
Fundamenta Informaticae ??? (2009) 1–21 1

IOS Press

A Folding Rule for Eliminating Existential Variables from
Constraint Logic Programs∗

Valerio Senni

Department of Informatics, Systems, and Production

University of Rome Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

senni@disp.uniroma2.it

Alberto Pettorossi

Department of Informatics, Systems, and Production

University of Rome Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

pettorossi@disp.uniroma2.it

Maurizio Proietti

IASI-CNR

Viale Manzoni 30, 00185 Rome, Italy

maurizio.proietti@iasi.cnr.it

Abstract. The existential variables of a clause in a constraint logic program are the variables which
occur in the body of the clause and not in its head. The elimination of these variables is a trans-
formation technique which is often used for improving program efficiency and verifying program
properties. We consider a folding transformation rule which ensures the elimination of existential
variables and we propose an algorithm for applying this rulein the case where the constraints are
linear inequations over rational or real numbers. The algorithm combines techniques for matching
terms modulo equational theories and techniques for solving systems of linear inequations. Through
some examples we show that an implementation of our folding algorithm has a good performance in
practice.

Address for correspondence: Valerio Senni, DISP, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
∗This paper is a revised version of [17].

2 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

Keywords: Program transformation, folding rule, variable elimination, constraint logic program-
ming

1. Introduction

Constraint logic programming is a very expressive languagefor writing programs in a declarative way
and for specifying and verifying properties of software systems [9]. When writing programs in a declar-
ative style or writing specifications, one often usesexistential variables, that is, variables which occur in
the body of a clause and not in its head. However, the use of existential variables may give rise to inef-
ficient or even nonterminating computations (and this may happen when an existential variable denotes
an intermediate data structure or when an existential variable ranges over an infinite set). For this reason
some transformation techniques have been proposed for eliminating those variables from logic programs
and constraint logic programs [13, 14]. These techniques make use of theunfoldingand folding rules
which have been first proposed in the context of functional programming by Burstall and Darlington [5],
and then extended to logic programming [19, 20] and to constraint logic programming [3, 7, 8, 11].

For instance, let us consider the problem of checking whether or not a listL of rational numbers has
a prefixP such that the sum of all elements ofP is at leastM . A constraint logic program that solves
this problem is the following:

1. prefixsum(L,M)← N≥M ∧ app(P, S,L) ∧ sum(P,N)

2. app([], Y, Y)←
3. app([H|X], Y, [H|Z]) ← app(X,Y,Z)

4. sum([], 0)←
5. sum([H|X], N) ← N =H+R ∧ sum(X,R)

When answering queries which are instances of the atomprefixsum(L,M), the program computes val-
ues for the variablesP , S, andN , which are the existential variables of clause 1 and are not needed in
the final answer. We can eliminate these existential variables and improve the efficiency of the program,
by applying the unfolding and folding rules as follows. Fromclause 1, by applying the unfolding rule
several times, we derive:

6. prefixsum(L,M)← 0≥M

7. prefixsum([H|T],M)← N≥M ∧ N =H+R ∧ app(P, S, T) ∧ sum(P,R)

Now we fold clause 7 by using clause 1 and we derive:

8. prefixsum([H|T],M)← prefixsum(T,M−H)

For this folding step we have used the fact that, in our theoryof constraints, clause 7 is equivalent to the
clauseprefixsum([H|T],M)← R≥M−H ∧ app(P, S, T)∧ sum(P,R), whose body is an instance of
the body of clause 1. The final program, consisting of clauses6 and 8, has no existential variables and,
thus, does not construct unnecessary intermediate values for computing the relationprefixsum .

As shown in the above example, the folding rule plays a particularly relevant role in the techniques for
eliminating existential variables. (In particular, it would have been impossible to eliminate all existential
variables from the clauses definingprefixsum by using the unfolding rule only.) For that reason in this
paper we focus our attention on the folding rule, which in thegeneral case can be defined as follows.

Let (i) H andK be atoms, (ii)c andd be constraints, and (iii)G andB be goals (that is, conjunctions
of literals). Given two clausesγ: H ← c ∧ G and δ: K ← d ∧ B, if there exist a constrainte, a

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 3

substitutionϑ, and a goalR such thatH ← c ∧ G is equivalent (w.r.t. a given theory of constraints) to
H ← e ∧ (d ∧ B)ϑ ∧ R, thenγ is folded into the clauseη: H ← e ∧ Kϑ ∧ R. In order to use the
folding rule to eliminate existential variables we also require that every variable occurring inKϑ also
occurs inH.

In the literature no algorithm is provided to determine whether or not, given a theory of constraints,
the suitablee, ϑ, andR which are required for folding, do exist [3, 7, 8, 11]. In thispaper we propose an
algorithm based on linear algebra and term rewriting techniques for computinge, ϑ, andR, if they exist,
in the case when the constraints are linear inequations overthe rational numbers. The techniques we will
present are valid without relevant changes also when the inequations are over the real numbers. As an
example of application of the folding algorithm, let us consider the following clauses:

γ: p(X1,X2,X3)← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ: s(Y1, Y2, Y3)←W1 <0 ∧ Y1−3≥2W1 ∧ W2 >0 ∧ q(W1, Y3,W2)

and suppose that we want to foldγ usingδ for eliminating the existential variablesZ1 andZ2 occurring in
γ. Our folding algorithmFA computes (see Examples 4.1–4.4 in Section 4): (i) the constraint e: X1 <1,
(ii) the substitutionϑ: {Y1/2X1 +1, Y2/a, Y3/f(X3),W1/Z1,W2/Z2}, wherea is an arbitrary new
constant, and (iii) the goalR: r(X2), and the clause derived by foldingγ usingδ is:

η: p(X1,X2,X3)← X1 <1 ∧ s(2X1+1, a, f(X3)) ∧ r(X2)

which has no existential variables. (The correctness of this folding step can easily be checked by un-
folding η w.r.t. s(2X1 +1, a, f(X3)).) In general, a triple〈e, ϑ,R〉 that satisfies the conditions for the
applicability of the folding rule may not exist or may not be unique. For this reason our folding algorithm
is nondeterministic and, in different executions, it may compute different folded clauses.

The paper is organized as follows. In Section 2 we introduce some basic definitions concerning
constraint logic programs. In Section 3 we present the folding rule which we use for eliminating exis-
tential variables. In Section 4 we describe our algorithm for applying the folding rule and we prove the
soundness and completeness of this algorithm with respect to the declarative specification of the rule.
In Section 5 we analyze the complexity of our folding algorithm. We also describe an implementation
of that algorithm and we evaluate its performance by presenting some experimental results. Finally, in
Section 6 we discuss the related work and we suggest some directions for future investigations.

2. Preliminary Definitions

In this section we recall some basic definitions concerning constraint logic programs, where the con-
straints are conjunctions of linear inequations over the rational numbers. As already mentioned, the
results we will present in this paper are valid without relevant changes also when the constraints are
conjunctions of linear inequations over the real numbers. For notions not defined here the reader may
refer to [9, 10].

Let us consider a first order languageL given by a setVar of variables, a setFun of function
symbols, and a setPred of predicate symbols. Let+ denote addition,· denote multiplication, andQ
denote the set of rational numbers. We assume that{+, ·} ∪ Q ⊆ Fun (in particular, every rational
number is assumed to be a 0-ary function symbol). We also assume that the predicate symbols≥ and>
denoting inequality and strict inequality, respectively,belong toPred .

In order to distinguish terms representing rational numbers from other terms (which may be viewed
as finite trees), we assume thatL is a typed language [10] with two basic types:rat, which is the type of

4 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

the rational numbers, andtree, which is the type of the finite trees. We also consider types constructed
from basic types by the usual type constructors× and→. A variableX ∈ Var has either typerat or
typetree. We denote byVarrat andVartree the set of variables of typerat andtree, respectively.
A predicate symbol of arityn and a function symbol of arityn in L have types of the formτ1×· · ·×τn

andτ1×· · ·×τn→τn+1, respectively, for some typesτ1, . . . , τn, τn+1 ∈ {rat, tree}. In particular, the
predicate symbols≥ and> have typerat×rat, the function symbols+ and· have typerat×rat→rat,
and the rational numbers have typerat. The function symbols in{+, ·}∪Q are the only symbols whose
type isτ1× · · · ×τn→rat, for some typesτ1, . . . , τn, with n ≥ 0.

A term u is either aterm of typerat or a term of typetree. A term p of type rat is a linear
polynomialof the form a1X1 + . . . + anXn + an+1, wherea1, . . . , an+1 are rational numbers and
X1, . . . ,Xn are variables inVarrat (a monomialof the formaX stands for the terma·X). A term t of
typetree is either a variableX in Vartree or a term of the formf(u1, . . . , un), wheref is a function
symbol of typeτ1× · · · ×τn→tree, andu1, . . . , un are terms of typeτ1, . . . , τn, respectively.

An atomic constraintis a linear inequation of the formp1 ≥ p2 or p1 > p2. A constraint is a
conjunctionc1 ∧ . . . ∧ cn, wherec1, . . . , cn are atomic constraints. Whenn = 0 we writec1 ∧ . . . ∧ cn

astrue. A constraint of the formp1≥p2 ∧ p2≥p1 is abbreviated as the equationp1 =p2 (which, thus, is
not an atomic constraint).

