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1. Introduction

In classical rough set theory, information systems withidence relations (or approximation spaces)
are studied. The data tables used have crisp symbolic vedaeg16] for example). More general vari-
ants with other types of relations and values have also baensvely studied in the literature (s€el[11],
[9], [A7], [13], [18] for example). The methods and concepisluding those of definability, approxima-
tion, granular representability of approximations, néigtrhoods and others, need many modifications
for application in these situations. We focus on similagpaces or tolerance approximation spaces in
this research paper. Tolerance approximation spacessarefinterest in representation of inexact and
incomplete knowledge (sele [17], ]21]).

In classical rough set theory, the negative region of a sieisower approximation of the comple-
ment of the set. This region is disjoint from the upper appnation of the set in question. An analogous

*I'would like to the thank the referee for useful remarks aredréiference td [21]
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property fails to hold in tolerance approximation spacés3)l To deal with this a different semantic ap-
proach (to TAS) involving modified upper approximations isgosed in[[18]. These modified upper
approximations are formed from upper approximations bijrigioff’ a part of it to form ’bitten upper
approximations’. The new approximations turn out to beaitigjfrom the negative region of the subset
and also possess better properties.

More specifically, the upper approximation of a subset of & Térmed by a set of granules (with
respect to those on the subset) is reduced by the deletitre ofegative region of the subset to form the
'bitten upper approximation’ of the subset. This ensured the new upper approximation is disjoint
from the negative region of the subset. In the formation gfragimations explicit constraints are not
imposed on the possible type of granules. The authors als®the problem of developing an algebraic
semantics for the approach.

In the present paper, we develop two different algebraicasgics for the same. The first of these
actually captures reasoning within the power set of the fsgbssible order-compatible partitions of the
set of roughly equivalent objects. We also prove suitabieesentation theorems in the third section.
The main result of [2] is required in the proof of the same than

Between formalizing the interaction of roughly equivalebjects and formalizing the approxima-
tions in a classicalist setting, we prefer the former or dediical version thereof[([14]). But whether
this rough equivalence’ is to be an equivalence relatiom ocongruence or something else, is an open
guestion. We do not abandon the viewpoint that it shouldagtlbe an equivalence. Interestingly the
known algebraic approaches (like [4]) aimed at just the @xprations and derived operations in a clas-
sicalist setting (as opposed to the domain of roughly egbggdots) cannot be directly adapted (at least)
to the present context.

Given that it may not be possible to have suitable abstrawesentation theorems from partial al-
gebras over the set of roughly equivalent objects in theextthtve use choice functions in a crucial
(though implicit) way to introducesimplified algebra of the bitten granular semant8&BA. These
are developed up to the level of some solvable/open problétese the motivation is not to integrate
choice functions with rough set theory as [in|[15], but to ddh easier semantics. At the same time
the semantics is also motivated by possible connectiortschibvice inclusive similarity based rough set
theory.

In the following section we mention some of the essentialomst and outline the bitten approach.
The first of the algebraic semantics for the bitten approacieveloped in the third section. Some related
problems are also posed in the same. In the fourth secticartialpalgebraic semantics over a relatively
easier semantic domain (with respect to the previous appyaa developed. These semantics are also
applicable to particular cases of other general rough serids including the cover based ones. This is
indicated in the fifth section.

2. Background

By aTolerance Approximation Spa¢€AS), we mean a pair of the forh = (S, T), with S being a set
andT atolerance relation over it - these are also known as siityilairtolerance spaces. Some references
for extension of classical rough set theory to TAS are [40][121], [5], [15] and [11]. These theories
differ in the types of granules, process of definition of apgpnations, semantics and on computational
aspects. We mention some important aspects of rough set/tbeer TAS before proceeding with the
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bitten proposain [19].

An approach [([11]) has been to define a new equivaléicen S via (x, y) € 6, if and only if
domr(x) = domy(y) with domr(z) = N{lx]r : z € [x]y}. This is essentially an unduly cautious
‘clear perspective’ approach.

