Since we have that
Varsras (s(Y1,a, f(X3))oyow) — Vars(H) = {X1, X3} — {X31, X2, X3} = (), the substitutiors,
is the identity. Thus, the output of the proced@® is the constraint = X; < 1 and the substitution
B =¢yos={Y1/2X; +1}.
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4.3. The Folding Algorithm

Now we are ready to present our folding algorithm.

Folding Algorithm: FA

Input: two clauses in normal form without variables in commonH «— ¢ A G andé: K <+ d A B.
Output: the clause): H «— e A K¢ A R, if it is possible to foldy usingd according to Definition 3.1,
andfail, otherwise.

IF there exist a substitution and a goalR which are the output of an execution of the procedoid
when clauses andd are given as input t&GM

AND there exist a constrairtand a substitutiors which are the output of an execution of the procedure
CM when clauses’: H «— ¢ A Ba A Randd’ : Ka «— da A\ Ba are given as input t&€M

THEN return the clausg: H «— e A Kaf A R ELSE returnfail .

The following theorem, whose proof is given in [18], statestt(1) the folding algorithnfrA terminates,
(2) FA is sound, and, (3) if the constrainis admissible, theRA is complete.

Theorem 4.2. (Termination, Soundness, and Completenessfer)

Let the input of the algorithnrA be two clauses andé in normal form without variables in common.
Then: (1) FA terminates;(2) if FA returns a clause, thenn can be derived by folding using ¢
according to Definition 3.1(3) if it is possible to fold~y usingd according to Definition 3.1 and the
constraint occurring iry is either unsatisfiable or admissible, tHeh does not returfail .

Example 4.4. Let us consider the clause
y: p(Xl,XQ,Xg) — X1 <INX1>2Z1+1NZy>0AN q(Zl,f(Xg),Zg) A T(Xg)
and the clause
: S(Y:[,YQ,}/?,) — Wi <O0OAY] =3>2W1 AWy > 0/\q(W1,Y3,W2)
of the Introduction. Letthe substitution: {W, /7, Y3/ f(X3), Wa/Z5, Ya/a} and the goaR : r(Xs)
be the result of applying the procedu&M to v andd as shown in Example 4.1, and let the constraint
e : X7 < 1 and the substitutiors : {Y1/2X; + 1} be the result of applying the procedu@M to
v andda as shown in Example 4.3. Then, the output of the folding algor FA is the clause; :
p(X1, X2, X3) «— e A s(Y1,Y2,Y3)afB A R, that is:
n:p(X1, X9, X3) — X1 < 1As(2X1 + 1,a, f(X3)) Ar(X2).

5. Complexity of the Folding Algorithm and Experimental Reaults

For any clause, let size(+y) denote be the number of occurrences of symbois ik similar notation will
also be used for constraints, terms, and sets of const@imgsms. We evaluate the time complexity of
our folding algorithmFA w.r.t. size(v)+size(d), wherey andd are the clauses given as inputRa. First
we consider the complexity of the basic functiarfssolve andproject: (i) for any bilinear polynomial
p, the computation ofif (p) takes polynomial time w.r.tsize(p), (ii) for any setC of constraints, the
computation ofsolve(C') takes polynomial time w.r.tsize(C') by using Khachiyan's method [16], and
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(iii)) for any constraini: and setX of variables, the computation pfoject (c, X ) takes20(XD, where| X |
denotes the cardinality of (see [22] for the complexity of variable elimination fromdiar constraints).
We will see in the following analysis that, due to the time qbemity of computing theorojectfunction,
any nondeterministic execution of the folding algorithrifile worst case takex? (size(v)size(9)) time,
Before making this analysis, let us observe that the functimject is applied to a subseX of the
variables occurring iry (in particular, with reference to the proced@¥, X = Vars(c) N Vars(B'))
and it is often the case thak | is much smaller tharize()+ size(d). Thus, in order to analyze this
particular case, we assume that the valugXgfis fixed and the time complexity of the functiqmoject
is a constant value. In this hypothesis our algorithnis in NP (w.r.t.size(y)+ size(d)). To show this
result, now we prove that both the goal matching proce@lve and the constraint matching procedure
CM are in NP.

First we consider the procedu@M. Let s be a sequence of applications of the rewrite rules (i)—(x)
of GM starting from the initial sef(B A T")/G} of bindings, where3 andG are the goals occurring in
the body ofy and~, respectively. First, we note that each application of dité@rules (i)—(ix) reduces
at least by one the number of occurrences of symbols. Ruleafxpe applied at most/ times, where
M is the number of variables occurring in the head of claus&hus, the length of the sequengés
linear insize(y)+ size(d). Finally, by a single application of a rule, any set of birgfircan be rewritten
into at mostK different new sets of bindings, whefe is the number of occurrences of literalsGh(see,
in particular, rule (i) which is nondeterministic). ThuBM is in NP w.r.t.size(~y)+ size(d).