An atom is of the form r(u1, . . . , un), wherer is a predicate symbol, not in{≥, >}, of type
τ1×. . .×τn andu1, . . . , un are terms of typeτ1, . . . , τn, respectively. Aliteral is either an atom (called
a positive literal) or a negated atom (called anegative literal). A goal is a conjunctionL1 ∧ . . . ∧ Ln of
literals, withn ≥ 0. The conjunction of0 literals is denoted bytrue. A constrained goalis a conjunction
c ∧G, wherec is a constraint andG is a goal. Aclauseis of the formH ← c ∧G, whereH is an atom
andc∧G is a constrained goal. Aconstraint logic programis a set of clauses. Aformulaof the language
L is constructed as usual in first order logic from the symbols of L by using the logical connectives∧,
∨, ¬,→,←,↔, and the quantifiers∃, ∀.

If f is a term or a formula then byVarsrat(f) andVarstree(f) we denote, respectively, the set of
variables of typerat and of typetree occurring inf . By Vars(f) we denote the set of all variables
occurring inf , that is,Varsrat(f) ∪ Varstree(f). A similar notation will also be used for the variables
occurring in sets of terms and sets of formulas. Given a clauseγ: H ← c∧G, byEVars(γ) we denote the
set of theexistential variablesof γ, which is defined to beVars(c∧G)−Vars(H). Theconstraint-local
variables ofγ are the variables in the setVars(c) − Vars({H,G}). Given a setX = {X1, . . . ,Xn} of
variables and a formulaϕ, by ∀X ϕ we denote the formula∀X1 . . . ∀Xn ϕ and by∃X ϕ we denote the
formula∃X1 . . . ∃Xn ϕ. By ∀(ϕ) and∃(ϕ) we denote theuniversal closureand theexistential closure
of ϕ, respectively. In what follows we will use the notion ofsubstitutionas defined in [10] with the
following extra condition on types: given any substitution{X1/t1, . . . ,Xn/tn}, for i = 1, . . . , n, the
type ofXi is equal to the type ofti.

Let Lrat denote the sublanguage ofL given by the setVar rat of variables, the set{+, ·} ∪ Q of
function symbols, and the set{≥, >} of predicate symbols. Throughout the paper we will denote byQ
the interpretation which assigns to every symbol in{+, ·}∪Q∪{≥, >} the expected function or relation
on Q. For a formulaϕ of Lrat (and, in particular, for a constraint), the satisfaction relationQ |= ϕ is
defined as usual in first order logic. AQ-interpretationis an interpretationI for the typed languageL
which agrees withQ for each formulaϕ of Lrat, that is, for eachϕ of Lrat, I |= ϕ iff Q |= ϕ. The
definition of aQ-interpretation for typed languages is a straightforward extension of the one for untyped
languages [9]. We say that aQ-interpretationI is aQ-modelof a programP if for every clauseγ ∈ P

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 5

we have thatI |= ∀(γ). Similarly to the case of logic programs, we can definestratifiedconstraint logic
programs and in [8, 9, 11] it is shown that every such programP has aperfectQ-model, denoted by
M(P).

A solutionof a setC of constraints is a ground substitutionσ of the form{X1/a1, . . . , Xn/an},
where{X1, . . . ,Xn} = Vars(C) anda1, . . . , an ∈ Q, such thatQ |= c σ for everyc ∈ C. A set of
constraints is said to besatisfiableif it has a solution.

We assume that we are given a functionsolve that takes as input a setC of constraints and returns
a solutionσ of C, if C is satisfiable, andfail otherwise. The functionsolve can be implemented, for
instance, by using the Fourier-Motzkin algorithm or the Khachiyan algorithm [16]. We assume that we
are also given a functionproject such that for every constraintc and for every finite set of variablesX ⊆
Varrat, Q |= ∀X ((∃Y c)↔ project(c,X)), whereY = Vars(c) −X andVars(project (c,X)) ⊆X.
Theproject function can be implemented, for instance, by using the Fourier-Motzkin algorithm or the
algorithm presented in [22].

A clauseγ : H ← c∧G is said to be innormal formif (i) every term of typerat occurring inG is a
variable, (ii) each variable of typerat occurs at most once inG, (iii) Varsrat(H)∩Varsrat(G) = ∅, and
(iv) γ has no constraint-local variables. It is always possible totransform any clauseγ1 into a clauseγ2

such thatγ2 has the sameQ-models asγ1 andγ2 is in normal form. Clauseγ2 is calleda normal form
of γ1. In particular, from a clauseγ1, we can compute a clauseγ′

1 that satisfies conditions (i)–(iii)
by introducing a new variable and a corresponding equation for each outermost occurrence of a term
of type rat in G. Clauseγ′

1 is computed in linear time w.r.t. the size ofγ1. By applying theproject
function, we can eliminate the constraint-local variablesfrom γ′

1 and obtain a clauseγ2 that satisfies also
condition (iv). In the worst case, the application of theproject function takes exponential time in the
number of variables to be eliminated [22]. Without loss of generality, when presenting the folding rule
and the algorithm for its application, we will assume that the clauses are in normal form.

Definition 2.1. Given two clausesγ1 andγ2, we writeγ1
∼= γ2 if there exist a normal formH ← c1∧B1

of γ1, a normal formH ← c2 ∧ B2 of γ2, and a renaming substitutionρ such that: (1)H = Hρ, (2)
B1 =AC B2ρ, and (3)Q |= ∀ (c1 ↔ c2ρ), where=AC denotes equality modulo the equational theory
of associativity and commutativity of conjunction. We willrefer to this theory as theAC∧ theory[1].

Proposition 2.1. (i) The relation∼= is an equivalence relation. (ii) Ifγ1
∼= γ2 then, for everyQ-inter-

pretationI, I |= γ1 iff I |= γ2. (iii) If γ2 is a normal form ofγ1 thenγ1
∼= γ2.

3. The Folding Rule

In this section we introduce our folding transformation rule which is a variant of the folding rules con-
sidered in the literature [3, 7, 8, 11, 19, 20]. In particular, by using our variant of the folding rule we may
replace a constrained goal occurring in the body of a clause where some existential variables occur, by
an atom which has no existential variables in the folded clause.

Definition 3.1. (Folding Rule)
Let γ: H ← c∧G andδ: K ← d∧B be clauses in normal form without variables in common. Suppose
also that there exist a constrainte, a substitutionϑ, and a goalR such that: (1)γ ∼= H ← e∧dϑ∧Bϑ∧R;
(2) for every variableX in EVars(δ), the following conditions hold: (2.1)Xϑ is a variable not occurring

6 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

in {H, e,R}, and (2.2)Xϑ does not occur in the termY ϑ, for every variableY occurring ind ∧ B and
different fromX; (3) Vars(Kϑ) ⊆ Vars(H). By folding clauseγ using clauseδ we derive the clause
η : H ← e ∧Kϑ ∧R.

Condition (3) ensures that no existential variable ofη occurs inKϑ. However, ine or R some
existential variables may still occur. These variables maybe eliminated by further folding steps using
again clauseδ or other clauses. In Theorem 3.1 below we will establish the correctness of the folding
rule w.r.t. the perfect model semantics. This correctness result follows immediately from [19].

In order to state Theorem 3.1 we need the following notion. Atransformation sequenceis a sequence
P0, . . . , Pn of programs such that, fork = 0, . . . , n−1, programPk+1 is derived from programPk by an
application of one of the following transformation rules:definition, unfolding(w.r.t.positiveliterals), and
folding. For a detailed presentation of the definition and unfoldingrules for constraint logic programs
we refer to [8]. An application of the folding rule is defined as follows. Fork = 0, . . . , n, by Defsk we
denote the set of clauses introduced by the definition rule during the construction ofP0, . . . , Pk. Program
Pk+1 is derived from programPk by an application of the folding rule ifPk+1 = (Pk − {γ}) ∪ {η},
whereγ is a clause inPk, δ is a clause inDefsk, andη is the clause derived by foldingγ usingδ as
indicated in Definition 3.1.

Theorem 3.1. Let P0 be a stratified program and letP0, . . . , Pn be a transformation sequence. Suppose
that, fork = 0, . . . , n−1, if Pk+1 is derived fromPk by folding clauseγ using clauseδ ∈ Defsk, then
there existsj, with 0 < j < n, such thatδ ∈ Pj andPj+1 is derived fromPj by unfolding δ w.r.t. a
positive literal in its body. ThenP0 ∪Defsn andPn are stratified andM(P0 ∪Defsn) = M(Pn).

4. An Algorithm for Applying the Folding Rule

Now we will present an algorithm for determining whether or not a clauseγ : H ← c ∧G can be folded
using a clauseδ : K ← d ∧B, according to Definition 3.1. The objective of our folding algorithm is to
find a constrainte, a substitutionϑ, and a goalR such that Point (1) (that is,γ ∼= H ← e∧dϑ∧Bϑ∧R),
Point (2), and Point (3) of Definition 3.1 hold. Our algorithmcomputese, ϑ, andR, if they exist,
by applying two procedures: (i) thegoal matching procedure, calledGM , which matches the goalG
againstB and returns a substitutionα and a goalR such thatG =AC Bα ∧ R, and (ii) theconstraint
matching procedure, calledCM , which matches the constraintc againstdα and returns a substitutionβ
and a constrainte such thatc is equivalent toe∧dα β in the theory of constraints. The substitutionϑ to be
found is the composition, denotedα β, of the substitutionsα andβ. The output of the folding algorithm
is either the clauseη : H ← e ∧Kϑ ∧ R, if folding is possible, orfail , if folding is not possible. Since
Definition 3.1 does not uniquely determinee, ϑ, andR, our folding algorithm is nondeterministic and,
as already mentioned, in different executions it may compute different folded clauses.