In [10], a theory of generalized rough sets based on covesalidets of a given sétis considered.
Let S be a set and® = {Ki}}' : n < oo be a collection of subsets of it. We will abbreviate subsets
of natural numbers of the fordd, 2,...,n} by N(n). If X C S, then consider the sets (wiy = 0,
Kni1 = S for convenience):

(i) XU = UK : Ky € X, iefol,..,n}}

(i) X2 = Ulnier(S VK = Nier(S \ K) € X, TSN+ 1)}
(i) X¥' = M{Uie1Ki : X,C Uie1Kiy TSN+ 1)}

(iv) X2 = NS\ Ki:XCS\ K ielo,..,n}

The pair(X'', X41) is called aAU-rough setby union, while(X'2, X*2) a Al-rough setby inter-
section (in the present author’s notation|[13]). In the tiotaof [10] these ard F(X), F(X)) and
(FL(X), FA(X)) respectively. We will also refer to the pdi$, K) as aAUAI-approximation system

In the TAS context, let the granules bér = {y; (x, y) € T} for each element, and/C be the
collection of such sets. Than andul approximations of a set should be given by (i) and (iii) above
respectively. FurtheA! = [ J{ixIt; It € A} = At andAY = (J{[xIt; [xIt N A # 0, x € A} #
A", Note that the generalized cover approach does not presamipspecific type of granules.

In [4], the following improved approximations are defined:

AY ={x; 3y (x,y) € T, lyly C A}
AY ={x; VY ((x,y) € T — it N A # 0)}

Proposition 2.1. For any subsef, At C A%¥ C A C A% C A"

Using this approximation, we can define a Brouwerian orthggementation orp(S), via A* =
{x € §;(Vy € A)(x,y) ¢ T}. These approximations and possible variants may be seewayg af
distinguishing between objects on a heurisfibie BZ and Quasi-BZ -algebraic approach ([5]) make use
of a preclusivityrelationP, which is defined vida,b) € P if and only if (a, b) ¢ T. Semantically
the derived rough operators of lower and upper approximatie generated by the preclusivity operator
and the complementation relation on the power set of theoappation space or on a collection of sets
under suitable constraints in a more abstract setting. iyorlaC S, the Brouwerian orthocomplement is
H¥ = {x : (Vy € H)(x,y) € P} Then the operators defined by(H) = H%¢ andM;(H) = H#*
behave like lower and upper approximation operatorgp($) and are proper generalizations of the
corresponding notions in the approximation space context.

Semantically the BZ-algebra and variants do not capturth@lpossible ways of arriving at concepts
of discernibility over similarity spaces. While the qu&si-lattice does not encompass a paradigm shift
relative the BZ-algebra, the BZMV variants are designedafmiure fuzzy aspects. A major problem with
this approach is that the intended semantic domain is unifoclassicalist and at the object level too.
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In subjective terms reducts are minimal sets of attribuhes preserve the quality of classification.
An important problem is in getting good scalable algorithiorsthe computation of the different types
of reducts (or supersets that are close to them) (seel[12ThBse depend on the concept of granules
used.

Some other notions that we will use are stated below:

Definition 2.1. A double Heyting algebrd = {L, A\, VV, =, &, 0, 1}is an algebra satisfying:
o L ={L,/\,V, —, 0, 1}is a complete atomic Heyting algebra
exox=0xVxey =xxeyV,y=xVy
e (xVyloz=(xoz)V(yoz

ezo(xNy =@zex)V(zoy)

Definition 2.2. By a choice functiony on a setS, we shall mean a functiog : (S) — S, which
satisfies all of the following:

o (vx € S)x({x}) = x

o (VA € p(S))x(A) € A

Definition 2.3. LetP = (P, <) be a partially ordered set andAf is any subset oP, let its lower and
upper cone b&(A) = {x; (Va € A)x < a}andU(A) = {x; (Va € A)a < x}respectively. A
functionA : p(P) — P will be said to beattice-coherentwith < if and only if the conditiona < b

thenA(L(a, b) = a)andA(U(a, b)) = b.