Now we show that als€M is in NP. Let{c < e A d’, (), ) be the initial triple and letV be
size({c,e N d'}). We have the following property: for every maximal sequercef rewritings of the
form D — ... = F constructed by applications of the rewrite rules (i)—(v)GQ¥, there exists a
sequence- of the formD —> .. = F such that: (1)s; andsy have equal length, (2) i, every
application of rules (i), (ii), and (iii) occurs before alpglications of rules (iv) and (v), and (3) rules (iv)
and (v) are applied in the following order, starting from thiple of the form(f; < g1, 51, 01) which
is obtained after the applications of the rules (i), (i)ddni): (3.1) first, rule (iv) is applied as long as
possible for eliminating all occurrences of the variabigs. . . , 7, from Sy, thereby deriving a new set
S9 of constraints, (3.2) then, rule (v) is applied as long asitdes for eliminating all occurrences of the
variablesYy, ..., Y, from Sy, thereby deriving a new sét; of constraints, and (3.3) finally, rule (iv) is
applied as long as possible for eliminating all occurrerafete variablesXy, ... X, from Ss, thereby
deriving a setS, of constraints. ThusS, is a set of constraints whose variables are alllin Note
that Conditions (3.1), (3.2), and (3.3) on the order of aggion of rules (iv) and (v) can be imposed
because the normal forms of the bilinear polynomials oaegrn the second component of every triple
are computed w.r.t. the fixed variable orderidg ..., Z;,Y1,..., Y, X1, ... X,

Thus, for the time complexity analysis @M we may restrict ourselves to sequences of rewritings
constructed like the sequeneg above, that is, sequences which satisfy Conditions (2},),(33.2),
and (3.3). First, note that each application of rules (i), énd (iii) reduces the number of constraints
occurring in the first component of the triple at hand. Hemeemay have at mosV applications of the
rules (i), (ii), and (iii). Moreover, each application ofles (i), (i), and (iii) introduces at most+1 new
variables, wheren+1 € O(N). Hence, during the applications of rules (i), (ii), and)(ithe number
of new variables introduced i9(N?), that is,|[WW| € O(N?). We also have that each application of
rules (i), (ii), and (iii) adds at most+ 3 constraints to the second component of the triple. Thusr aft
the application of rules (i), (ii), and (i) we get a s6f of constraints such thas;| € O(N?). Then,
in the sequence; rule (iv) is applied at mosd/; times, whereM; is the number of occurrences i
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Example DO D1 D2 D3 D4 N1 N2 N3 N4
Number of Foldings 1 1 1 1 1 2 4 4 16
Number of Variables| 10 4 8 12 16 4 8 12 16
Time(seconds) 0.01 | 0.01 0.08 3.03 306/ 002 0.08 0.23 1.09
Total-Time(seconds) | 0.02 | 0.02 0.14 4.89 431] 0.03 49 1016 11025

Table 1. Execution times of the folding algorittfA for the example®0, D1-D4, and N1-N4.

of variables inZ. Now, since all bilinear polynomials are in normal form, waeva that\/; < |S;|x |Z|
and M; € O(N3). We also have thatS| is equal to|S; |+ z, wherez is the number of occurrences
in S of variables inZ. Since|S;| € O(N?), we get thatlS,| € O(N?). Then, every application
of rule (v) eliminates all occurrences of a variableYnand, therefore, rule (v) is applietil, times
with My = |Y| < N. Note that after all applications of rule (v), we get the Sgtof constraints
whose cardinality i$S2| — Y|, and thus/S3| € O(N?). Finally, rule (iv) is applied at most/; times,
where M3 is the number of occurrences B3 of variables inX. We have that\/z < |Ss|x|X| and
thus, M3 € O(N3). Therefore, the total number of applications of rules (i)-i( the sequencs, is
O(N?3). Since each rule application takes polynomial time w¥.twe get a polynomial time cost of the
CM procedure w.r.tN. Now, in order to conclude th&M is in NP w.r.t. N we have to examine the
nondeterminism of th€M procedure. We have that by a single application of a ruletapke can be
rewritten into at mos® (N ?) different new triples. Indeed, (1) by an application of rijeany triple can
be rewritten into at most different new triples, where is the number of atomic constraintsdm d’,
andn < N, (2) rules (ii) and (iii) are deterministic, and (3) rules)(and (v) can be applied by selecting
an equation in the second component of the triple at handrimoatO(N?) ways. ThusCM is in NP
w.r.t. N. SinceN < size(y) + size(d), we get thaCM is in NP w.r.t.size(7y) + size(d).

Note that since matching modulo the equational theory, AANP-complete [2], there is no folding
algorithm whose asymptotic time complexity is significgritletter than our algorithri¥A, in the case
when|X| is fixed.

Finally, if we do not assume thatX| is fixed, since|X| < size(y) + size(d) and project(c, X)
is computed (at the beginning of ti&M procedure) at most once for each execution of the algorithm
FA, we get that, as already mentioned, for any given pair oftigtauses, each execution BA takes
90(size(y)+size(d)) time.