4.1. Goal Matching

Let us now present the goal matching procedureGM . This procedure uses the notion of binding which
is defined as follows: abinding is a pair of the forme1/e2, wheree1 ande2 are either both goals or both
terms. Thus, the notion ofset of bindingsis a generalization of the notion of substitution.

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 7

Goal Matching Procedure: GM

Input: two clauses in normal form without variables in commonγ : H ← c ∧G andδ : K ← d ∧B.
Output: a substitutionα and a goalR such that: (1)G =AC Bα ∧ R; (2) for every variableX in
EVars(δ), (2.1)Xα is a variable not occurring in{H,R}, and (2.2)Xα does not occur in the termY α,
for every variableY occurring ind∧B and different fromX; (3) Varstree(Kα) ⊆ Vars(H). If suchα
andR do not exist, thenfail .

Consider a setBnds of bindings initialized to the singleton{(B ∧ T)/G}, whereT is a new symbol
denoting a variable ranging over goals. Consider also the rewrite rules (i)–(x) listed below. In the left
hand sides of these rules, whenever we writeS ∪ Bnds , for any setS of bindings, we assume that
S ∩ Bnds = ∅.

(i) {(L1∧B1∧T) / (G1∧L2∧G2)} ∪ Bnds =⇒ {L1/L2, (B1∧T)/(G1∧G2)} ∪ Bnds

where: (1)L1 andL2 are either both positive or both negative literals and have the same predicate
symbol with the same arity, and (2)B1, G1, andG2 are (possibly empty) conjunctions of literals;

(ii) {¬A1/¬A2} ∪ Bnds =⇒ {A1/A2} ∪ Bnds ;

(iii) {a(s1, . . . , sn)/a(t1, . . . , tn)} ∪ Bnds =⇒ {s1/t1, . . . , sn/tn} ∪ Bnds ;

(iv) {a(s1, . . . , sm)/b(t1, . . . , tn)} ∪ Bnds =⇒ fail, if a is different fromb or m 6= n;

(v) {a(s1, . . . , sn)/X} ∪ Bnds =⇒ fail, if X ∈ Vars(γ);

(vi) {X/s} ∪ Bnds =⇒ fail, if X ∈ Vars(δ) andX/t ∈ Bnds for somet syntactically different
from s;

(vii) {X/s}∪Bnds =⇒ fail, if X ∈ EVars(δ) and one of the following three conditions holds: (1)s is
not a variable, or (2)s ∈ Vars(H), or (3) there existsY ∈ Vars(d ∧ B) different fromX such
that (3.1)Y/t ∈ Bnds , for some termt, and (3.2)s ∈ Vars(t);

(viii) {X/s, T/G1} ∪ Bnds =⇒ fail, if X ∈ EVars(δ) ands ∈ Vars(G1);

(ix) {X/s} ∪ Bnds =⇒ fail, if X ∈ Varstree(K) andVars(s) 6⊆ Vars(H);

(x) Bnds =⇒ {X/s} ∪ Bnds , wheres is an arbitrary term of typetree such thatVars(s) ⊆
Vars(H), if X ∈ Varstree(K)− Vars(B) and there is no termt such thatX/t ∈ Bnds .

IF there exist a set of bindingsα (which, by construction, is a substitution) and a goalR such that:
(c1){(B∧T)/G} =⇒∗ α∪{T/R} (whereT/R 6∈ α) and (c2) noBnds exists such thatα∪{T/R} =⇒
Bnds (that is, informally,α ∪ {T/R} is a maximally rewritten, non-failing set of bindings derived from
the singleton{(B ∧ T)/G})
THEN returnα andR ELSE returnfail .

Rule (i) associates each literal inB with a literal inG in a nondeterministic way. Rules (ii)–(vi) are a
specialization to our case of the usual rules for matching [21]. Rules (vii)–(x) ensure that any pair〈α,R〉
computed byGM satisfies Conditions (2) and (3) of the folding rule, or if no such pair exists, thenGM
returnsfail .

8 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

Example 4.1. Let us apply the procedureGM to the clausesγ andδ presented in the Introduction, where
the predicatesp, q, r, ands are of typerat×tree×tree,rat×tree×rat,tree, andrat×tree×tree,
respectively, and the functionf is of typetree→tree. The clausesγ andδ are in normal form and have
no variables in common. The procedureGM performs the following rewritings, where the arrow

r
=⇒

denotes an application of the rewrite ruler:

{q(W1, Y3,W2) ∧ T/(q(Z1, f(X3), Z2) ∧ r(X2))}
i

=⇒ {q(W1, Y3,W2)/q(Z1, f(X3), Z2), T/r(X2)}
iii

=⇒ {W1/Z1, Y3/f(X3), W2/Z2, T/r(X2)}
x

=⇒ {W1/Z1, Y3/f(X3), W2/Z2, Y2/a, T/r(X2)}

In the final set of bindings, the terma is an arbitrary constant of typetree. The output ofGM is the
substitutionα : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goalR : r(X2).

The goal matching procedureGM is soundin the sense that ifGM returns a substitutionα and a
goalR, thenα andR satisfy the output conditions ofGM . The goal matching procedure is alsocomplete
in the sense that if there exist a substitutionα and a goalR that satisfy the output conditions ofGM , then
GM does not returnfail . The termination of the goal matching procedure can be shownvia an argument
based on the multiset ordering of the size of the bindings. Indeed, each of the rules (i)–(ix) replaces a
binding by a finite number of smaller bindings, and rule (x) can be applied at most once for each variable
occurring in the head of clauseδ. A detailed proof of the soundness, completeness, and termination of
GM can be found in [18].

4.2. Constraint Matching

Let us assume that given two clauses in normal formγ : H ← c ∧ G andδ : K ← d ∧ B, the goal
matching procedureGM returns the substitutionα and the goalR. By usingα andR, we construct the
two clauses in normal form:H ← c ∧ Bα ∧ R andKα ← dα ∧ Bα such thatG =AC Bα ∧ R. The
constraint matching procedureCM takes as input these two clauses we have constructed. For reasons of
simplicity, we rename them asγ′ : H ← c ∧B′ ∧R andδ′ : K ′ ← d′ ∧B′, respectively. The procedure
CM returns as output a constrainte and a substitutionβ such that: (1)γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R,
(2) B′β = B′, (3) Vars(K ′β) ⊆ Vars(H), and (4)Vars(e) ⊆ Vars({H,R}). If suche andβ do not
exist, then the procedureCM returnsfail .

Let ẽ denote the constraintproject(c,X), whereX = Vars(c)−Vars(B′) (the definition of the
project function is given in Section 2). By Lemma 4.1 below, the procedure CM does not lose any
solution if it returns as constrainte the value of̃e, and then compute a substitutionβ such thatQ |=
∀(c↔ (ẽ ∧ d′β)), B′β = B′, andVars(K ′β) ⊆ Vars(H) hold.

Lemma 4.1. Let γ′ : H ← c ∧ B′ ∧ R andδ′ : K ′ ← d′ ∧ B′ be the input clauses to the constraint
matching procedure. For every substitutionβ, there exists a constrainte such that the following four
conditions hold: (1)γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β = B′, (3) Vars(K ′β) ⊆ Vars(H), and
(4) Vars(e) ⊆ Vars({H,R}) iff Q |= ∀(c↔ (ẽ ∧ d′β)) and Conditions (2) and (3) hold.

The following example illustrates the fact that if the procedureCM returns for the constrainte the
value ofẽ, thenCM may compute the substitutionβ by solving a set of constraints over the setQ of the
rational numbers.

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 9

Example 4.2. Let us consider again the clausesγ andδ of the Introduction. Letα andr(X2) be the
substitution and the goal computed by applying the procedure GM to γ andδ as shown in the above
Example 4.1. Let us then consider the following clausesγ′ : H ← c ∧ B′ ∧ R andδ′ : K ′ ← d′ ∧ B′

which are equal toγ andδα, respectively:

γ′: p(X1,X2,X3)← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ′: s(Y1, a, f(X3))← Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2)

Thus, the constraintc is X1 < 1 ∧ X1≥Z1+1 ∧ Z2 > 0 and the goalB′ is q(Z1, f(X3), Z2). Those
two clausesγ′ andδ′ are the input to the procedureCM . The constraint̃e returned by the procedureCM
is project((X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0), {X1}), which is equivalent toX1 <1.