A-lattices were considered as a generalization of latticd2d]. In the partially ordered sé& above
If Ais a lattice coherent operation, ket- b = A(L(a, b)) anda + b = A(U(a, b)), then the algebra
Q = (P, -, +) is said to be a-lattice. It can be shown that if a partially ordered set has a lattm@erent
operation then it can be endowed withdattice structure and conversely.

Theorem 2.1. In aA-lattice Q = (P, -, +) all of the following hold:
e + is an idempotent and commutative operation

e - is anidempotent and commutative operation

e a-(a+b) a

ea-+ (a-b)

a

a-((a-b)-¢c)=(a-b)-c

ea+ ((a+b)+c)=(a+b)+c
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We will use two kinds of equalities in a partial algebra (ofiegte sort)P = (P, fi, ... fn,Vv),
;s being partial or total function symbols andbeing an interpretation of these on the BetStrictly
speaking, the interpreted partial function should be wnitasfiE, but we will drop the superscript for
simplicity. The basic theory of partial algebras can be tbim[3] for example.

For two termss andt, the strong weak equalitis defined as followst(x) @ s(x) if and only if

(Vx € dom(t) = dom(s)) t(x) = s(x).

In contrast, the weak equality is defined ¥{a) = s(x) if and only if

(Vx € dom(t) N dom(s)) t(x) = s(x).

2.1. Bitten Approach

In this section we recapitulate the essertiigien proposal of[[18] with some modifications. Actually the
authors introduceited upper approximations in a study on tolerance spaces. Howef&l], 'bitten ap-
proximations’ are also considered. We will uniformly refetthese and approach by the adjectiiteen
The theory apparently lays emphasis on desired mereolquicperties at the cost of representation.

Let Gr(S) C p(S) be the collection of granules for a TAS defined by some camitiincluding
JGr(S) = S. A subseiX is granularly definabldf and only if 38 C Gr(S) X = |JB. The collection
of granularly definable sets shall be denotedlwfs.(S). The lower and upper approximations Xf
is defined viaGr.(X) = (JJA : A € X, A € Gr(S)}andGr*(X) = JA: AnNX # 0,A €
Gr(S)}. The positive and negative region, definedySg,(X) = Gr.(X) andNEGg,:(X) = Gr.(X®)
respectively, are granularly definable. Butin this schefitRingsGr* (X) " NEGg,(X) # 0is possible.
To avoid this, a concept dfitten upper approximatiors defined viaGr} (X) = Gr*(X) \ NEGg.(X).
Relative this the boundary is given by

BNgr(X) = Gr(X) \ Gri(X) = S\ (POSG:(X) U NEGg(X)).

Gr(S) may be taken to be the setbfrelateds or the set of blocks &for something else. For exam-
ple, if Gr(S) is the set of all sets of the form, (Ty = {y; (x,y) € T,y € S}), thenS = |J Gr(S)
and of courseésr(S) C p(S). Given the latter two properties, the upper and lower agprations of a
subseiX are then given by :

Gr.(X) = [J{¥ € Gr(S) Y € X}, Gr(S) = [ J{Y € Gr(S); YN, X # ().

The bitten upper approximation is simpBry (X) = Gr*(X) \ Gr.(X). If they are related to a specific
tolerance, then we will call the tupl, Gr(S), T, Gr,, Gr{;) abitten approximation syste(BAS).

The properties of the approximations are as follows:
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L1-Property u2-Property

la.) Gr.(X) € X 1b.) X C Gri(X)

2a.) (X CY — Gr(X) C Gri(Y)) 2b.) (X C Y — Gri(X) € Grp(Y))
3a.) Gr(0) =0 3b.) Gri(0) =0

4a.) Gr(S) =S 4b.) Gry(S) =S

5a.) Gry(Gry(X)) = Gr(X) 5b.) Gr{(Gry(X)) = Gry(X)

6a.) Gr. (X NY) C Gr.(X) N Gr.(Y) 6b.) GrE(X NY) C Gri(X) N Gri(Y)
7a.) Gre(X) U Gr(Y) € Gr (X UY) 7b.) Gry(X) U Gri(Y) € Gri(X UY)
8a.) Gr.(X) C Grj(Gry(X)) 8b.) Gr.(Gri(X)) €) Gri(X)