In Table 1 we report some experimental results concerninglgorithmFA, implemented in SICS-
tus Prolog 3.12, on a Pentium IV 3GHz. Each column of Tablddrseo a particular example: column
DO refers to the example of the Introduction, coluning-D4 refer to four examples for which folding
can be done in one way onll(mber of Foldings=1), and four columngvV1-N4 refer to four examples
for which folding can be done in more than one whlutnber of Foldings= 2, or 4, or 16).

The row namedNumber of Variablesndicates the number of variables occurring in clayigevhich
is the clause to be folded) plus the number of variables oicgum clause) (which is the clause used
for folding). The row namedimeshows the seconds required for finding the folded clauseh@fitst
folded clause, in example§'1-N4, where more than one folding is possible). The row nafetal-
Timeshows the seconds required for finding all folded clausese Mt even when one folding only is
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possible, we have thdital-Timeis greater thaTimebecause, after the folded clause has been found,
FA checks whether or not one more folded clause can be found.

In ExampleD1 clausey isp(A) <+ A<1A A>B+1 A q(B) and clause) is r(C') < D < 0A
C—-3>2D A q(D). In ExampleN1 clauseyisp < A>1A3>AANB>1A3>B Aq(A) A q(B) and
clause isr «— C>1A3>CAD>1A3>DAq(C)Aq(D). Inthe other exampleB2-D4 andN2-N4
we have considered clauses with more variables (and alse comstraints and literals) according to the
values shown in the row nam&tlimber of Variables

From our experimental results we may conclude that the @tgorFA performs reasonably well
in practice, but when the number of variables (and, in paldic the number of variables of typet)
increases, its performance rapidly deteriorates.

6. Related Work and Conclusions

The elimination of existential variables from logic progr&and constraint logic programs is a program
transformation technique which has been proposed for impgoprogram performance [14] and for
proving program properties [13]. This technique makes udsihe definition, unfolding, and folding
rules [3, 7, 8, 11, 20]. In this paper we have considered cainstogic programs, where the constraints
are linear inequations over the rational (or real) numbansl, we have studied the problem of the au-
tomatic application of the folding rule. Indeed, the apgplitity conditions of the many folding rules
for transforming constraint logic programs which have bpmposed in the literature [3, 7, 8, 11, 13],
are specified in a declarative way and no algorithm has be&m ¢o determine whether or not, given
a clausey to be folded by using a clausge one can actually perform that folding step. The problem
of checking the applicability conditions of the folding euk not trivial (see, for instance, the example
presented in the Introduction).

In this paper we have considered a folding rule which is saveirof the rules proposed in the litera-
ture, and we have given an algorithm, calkefl, for checking its applicability conditions. To the best of
our knowledge, ours is the first algorithmic presentatiotheffolding rule. The applicability conditions
of our rule consist of the usual conditions (see, for instaf8]) together with the extra condition that,
after folding, the existential variables should be eliniitk Thus, our algorithrRA is an important step
forward for the full automation of the program transforroattechniques [13, 14] for improving program
efficiency or proving program properties by eliminatingst&ntial variables.

We have proved the termination and the soundness of ounfpligorithmFA. We have also proved
that if the constraint appearing in the clauséo be folded isadmissible thenFA is complete, that is,
it does not returriail whenever folding is possible. Finally, we have implementegifolding algorithm
and our experimental results show that it performs readpneadil in practice.

Our algorithmFA consists of two procedures: (i) tigeal matchingorocedure, and (i) theonstraint
matchingprocedure. Thgoal matchingorocedure solves a problem which is similar to the problem of
matching two terms modulo an associative, commutative teana theory, also calledC theory[2].
However, in our case we have the extra conditions that: {id)matching substitution should be con-
sistent with the types (either rational numbers or treas), (@2) after folding, the existential variables
should be eliminated. Thus, we could not directly use thema&ehing algorithms available in the
literature [6].

The constraint matchingrocedure solves a generalized form of the matching prolbheodulo the
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equational theory, calledIN g, of linear inequations over the rational numbers. That lgrabcan be
seen as eestricted unificatiomproblem [4]. In [4] it is described how to obtain, if certaiorditions hold,
an algorithm for solving a restricted unification problemnfran algorithm that solves the corresponding
unrestricted unification problem. To the best of our knowkedfor the theoryLIN g of constraints an
algorithm is provided neither for the restricted unificatioroblem nor for the unrestricted one. More-
over, one cannot apply the so calledmbination methodll5]. These methods consist in constructing
a matching algorithm for a given theory which is the comhorabf simpler theories, starting from the
matching algorithms for those simpler theories. Unfortalya as we said, we cannot use these com-
bination methods for the theory/N o because some applicability conditions are not satisfied iand
particular,LIN g is neithercollapse-freenor regular [15].

In the future we plan to adapt our folding algorith#A to other constraint domains such as the linear
inequations over the integers. We will also perform a motersive experimentation of our folding
algorithm using the MAP program transformation system twrstraint logic programs [12].
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