Now we will compute a substitutionβ such that: (i)Q |= ∀(c↔ (ẽ∧d′β)) holds, and (ii) Conditions (2)
and (3) as stated in Lemma 4.1, hold. These three conditions are as follows:

Q |= ∀ (X1 <1 ∧X1≥Z1+1 ∧ Z2 >0 ↔ X1 <1 ∧ (Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0)β) (f.0)

q(Z1, f(X3), Z2)β = q(Z1, f(X3), Z2) (that is,Z1β = Z1, X3β = X3, Z2β = Z2) (2)

Vars(s(Y1, a, f(X3))β) ⊆ {X1,X2,X3} (3)

We have that Equivalence(f.0) holds if the following equivalences(f.1), (f.2), and(f.3), and implica-
tion (f.4) hold:

Q |= ∀ (X1 <1↔ X1 <1) (f.1)

Q |= ∀ (X1≥Z1+1 ↔ (Y1−3≥2Z1)β) (f.2)

Q |= ∀ (Z2 >0 ↔ (Z2 >0)β) (f.3)

Q |= ∀ (X1 <1 ∧X1≥Z1+1 ∧ Z2 >0 → (Z1 <0)β) (f.4)

Equivalence(f.1) trivially holds. Equivalence(f.2) can be reduced to an equation over the rational
numbers because Equivalence(f.2) holds if there exists a rational numberk>0 such that

Q |= ∀ (k(X1−Z1−1) = (Y1−3−2Z1)β)

holds. By Condition (2), the substitutionβ is the identity onZ1 and, hence, the equationk(X1−Z1−1) =
(Y1−3−2Z1)β holds for anyβ such that

Y1β = (2−k)Z1+kX1+3−k

Now we determine the value of the parameterk and, hence, the substitutionβ, as follows. Since by
Condition (3)Vars(s(Y1, a, f(X3))β)⊆{X1,X2,X3}we get that, for every value ofZ1, (2−k)Z1 = 0.
Thus,k=2 and, by replacingk by 2 in the equation above, we get the new equationY1β = 2X1+1. This
equation is satisfied if the bindingY1/(2X1+1) belongs toβ. Finally, we have that Equivalences(f.3)
and(f.4) hold forβ ={Y1/(2X1+1)}. We will see that, indeed, the substitutionβ we have obtained is
the one returned by the constraint matching procedureCM we will introduce ibelow.

The crucial steps in Example 4.2 have been the following two:(i) the reduction of Equivalence(f.0)
to a set of equivalences betweenatomicconstraints (see(f.1)–(f.3)) or implications withatomiccon-
clusions (see(f.4)), and (ii) the reduction of one of these equivalences, namely (f.2), to an equation
over the rational numbers, via the introduction of the auxiliary rational parameterk.

Now we introduce some notions and we state some properties (see Lemma 4.2 and Theorem 4.1)
which will be exploited by the constraint matching procedure CM for performing in the general case
those two reduction steps. Indeed, the procedureCM consists of a set of rewrite rules which reduce the
equivalence betweenc and ẽ ∧ d′β to a set of equations and inequations over the rational numbers, via

10 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

the introduction of suitable auxiliary parameters. The properties we now state also provide sufficient
conditions which guarantee the construction of the desiredsubstitutionβ, if there exists one.

A conjunctiona1 ∧ . . . ∧ am of (not necessarily distinct) atomic constraintsa1, . . . , am is said to be
redundantif Q |= ∀((a1 ∧ . . . ∧ ai−1 ∧ ai+1 ∧ . . . ∧ am) → ai) for somei ∈ {1, . . . ,m}. In this case
we say thatai is redundant ina1 ∧ . . . ∧ am. Thus, the empty conjunctiontrue is non-redundant and an
atomic constrainta is redundant iffQ |= ∀(a). Given a redundant constraintc, we can always derive a
non-redundant constraintc′ which is equivalent toc, that is,Q |= ∀(c ↔ c′), by repeatedly eliminating
from the constraint at hand an atomic constraint which is redundant in that constraint.

Without loss of generality, we may assume that any given constraint c is of the formp1 ⊲1 0 ∧ . . . ∧
pm ⊲m 0, with m≥ 0 and⊲1, . . . ,⊲m∈ {≥, >}. We define theinterior of c, denotedinterior(c), to
be the constraintp1 >0 ∧ . . . ∧ pm >0.

A constraintc is said to beadmissibleif both c andinterior(c) are satisfiable and non-redundant. For
instance, the constraintc1 : X−Y ≥0∧Y ≥0 is admissible, while the constraintc2 : X−Y ≥0∧Y ≥0∧
X > 0 is not admissible (indeed,c2 is non-redundant, butinterior(c2) : X−Y > 0 ∧ Y > 0 ∧X > 0 is
redundant). The following Lemma 4.2 characterizes the equivalence between two constraints whenever
one of them is admissible.

Lemma 4.2. Let us consider an admissible constrainta of the forma1 ∧ . . . ∧ am and a constraintb of
the formb1 ∧ . . . ∧ bn, wherea1, . . . , am, b1, . . . , bn are atomic constraints (in particular, they are not
equalities). We have thatQ |= ∀ (a↔ b) holds iff there exists an injectionµ : {1, . . . ,m} → {1, . . . , n}
such that fori = 1, . . . ,m, Q |= ∀ (ai ↔ bµ(i)) and forj = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m}, then
Q |= ∀ (a→ bj).

In Lemma 4.2 we have required that the constrainta be admissible. This is a needed hypothesis as the
following example shows. Let us consider the non-admissible constraintc2 : X−Y ≥0∧ Y ≥0 ∧X >0
and the constraintc3 : X−Y ≥0 ∧ Y ≥0 ∧X+Y >0. We have thatQ |= ∀(c2 ↔ c3) and yet there is
no injectionµ which has the properties stated in Lemma 4.2.

Given the clausesγ′ : H ← c ∧ B′ ∧ R andδ′ : K ′ ← d′ ∧ B′ such that: (i)c is an admissible
constraint of the forma1 ∧ . . . ∧ am, and (ii) ẽ ∧ d′ is a constraint of the formb1 ∧ . . . ∧ bn, where
ẽ is project (c,Vars(c)−Vars(B′)), the constraint matching procedureCM may exploit Lemma 4.2
and compute a substitutionβ which satisfiesQ |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3) of
Lemma 4.1, according to the following algorithm: first (1)CM computes an injectionµ from {1, . . . ,m}
to {1, . . . , n}, (see rule (i) in the procedureCM below) and then (2) it computesβ such that:

(2.i) for i=1, . . . ,m,Q |= ∀(ai ↔ bµ(i)β), and

(2.ii) for j = 1, . . . , n, if j 6∈ {µ(i) | 1≤ i≤m}, thenQ |= ∀(c→ bjβ)

(see rules (ii)–(v) in the procedureCM below).
By Lemma 4.2, one can show that if the constraintc is admissible, the above algorithm for computing

the substitutionβ which satisfiesQ |= ∀(c ↔ (ẽ ∧ d′β)) and Conditions (2) and (3) of Lemma 4.1
is completein the sense that it computes such a substitutionβ if there exists one. Note that, if the
constraintc is non-admissible then it can be the case that there is no injection µ which satisfies the
conditions provided in Lemma 4.2 and yet clauseγ can be folded usingδ, according to Definition 3.1.
In this case, the procedureCM fails.

In order to computeβ satisfying Point (2.i) above, the procedureCM makes use of the following
Property P1: given the satisfiable, non-redundant atomic constraintsp > 0 and q > 0, we have that

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 11

Q |= ∀(p>0↔ q>0) holds iff there exists a rational numberk>0 such thatQ |= ∀(kp− q = 0) holds.
PropertyP1 holds also if we consider∀(p≥0↔ q≥0), instead of∀(p>0↔ q>0).

In order to computeβ satisfying Point (2.ii) above, the procedureCM makes use of the following
Theorem 4.1 which is a generalization of the above PropertyP1 and it is an extension of Farkas’ Lemma
to the case of systems of weak(≥) and strict(>) inequalities [16], rather than weak inequalities only.

Theorem 4.1. Suppose thatp1 ⊲1 0 , . . . , pm ⊲m 0, pm+1 ⊲m+1 0 are atomic constraints such that, for
i=1, . . . ,m+1, ⊲i ∈{≥, >} andQ |= ∃(p1 ⊲1 0∧. . .∧pm ⊲m 0). ThenQ |= ∀(p1 ⊲1 0 ∧. . .∧pm ⊲m 0
→ pm+1 ⊲m+1 0) iff there existk1≥0, . . . , km+1≥0 such that:(i)Q |= ∀ (k1p1+· · ·+kmpm+km+1 =
pm+1), and(ii) if ⊲m+1 is > then(

∑
i∈I ki)>0, whereI ={i | 1≤ i≤m+1, ⊲i is >}.

As we will see, the constraint matching procedureCM may constructbilinear polynomials (see rules
(i)–(iii)), which defined as follows. Letp be a polynomial and〈P1, P2〉 be a partition of a (proper or not)
superset ofVars(p). The polynomialp is said to bebilinear in the partition〈P1, P2〉 if there exists a
polynomialq such thatQ |= ∀ (p = q) andq is a sum of monomials, each of which is of the form:either
(i) k V U , wherek is a rational number,V ∈P1, andU ∈P2, or (ii) k U , wherek is a rational number and
U ∈ P1 ∪ P2, or (iii) k, wherek is a rational number.

Given a polynomialp which is bilinear in the partition〈P1, P2〉, whereP2 = {U1, . . . , Um}, anormal
formof p, denotednf (p), w.r.t. a given linear orderU1, . . . , Um of the variables inP2, is anypolynomial
which is derived fromp by: (i) computing a polynomial of the formr1U1 + · · · + rmUm + rm+1 such
that: (i.1)Q |= ∀ (p = r1U1+ · · ·+rmUm+rm+1), and (i.2)r1, . . . , rm+1 are linear polynomials whose
variables are inP1, and (ii) erasing from that polynomial every summandriUi such thatQ |= ∀ (ri =0).

In what follows, we will extend our terminology and we will call a constraint any conjunctionc1 ∧
. . . ∧ cn of formulas, where fori = 1, . . . , n, ci is of the formp ≥ 0 or p > 0 andp is a bilinear
polynomial.

Constraint Matching Procedure: CM

Input: two clauses in normal form, possibly with variables in common, γ′ : H ← c ∧ B′ ∧ R and
δ′ : K ′ ← d′ ∧B′.
Output: a constrainte and a substitutionβ such that: (1)γ′ ∼= H ← e ∧ d′β ∧ B′ ∧ R, (2) B′β = B′,
(3) Vars(K ′β) ⊆ Vars(H), and (4)Vars(e) ⊆ Vars({H,R}). If suche andβ do not exist, thenfail .

IF c is unsatisfiable THEN return an arbitrary unsatisfiable constrainte such thatVars(e)⊆Vars({H,R})
and a substitutionβ of the form{U1/a1, . . . , Us/as}, where{U1, . . . , Us} = Varsrat(K

′) anda1, . . . , as

are arbitrary terms of typerat such that, fori = 1, . . . , s, Vars(ai) ⊆ Vars(H)

ELSE proceed as follows.

Let X be the setVars(c) − Varsrat(B
′), Y be the setVars(d′) − Varsrat(B

′), andZ be the set
Varsrat(B

′). Let e be the constraintproject(c,X). Without loss of generality, we may assume that:

− c is a constraint of the formp1 ⊲1 0∧ . . .∧pm ⊲m 0, where fori = 1, . . . ,m, pi is a linear polynomial
and⊲i ∈{≥, >}, and

− e ∧ d′ is a constraint of the formq1 ⊲1 0 ∧ . . . ∧ qn ⊲n 0, where forj = 1, . . . , n, qi is a linear
polynomial and⊲i ∈{≥, >}.

Let us consider the following rewrite rules (i)–(v) which are all of the form:

12 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

〈f1 ↔ g1, S1, σ1〉 =⇒ 〈f2 ↔ g2, S2, σ2〉

where: (1.1)f1 andf2 are constraints, (1.2)g1 andg2 are conjunctions of constraints of the formq ⊲0,
whereq is a bilinear polynomial and⊲∈{≥, >}, (2) S1 andS2 are sets of constraints of the formq ⊲0,
whereq is a bilinear polynomial and⊲∈ {≥, >}, and (3)σ1 andσ2 are substitutions. Recall that an
equation between polynomials of the formp1 =p2 stands for the two inequationsp1≥p2 andp2≥p1. The
polynomials occurring ing1, g2, S1, andS2 are all bilinear in the partition〈W,X∪Y ∪Z〉, whereW is the
set of the new variables introduced during the application of the rewrite rules (i)–(v). The normal forms
of those bilinear polynomials are all defined w.r.t. any fixedvariable ordering of the form:Z1, . . . , Zh,
Y1, . . . , Yk, X1, . . . ,Xℓ, where{Z1, . . . , Zh}= Z, {Y1, . . . , Yk} = Y , and{X1, . . . ,Xℓ} = X. In the
rewrite rules (iv) and (v), whereS1 is written asA ∪ S, we assume thatA ∩ S = ∅.

(i) 〈p ⊲0 ∧f ↔ g1 ∧ q ⊲ 0 ∧ g2, S, σ〉 =⇒ 〈f ↔ g1∧g2, {nf (V p−q) = 0, V >0}∪ S, σ〉

whereV is a new variable and either both occurrences of⊲ are≥ or both occurrences of⊲ are>;

(ii) 〈true ↔ q≥0 ∧ g, S, σ〉 =⇒

〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0, V1≥0, . . . , Vm+1≥0} ∪ S, σ〉

whereV1, . . . , Vm+1 are new variables and the constraintc in clauseγ′ is p1 ⊲1 0∧ . . .∧pm ⊲m 0;

(iii) 〈true ↔ q>0 ∧ g, S, σ〉 =⇒

〈true ↔ g, {nf (V1p1+. . .+Vmpm+Vm+1−q)=0,

V1≥0, . . . , Vm+1≥0, (
∑

i∈I Vi)>0} ∪ S, σ〉

whereV1, . . . , Vm+1 are new variables,I = {i | 1≤ i≤m+1, ⊲i is >}, and the constraintc in
clauseγ′ is p1 ⊲1 0 ∧ . . . ∧ pm ⊲m 0;

(iv) 〈f ↔ g, {p U+q = 0}∪S, σ〉 =⇒ 〈f ↔ g, {p = 0, q = 0}∪S, σ〉

if U ∈ X ∪ Z;

(v) 〈f ↔ g, {aU+q = 0}∪S, σ〉 =⇒

〈f ↔ (g{U/− q
a
}), {nf (p{U/− q

a
}) ⊲0 | p ⊲ 0 ∈ S}, σ{U/− q

a
}〉

if U ∈Y , Vars(q) ∩Vars(R) = ∅, a ∈ (Q− {0}), and⊲∈ {≥, >};

IF there exist a setC of atomic constraints and a substitutionσY such that: (c1)〈c↔ e∧ d′, ∅, ∅〉 =⇒∗

〈true ↔ true, C, σY 〉, (c2) for everyf ∈C, we have thatf is of the formp ⊲ 0, wherep is a linear
polynomial and⊲∈ {≥, >}, andVars(f) ⊆W , whereW is the set of the new variables introduced
during the rewriting steps from〈c ↔ e ∧ d′, ∅, ∅〉 to 〈true ↔ true, C, σY 〉, and (c3)C is satisfiable
andsolve(C) = σW ,
THEN construct a ground substitutionσG of the form {U1/a1, . . . , Us/as}, where{U1, . . . , Us} =
Varsrat(K

′σY σW)−Vars(H) anda1, . . . , as are arbitrary terms of typerat such that, fori = 1, . . . , s,
Vars(ai) ⊆ Vars(H), and return the constrainte and the substitutionβ = ϕY σG, whereϕY is the sub-
stitutionσY σW restricted to the setY,
ELSE returnfail .

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 13

Note that the procedureCM is nondeterministic (in particular, rule (i) associates anatomic constraint in
c with an atomic constraint ine∧d′ in a nondeterministic way). Note also that in order to apply rules (iv)
and (v),p U andaU should be the leftmost monomials in the bilinear polynomials p U +q andaU+ q,
respectively.

The procedureCM is soundin the sense that if it returns the constrainte and the substitutionβ, thene
andβ satisfy the output Conditions (1)–(4) ofCM . Now we sketch the proof of this soundness property.
A detailed proof is given in [18]. By Lemma 4.1 it is enough to show that, fore = project (c,X),
Q |= ∀ (c↔ e ∧ d′β) and the output Conditions (2) and (3) hold. By the definition of the setsX, Y , Z,
andW of variables we may assume, without loss of generality, thatXβ = X, Zβ = Z, andZ ∩
Vars(Y β) = ∅, andWβ = W , that is, the substitutionβ is a mapping fromY to terms with variables
not in Z (for a proof of these facts, see [18]). Hence, it is enough to show that the substitutionβ is such
thatQ |= ∀ (c ↔ (e ∧ d′)β) (note thatβ is applied also to the constrainte) and Conditions (2) and (3)
hold.

The procedureCM starts from the initial triple〈c↔ e∧d′, ∅, ∅〉 and nondeterministically constructs
a sequence of triples by applying the rewrite rules (i)–(v) until Conditions (c1)–(c3) are satisfied. If no
such sequence exists,CM returnsfail . We will say that a substitutionβ satisfiesa triple〈f ↔ g, S, σ〉
if there exists a value for the variables in the setW such thatQ |= ∀X ∀Z (f ↔ gβ),Q |= ∀X ∀Z (Sβ),
and, for every variableU ∈ Y ,Q |= ∀(Uσβ = Uβ) (note that a variable of the setW may occur either
in the constraintg, or in the setS, or in the substitutionσ).

Now we show that each rewrite rule which constructs from an old triple 〈f1 ↔ g1, S1, σ1〉 a new
triple 〈f2 ↔ g2, S2, σ2〉, is sound in the sense that, for all substitutionsβ, if β satisfies the triple
〈f2 ↔ g2, S2, σ2〉 thenβ satisfies also the triple〈f1 ↔ g1, S1, σ1〉. Moreover, ifβ satisfies the initial
triple 〈c↔ e ∧ d′, ∅, ∅〉 thenβ is a correct output substitution.

Let us now consider each of the rewrite rules (i)–(v) and let us show that this rule is sound.
Let us start from rule (i). When applying this rule, for each atomic constraintp ⊲ 0 in f1 CM

selects an atomic constraintq ⊲ 0 in f2. Thus, by a sequence of applications of rule (i) starting from
the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉, CM constructs an injective mapping from the atomic constraints
in c to the atomic constraints ine ∧ d′. If such an injective mapping does not exist,CM returnsfail .
Rule (i) deletes the selected atomic constraintsp ⊲0 andq ⊲0 and adds to the second component of the
triple the equationnf (V p − q) = 0 and the constraintV > 0. The soundness of rule (i) follows from
PropertyP1, which ensures thatQ |= ∀ (p ⊲ 0 ↔ (q ⊲ 0)β) iff there exists a rational numberV > 0
such thatQ |= ∀ (nf (V p− qβ) = 0).

Rules (ii) and (iii) are applied when the first component of the triple at hand is of the formtrue ↔ g,
that is, none of the atomic constraints ing belongs to the image of the injection computed by rule (i).
Every application of rules (ii) and (iii) deletes an atomic constraintq ⊲ 0 from g and adds to the second
component of the triple the equationnf (V1p1 + . . . + Vmpm + Vm+1 − q) = 0 and a set{V1 ≥ 0,
. . . , Vm+1 ≥ 0} of constraints (with an additional constraint of the form(

∑
i∈I Vi) > 0 in case of

rule (iii)). The soundness of rules (ii) and (iii) follows from the fact thatc is a constraint of the form
p1 ⊲1 0 ∧ . . . ∧ pm ⊲m 0 and, by Theorem 4.1, we have thatQ |= ∀ (c → (q ⊲ 0)β) iff there exist
rational numbersV1 ≥ 0, . . . , Vm+1 ≥ 0 such thatQ |= ∀ (nf (V1p1 + . . . + Vmpm + Vm+1 − qβ) = 0)
(with the additional constraint(

∑
i∈I Vi)>0 in case of rule (iii)).

The soundness of rules (iv) and (v) is based on the followingPropertyP2 : Q |= ∀((pU + q = 0)↔
(p = 0 ∧ q = 0) ∨ (p 6= 0 ∧ U = − q

p
)).

14 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

Rule (iv) replaces an equationpU +q = 0, whereU ∈ X∪Z, by the two equationsp = 0 andq = 0.
The soundness of this rule follows from the fact that, for anyvalue of the variablesV1, . . . , Vr ∈W ,Q |=
∀T ((pU + q)β = 0) iff Q |= ∀T (p = 0) andQ |= ∀T (qβ = 0), whereT = Vars((pU)β, qβ, p)−W .
This equivalence follows from PropertyP2, by observing that: (1)(pU)β = pU becauseU ∈ X ∪ Z
andpU + q is bilinear in〈W,X∪Y ∪Z〉 and, therefore,Vars(p) ⊆ W , and (2) the case whereQ |=
∀T (U = − qβ

p
) is impossible because, for anyβ, U 6∈ Vars(qβ) (indeed: (2.1) sincepU + q is in

normal form, we have thatU 6∈ Vars(q), (2.2) sinceZ ∩ Vars(Y β) = ∅, if U ∈ Z then we have that
U 6∈ Vars(qβ), and (2.3) since by the variable ordering we use for computing normal forms we have
that no variable in the setY occurs inpU + q to the right of a variable in the setX, if U ∈ X then we
have thatY ∩ Vars(q) = ∅ and, thus,qβ = q).

Rule (v) deletes an equationaU + q = 0, whereU ∈ Y , Vars(q)∩Vars(R) = ∅, anda ∈ Q−{0},
and applies the substitution{U/− q

a
} to all components of the triple at hand. (Note thatU does not occur

in f .) The soundness of this rule follows from the fact that, for any value of the variablesV1, . . . , Vr ∈W ,
Q |= ∀T ((aU + q)β = 0) iff Q |= ∀T (Uβ = − qβ

a
), whereT = Vars(Uβ, qβ)−W . This equivalence

follows from PropertyP2, becausea ∈ Q − {0}. (Note that the conditionVars(q) ∩ Vars(R) = ∅ is
required to satisfy the output Condition (3) ofCM .)

If the rewriting process terminates and from the initial triple 〈c ↔ e ∧ d′, ∅, ∅〉 we derive, by a se-
quence of applications of rules (i)–(v), a new triple〈true ↔ true, C, σY 〉 such that Conditions (c1)–(c3)
listed at the end of the procedure hold, then no rule can be applied to the triple〈true ↔ true, C, σY 〉 and,
hence, in the setC there is no occurrence of a variable inX ∪Y ∪Z. Moreover,C is a set of constraints
on the variables in the setW . Since by Condition (c3) the set of constraints inC is satisfiable and sinceβ
is defined asϕY σG, whereϕY is the restriction of the substitutionσY σW to the setY of variables, we
have that the substitutionβ satisfies the triple〈true ↔ true, C, σY 〉. Therefore, by the soundness of the
rewrite rules shown above, we get that the substitutionβ computed by the procedureCM satisfies also
the initial triple〈c↔ e ∧ d′, ∅, ∅〉 and, thus, it is a correct output substitution.

As already mentioned, by using Lemma 4.2, it can be shown thatif c is an admissible constraint, the
procedureCM is alsocomplete, in the sense that if there exist a constrainte and a substitutionβ that
satisfy the output conditions ofCM , thenCM does not returnfail (see [18] for a detailed proof).

The termination of the constraint matching procedure is a consequence of the following facts: (1) each
application of rules (i), (ii), and (iii) reduces the numberof atomic constraints occurring ing in the triple
〈f ↔ g, S, σ〉 at hand; (2) each application of rule (iv) does not modify thefirst component of the triple
〈f ↔ g, S, σ〉 at hand, does not introduce any new variables, and reduces the number of occurrences in
S of the variables in the setX∪Z; (3) each application of rule (v) does not modify the number of atomic
constraints in the first component of the triple〈f ↔ g, S, σ〉 at hand and eliminates all occurrences
in S of a variable in the setY . Thus, the termination ofCM can be proved by a suitable lexicographic
ordering on the number of the atomic constraints and variables. The details of the termination proof can
be found in [18].

The following example illustrates an execution of the procedureCM .

Example 4.3. Let us consider again the clausesγ andδ of the Introduction and letα be the substitution
computed by applying the procedureGM to γ andδ as shown in Example 4.1. Let us also consider the
clausesγ′ andδ′, whereγ′ is γ andδ′ is δα, that is,

γ′: p(X1,X2,X3)← X1 <1 ∧ X1≥Z1+1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)
δ′: s(Y1, a, f(X3))← Z1 <0 ∧ Y1−3≥2Z1 ∧ Z2 >0 ∧ q(Z1, f(X3), Z2)

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 15

Now we apply the procedureCM to clausesγ′ andδ′. The constraintX1 < 1 ∧ X1≥Z1+1 ∧ Z2 >0
occurring inγ′ is satisfiable. The procedureCM starts off by computing the constrainte. We get:

e = project (X1 <1 ∧X1≥Z1+1 ∧ Z2 >0, {X1}) = X1 <1

ThenCM performs a sequence of rewritings which we list below, where: (i) all polynomials are bilinear
in the partition〈{V1, . . . , V7}, {X1, Y1, Z1, Z2}〉, (ii) their normal forms are computed w.r.t. the variable
orderingZ1, Z2, Y1,X1, and (iii)

r
=⇒k denotesk applications of ruler. (In the following sequence of

rewritings we have underlined the constraints that are rewritten by the application of a rule. Note also
that the atomic constraints occurring in the initial tripleare the ones inγ′ andδ′, rewritten into the form
p > 0 or p ≥ 0.)

〈(1−X1 >0 ∧X1−Z1−1≥0 ∧Z2 >0)↔ (1−X1 >0∧−Z1 >0∧ Y1−3−2Z1 ≥0 ∧Z2 >0), ∅, ∅〉

i
=⇒ 〈(X1−Z1−1≥0 ∧ Z2 >0)↔ (−Z1 >0 ∧ Y1−3−2Z1≥0 ∧ Z2 >0),

{(1−V1)X1+V1−1=0, V1 >0}, ∅〉
i

=⇒ 〈Z2 >0↔ (−Z1 >0 ∧ Z2 >0),
{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0}, ∅〉

i
=⇒ 〈true ↔ −Z1 >0,

{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,
(V3−1)Z2 =0, V3 >0}, ∅〉

iii
=⇒ 〈true ↔ true,

{(1−V1)X1+V1−1=0, V1 >0, (2−V2)Z1−Y1+V2X1−V2+3=0, V2 >0,

(V3−1)Z2 =0, V3 >0, (1−V5)Z1+V6Z2+(V5−V4)X1+V4−V5+V7 =0,

V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉
iv

=⇒6〈true ↔ true,
{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0,−Y1+V2X1−V2+3=0, V2 >0,
V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V4−V5+V7 =0,
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, ∅〉

v
=⇒ 〈true ↔ true,

{1−V1 =0, V1−1=0, V1 >0, 2−V2 =0, V2 >0, (†)
V3−1=0, V3 >0, 1−V5 =0, V6 =0, V5−V4 =0, V4−V5+V7 =0, (†)
V4≥0, V5≥0, V6≥0, V7≥0, V4+V6+V7 >0}, (†)
{Y1/V2X1−V2+3}〉 (††)

Let C be the set of constraints occurring in the lines marked by(†). We have thatC is satisfiable and has
a unique solution given by the following substitution:

σW = solve(C) = {V1/1, V2/2, V3/1, V4/1, V5/1, V6/0, V7/0}

The substitutionσY computed in the line marked by(††) is {Y1/V2X1 − V2 + 3}. Hence, the sub-
stitution ϕY , which is defined asσY σW restricted to{Y1}, is {Y1/2X1 + 1}. Since we have that
Varsrat(s(Y1, a, f(X3))σY σW) − Vars(H) = {X1,X3} − {X1,X2,X3} = ∅, the substitutionσG

is the identity. Thus, the output of the procedureCM is the constrainte = X1 < 1 and the substitution
β = ϕY σG = {Y1/2X1 + 1}.

16 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

4.3. The Folding Algorithm

Now we are ready to present our folding algorithm.

Folding Algorithm: FA

Input: two clauses in normal form without variables in commonγ : H ← c ∧G andδ : K ← d ∧B.
Output: the clauseη : H ← e ∧Kϑ ∧ R, if it is possible to foldγ usingδ according to Definition 3.1,
andfail , otherwise.

IF there exist a substitutionα and a goalR which are the output of an execution of the procedureGM
when clausesγ andδ are given as input toGM
AND there exist a constrainte and a substitutionβ which are the output of an execution of the procedure
CM when clausesγ′ : H ← c ∧Bα ∧R andδ′ : Kα← dα ∧Bα are given as input toCM

THEN return the clauseη : H ← e ∧Kαβ ∧R ELSE returnfail .

The following theorem, whose proof is given in [18], states that (1) the folding algorithmFA terminates,
(2) FA is sound, and, (3) if the constraintc is admissible, thenFA is complete.

Theorem 4.2. (Termination, Soundness, and Completeness ofFA)
Let the input of the algorithmFA be two clausesγ andδ in normal form without variables in common.
Then: (1) FA terminates;(2) if FA returns a clauseη, then η can be derived by foldingγ using δ
according to Definition 3.1;(3) if it is possible to foldγ using δ according to Definition 3.1 and the
constraint occurring inγ is either unsatisfiable or admissible, thenFA does not returnfail .

Example 4.4. Let us consider the clause

γ: p(X1,X2,X3)← X1 < 1 ∧X1 ≥ Z1 + 1 ∧ Z2 > 0 ∧ q(Z1, f(X3), Z2) ∧ r(X2)

and the clause

δ: s(Y1, Y2, Y3)← W1 < 0 ∧ Y1 − 3 ≥ 2W1 ∧W2 > 0 ∧ q(W1, Y3,W2)

of the Introduction. Let the substitutionα : {W1/Z1, Y3/f(X3), W2/Z2, Y2/a} and the goalR : r(X2)
be the result of applying the procedureGM to γ andδ as shown in Example 4.1, and let the constraint
e : X1 < 1 and the substitutionβ : {Y1/2X1 + 1} be the result of applying the procedureCM to
γ and δα as shown in Example 4.3. Then, the output of the folding algorithm FA is the clauseη :
p(X1,X2,X3)← e ∧ s(Y1, Y2, Y3)αβ ∧R, that is:

η : p(X1,X2,X3)← X1 < 1 ∧ s(2X1 + 1, a, f(X3)) ∧ r(X2).

5. Complexity of the Folding Algorithm and Experimental Results

For any clauseγ, letsize(γ) denote be the number of occurrences of symbols inγ. A similar notation will
also be used for constraints, terms, and sets of constraintsor terms. We evaluate the time complexity of
our folding algorithmFA w.r.t. size(γ)+size(δ), whereγ andδ are the clauses given as input toFA. First
we consider the complexity of the basic functionsnf, solve, andproject: (i) for any bilinear polynomial
p, the computation ofnf (p) takes polynomial time w.r.t.size(p), (ii) for any setC of constraints, the
computation ofsolve(C) takes polynomial time w.r.t.size(C) by using Khachiyan’s method [16], and

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 17

(iii) for any constraintc and setX of variables, the computation ofproject (c,X) takes2O(|X|), where|X|
denotes the cardinality ofX (see [22] for the complexity of variable elimination from linear constraints).
We will see in the following analysis that, due to the time complexity of computing theproject function,
any nondeterministic execution of the folding algorithm inthe worst case takes2O(size(γ)+size(δ)) time.
Before making this analysis, let us observe that the function project is applied to a subsetX of the
variables occurring inγ (in particular, with reference to the procedureCM , X = Vars(c) ∩ Vars(B′))
and it is often the case that|X| is much smaller thansize(γ)+size(δ). Thus, in order to analyze this
particular case, we assume that the value of|X| is fixed and the time complexity of the functionproject
is a constant value. In this hypothesis our algorithmFA is in NP (w.r.t.size(γ)+size(δ)). To show this
result, now we prove that both the goal matching procedureGM and the constraint matching procedure
CM are in NP.

First we consider the procedureGM . Let s be a sequence of applications of the rewrite rules (i)–(x)
of GM starting from the initial set{(B ∧ T)/G} of bindings, whereB andG are the goals occurring in
the body ofδ andγ, respectively. First, we note that each application of one of the rules (i)–(ix) reduces
at least by one the number of occurrences of symbols. Rule (x)can be applied at mostM times, where
M is the number of variables occurring in the head of clauseδ. Thus, the length of the sequences is
linear insize(γ)+size(δ). Finally, by a single application of a rule, any set of bindings can be rewritten
into at mostK different new sets of bindings, whereK is the number of occurrences of literals inG (see,
in particular, rule (i) which is nondeterministic). Thus,GM is in NP w.r.t.size(γ)+size(δ).

Now we show that alsoCM is in NP. Let 〈c ↔ e ∧ d′, ∅, ∅〉 be the initial triple and letN be
size({c, e ∧ d′}). We have the following property: for every maximal sequences1 of rewritings of the
form D =⇒ · · · =⇒ E constructed by applications of the rewrite rules (i)–(v) ofCM , there exists a
sequences2 of the formD =⇒ · · · =⇒ E such that: (1)s1 ands2 have equal length, (2) ins2 every
application of rules (i), (ii), and (iii) occurs before all applications of rules (iv) and (v), and (3) rules (iv)
and (v) are applied in the following order, starting from thetriple of the form〈f1 ↔ g1, S1, σ1〉 which
is obtained after the applications of the rules (i), (ii), and (iii): (3.1) first, rule (iv) is applied as long as
possible for eliminating all occurrences of the variablesZ1, . . . , Zh from S1, thereby deriving a new set
S2 of constraints, (3.2) then, rule (v) is applied as long as possible for eliminating all occurrences of the
variablesY1, . . . , Yk from S2, thereby deriving a new setS3 of constraints, and (3.3) finally, rule (iv) is
applied as long as possible for eliminating all occurrencesof the variablesX1, . . . Xℓ from S3, thereby
deriving a setS4 of constraints. Thus,S4 is a set of constraints whose variables are all inW . Note
that Conditions (3.1), (3.2), and (3.3) on the order of application of rules (iv) and (v) can be imposed
because the normal forms of the bilinear polynomials occurring in the second component of every triple
are computed w.r.t. the fixed variable orderingZ1, . . . , Zh, Y1, . . . , Yk,X1, . . . Xℓ.

Thus, for the time complexity analysis ofCM we may restrict ourselves to sequences of rewritings
constructed like the sequences2 above, that is, sequences which satisfy Conditions (2), (3.1), (3.2),
and (3.3). First, note that each application of rules (i), (ii), and (iii) reduces the number of constraints
occurring in the first component of the triple at hand. Hence,we may have at mostN applications of the
rules (i), (ii), and (iii). Moreover, each application of rules (i), (ii), and (iii) introduces at mostm+1 new
variables, wherem+1 ∈ O(N). Hence, during the applications of rules (i), (ii), and (iii), the number
of new variables introduced isO(N2), that is, |W | ∈ O(N2). We also have that each application of
rules (i), (ii), and (iii) adds at mostm+3 constraints to the second component of the triple. Thus, after
the application of rules (i), (ii), and (iii) we get a setS1 of constraints such that|S1| ∈ O(N2). Then,
in the sequences2 rule (iv) is applied at mostM1 times, whereM1 is the number of occurrences inS1

18 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

Example D0 D1 D2 D3 D4 N1 N2 N3 N4

Number of Foldings 1 1 1 1 1 2 4 4 16

Number of Variables 10 4 8 12 16 4 8 12 16

Time(seconds) 0.01 0.01 0.08 3.03 306 0.02 0.08 0.23 1.09

Total-Time(seconds) 0.02 0.02 0.14 4.89 431 0.03 49 1016 11025

Table 1. Execution times of the folding algorithmFA for the examplesD0, D1–D4, andN1–N4.

of variables inZ. Now, since all bilinear polynomials are in normal form, we have thatM1 ≤ |S1|×|Z|
andM1 ∈ O(N3). We also have that|S2| is equal to|S1|+z, wherez is the number of occurrences
in S1 of variables inZ. Since|S1| ∈ O(N2), we get that|S2| ∈ O(N2). Then, every application
of rule (v) eliminates all occurrences of a variable inY and, therefore, rule (v) is appliedM2 times
with M2 = |Y | ≤ N . Note that after all applications of rule (v), we get the setS3 of constraints
whose cardinality is|S2| − |Y |, and thus,|S3| ∈ O(N2). Finally, rule (iv) is applied at mostM3 times,
whereM3 is the number of occurrences inS3 of variables inX. We have thatM3 ≤ |S3|×|X| and
thus,M3 ∈ O(N3). Therefore, the total number of applications of rules (i)–(v) in the sequences2 is
O(N3). Since each rule application takes polynomial time w.r.t.N , we get a polynomial time cost of the
CM procedure w.r.t.N . Now, in order to conclude thatCM is in NP w.r.t.N we have to examine the
nondeterminism of theCM procedure. We have that by a single application of a rule, anytriple can be
rewritten into at mostO(N2) different new triples. Indeed, (1) by an application of rule(i), any triple can
be rewritten into at mostn different new triples, wheren is the number of atomic constraints ine ∧ d′,
andn ≤ N , (2) rules (ii) and (iii) are deterministic, and (3) rules (iv) and (v) can be applied by selecting
an equation in the second component of the triple at hand in atmostO(N2) ways. Thus,CM is in NP
w.r.t. N . SinceN ≤ size(γ) + size(δ), we get thatCM is in NP w.r.t.size(γ) + size(δ).

Note that since matching modulo the equational theory AC∧ is NP-complete [2], there is no folding
algorithm whose asymptotic time complexity is significantly better than our algorithmFA, in the case
when|X| is fixed.

Finally, if we do not assume that|X| is fixed, since|X| < size(γ) + size(δ) andproject (c,X)
is computed (at the beginning of theCM procedure) at most once for each execution of the algorithm
FA, we get that, as already mentioned, for any given pair of input clauses, each execution ofFA takes
2O(size(γ)+size(δ)) time.

In Table 1 we report some experimental results concerning our algorithmFA, implemented in SICS-
tus Prolog 3.12, on a Pentium IV 3GHz. Each column of Table 1 refers to a particular example: column
D0 refers to the example of the Introduction, columnsD1–D4 refer to four examples for which folding
can be done in one way only (Number of Foldings=1), and four columnsN1–N4 refer to four examples
for which folding can be done in more than one way (Number of Foldings= 2, or 4, or 16).

The row namedNumber of Variablesindicates the number of variables occurring in clauseγ (which
is the clause to be folded) plus the number of variables occurring in clauseδ (which is the clause used
for folding). The row namedTimeshows the seconds required for finding the folded clause (or the first
folded clause, in examplesN1–N4, where more than one folding is possible). The row namedTotal-
Timeshows the seconds required for finding all folded clauses. Note that even when one folding only is

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 19

possible, we have thatTotal-Timeis greater thanTimebecause, after the folded clause has been found,
FA checks whether or not one more folded clause can be found.

In ExampleD1 clauseγ is p(A) ← A < 1 ∧ A≥B+1 ∧ q(B) and clauseδ is r(C) ← D < 0∧
C−3≥2D ∧ q(D). In ExampleN1 clauseγ is p← A>1 ∧ 3>A ∧B>1∧ 3>B ∧ q(A) ∧ q(B) and
clauseδ is r ← C >1∧3>C∧D>1∧3>D∧q(C)∧q(D). In the other examplesD2–D4 andN2–N4
we have considered clauses with more variables (and also more constraints and literals) according to the
values shown in the row namedNumber of Variables.

From our experimental results we may conclude that the algorithm FA performs reasonably well
in practice, but when the number of variables (and, in particular, the number of variables of typerat)
increases, its performance rapidly deteriorates.

6. Related Work and Conclusions

The elimination of existential variables from logic programs and constraint logic programs is a program
transformation technique which has been proposed for improving program performance [14] and for
proving program properties [13]. This technique makes use of the definition, unfolding, and folding
rules [3, 7, 8, 11, 20]. In this paper we have considered constraint logic programs, where the constraints
are linear inequations over the rational (or real) numbers,and we have studied the problem of the au-
tomatic application of the folding rule. Indeed, the applicability conditions of the many folding rules
for transforming constraint logic programs which have beenproposed in the literature [3, 7, 8, 11, 13],
are specified in a declarative way and no algorithm has been given to determine whether or not, given
a clauseγ to be folded by using a clauseδ, one can actually perform that folding step. The problem
of checking the applicability conditions of the folding rule is not trivial (see, for instance, the example
presented in the Introduction).

In this paper we have considered a folding rule which is a variant of the rules proposed in the litera-
ture, and we have given an algorithm, calledFA, for checking its applicability conditions. To the best of
our knowledge, ours is the first algorithmic presentation ofthe folding rule. The applicability conditions
of our rule consist of the usual conditions (see, for instance, [8]) together with the extra condition that,
after folding, the existential variables should be eliminated. Thus, our algorithmFA is an important step
forward for the full automation of the program transformation techniques [13, 14] for improving program
efficiency or proving program properties by eliminating existential variables.

We have proved the termination and the soundness of our folding algorithmFA. We have also proved
that if the constraint appearing in the clauseγ to be folded isadmissible, thenFA is complete, that is,
it does not returnfail whenever folding is possible. Finally, we have implementedthe folding algorithm
and our experimental results show that it performs reasonably well in practice.

Our algorithmFA consists of two procedures: (i) thegoal matchingprocedure, and (ii) theconstraint
matchingprocedure. Thegoal matchingprocedure solves a problem which is similar to the problem of
matching two terms modulo an associative, commutative equational theory, also calledAC theory[2].
However, in our case we have the extra conditions that: (i.1)the matching substitution should be con-
sistent with the types (either rational numbers or trees), and (i.2) after folding, the existential variables
should be eliminated. Thus, we could not directly use the AC-matching algorithms available in the
literature [6].

Theconstraint matchingprocedure solves a generalized form of the matching problem, modulo the

20 V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables

equational theory, calledLIN Q, of linear inequations over the rational numbers. That problem can be
seen as arestricted unificationproblem [4]. In [4] it is described how to obtain, if certain conditions hold,
an algorithm for solving a restricted unification problem from an algorithm that solves the corresponding
unrestricted unification problem. To the best of our knowledge, for the theoryLIN Q of constraints an
algorithm is provided neither for the restricted unification problem nor for the unrestricted one. More-
over, one cannot apply the so calledcombination methods[15]. These methods consist in constructing
a matching algorithm for a given theory which is the combination of simpler theories, starting from the
matching algorithms for those simpler theories. Unfortunately, as we said, we cannot use these com-
bination methods for the theoryLIN Q because some applicability conditions are not satisfied and, in
particular,LIN Q is neithercollapse-freenor regular [15].

In the future we plan to adapt our folding algorithmFA to other constraint domains such as the linear
inequations over the integers. We will also perform a more extensive experimentation of our folding
algorithm using the MAP program transformation system for constraint logic programs [12].

Acknowledgements

We thank the anonymous referees for helpful suggestions. Wealso thank John Gallagher for comments
on a draft of this paper.

References

[1] Baader, F., Snyder, W.: Unification Theory, in:Handbook of Automated Reasoning(A. Robinson,
A. Voronkov, Eds.), vol. I, Elsevier Science, 2001, 445–532.

[2] Benanav, D., Kapur, D., Narendran, P.: Complexity of matching problems,Journal of Symbolic Computation,
3(1-2), 1987, 203–216.

[3] Bensaou, N., Guessarian, I.: Transforming Constraint Logic Programs,Theoretical Computer Science, 206,
1998, 81–125.

[4] Bürckert, H.-J.: Some Relationships between Unification, Restricted Unification, and Matching,Proceedings
of the 8th International Conference on Automated Deduction, 230, Springer-Verlag, London, UK, 1986.

[5] Burstall, R. M., Darlington, J.: A Transformation System for Developing Recursive Programs,Journal of the
ACM, 24(1), January 1977, 44–67.

[6] Eker, S. M.: Improving the efficiency of AC matching and unification, RR-2104, INRIA Lorraine & CRIN,
Villers-les-Nancy, France, 1993.

[7] Etalle, S., Gabbrielli, M.: Transformations of CLP Modules, Theoretical Computer Science, 166, 1996,
101–146.

[8] Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation Rules for Locally Stratified Constraint Logic
Programs,Program Development in Computational Logic(K.-K. Lau, M. Bruynooghe, Eds.), Lecture Notes
in Computer Science 3049, Springer, 2004.

[9] Jaffar, J., Maher, M.: Constraint Logic Programming: A Survey, Journal of Logic Programming, 19/20,
1994, 503–581.

[10] Lloyd, J. W.:Foundations of Logic Programming, Springer-Verlag, Berlin, 1987, Second Edition.

V. Senni, A. Pettorossi, M. Proietti / A Folding Rule for Eliminating Existential Variables 21

[11] Maher, M. J.: A Transformation System for Deductive Database Modules with Perfect Model Semantics,
Theoretical Computer Science, 110, 1993, 377–403.

[12] The MAP Transformation System, 1995–2008, Available from http://www.iasi.cnr.it/∼proietti/system.html.

[13] Pettorossi, A., Proietti, M., Senni, V.: Proving Properties of Constraint Logic Programs by Eliminating
Existential Variables, in:Proceedings of the 22nd International Conference on Logic Programming, ICLP’06
(S. Etalle, M. Truszczyński, Eds.), Lecture Notes in Computer Science 4079, Springer, 2006, 179–195.

[14] Proietti, M., Pettorossi, A.: Unfolding-Definition-Folding, in this Order, for Avoiding Unnecessary Variables
in Logic Programs,Theoretical Computer Science, 142(1), 1995, 89–124.

[15] Ringeissen, C.: Matching in a Class of Combined Non-disjoint Theories,Proceedings of the 19th Interna-
tional Conference on Automated Deduction, CADE-19(F. Baader, Ed.), Lecture Notes in Computer Science
2741, Springer, 2003.

[16] Schrijver, A.:Theory of Linear and Integer Programming, John Wiley & Sons, 1986.

[17] Senni, V., Pettorossi, A., Proietti, M.: A Folding Algorithm for Eliminating Existential Variables from Con-
straint Logic Programs, in:Proceedings of the 24th International Conference on Logic Programming,
ICLP’08 (M. Garcia de la Banda, E. Pontelli, Eds.), Lecture Notes in Computer Science 5366, Springer,
2008, 284–300.

[18] V. Senni, A. Pettorossi, and M. Proietti. A folding rulefor eliminating existential variables from
constraint logic programs. Technical Report 08-03, IASI-CNR, Rome, Italy, 2008. Available from:
http://www.iasi.cnr.it/~proietti/reports.html.

[19] H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer Science, 86:107–139,
1991.

[20] Tamaki, H., Sato, T.: Unfold/Fold Transformation of Logic Programs,Proceedings of the Second Inter-
national Conference on Logic Programming, ICLP’84(S.-Å. Tärnlund, Ed.), Uppsala University, Uppsala,
Sweden, 1984.

[21] Terese:Term Rewriting Systems, Cambridge University Press, 2003.

[22] Weispfenning, V.: The complexity of linear problems infields, Journal of Symbolic Computation, 5(1-2),
1988, 3–27.