9a.) (Gr«(X))¢ = Gry(X°) 9b.) (Gr}(X))¢ = Gry(XE)

10A.) X € Defg,(S) «— X = Gry(X)

10B.) X € Crg(S) «— Gr(X) = Grj(X)

1TA.) X, Y € Defg(S) — X U Y € | (Implies equality in7a)

Defg:(S)

11B.) X, Y€ Crg,(S) — XNY,XUY € | (Implies equality inca, 6b, 7a, 7b, 8a, 8b)
Cra:(S)

In the same paper ([19]), the authors pose the problem olajgng an algebraic semantics for the
approach.

In a TASS, ablockB C S is a maximal set that satisfi& C T. In [21], these are termetlasses
while the former is the standard terminology in universgkeaka. 1fH is the collection of all blocks
of T, then letAy = {NF : F C Hy}. Taking this large collection as the set of granules, thbast
define the the lower and bitten upper approximation¥fa SasX! = [J{JA: A C X, A € Ar}and
Xp=UAANX#0,A e Ar}\ (X)l. On the set of definable objecatS), let

e X5 Y=UAecAnpXNACY}
e XOY=()B e A X CYUAL

Then the following theorem provides a topological algebsmantics ([21]):

Theorem 2.2. (A(S), N, U, —, &, 0, S) is a complete atomic double Heyting algebra.

However extensions of the theorem to other types of grararkesiot known. No abstract represen-
tation theorem is also proved in the particular situation.

3. Semantics for Bitten Rough Set Theory

The concept of granules to be used in the theory is essgritigfit open. Many types of granules may
not permit nice represention theory. Despite this, our $ieshantics over roughly equivalent objects does
well. This is due to the higher order approach used.
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Definition 3.1. If S is a TAS, then ovep(S) let
A ~ Biff Gr.(A) = Gr.(B) andGr,(A) = Gry(B)

The following proposition and theorem basically gag quotient structure (or the set of roughly
equivalent objects) has very little structuséth respect to desirable properties of a partial algebreyT
are clearly deficient from the rough perspective as we do ae¢ Iproper conjunction and disjunction
operations. But 'biting’ may actually make the partial agt@ns total in many contexts.

Proposition 3.1. ~ is an equivalence on the power ggtS). Moreover the following operations and
relations onp(S)| ~ are well-defined:

o L([A]) = [Gr.(A)]
e —[A] = [A‘]if defined
o ¢([A]) = [GT(A)]

e [A] < [B]ifand only if, for anyA € [A] andB € [B] Gr.(A) C Gr.(B) andGrj(A) C
Gry(B).

e [A] m [B] = [C]if and only if [C] is the infimum of[A] and[B] w.r.t <. It shall be taken to be
undefined in other cases.

e [A] U [B] = [C]ifand only if [C] is the supremum ofA] and[B] w.r.t <. It shall be taken to be
undefined in other cases.

Moreover< is a partial order op(S)| ~ that is partially compatible with on the crisp elements.

Proof:

e ForanyA c p(S)andanyB € [A], Gr.(Gr(A) = Gry(A) = Gr(B) andGry(Gri(A)) =
Gy (Gr4(B)). This proves thak is well-defined.

e ForanyA € p(S)and anyB, E € [A], (Gry(B))¢ = Grj(B°) = (Gr(E))® = Gri(E®) and
(GT$(B))¢ = Gr.(BY = (Gr}(E))® = Gr.(E%.

We can verify the rest in a similar way. O
Proposition 3.2. In the above context,
([A] < [B] — —[B] < —[A])

Theorem 3.1. All of the following hold in (S)| ~ (we assume that unary operators bind more strongly
than binary ones):

1. (XU Gy =0, ¢xUy)=b — U ¢y < ¢(xUy))

2. x M x = x
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3. 46x = &x
4. (ex My =a, ¢(xMy) =b — ¢xAy) < éx A y)
5 IxULly=a,L(xVy)=b — IxULly <LxUy))
6. Lx m 4Lx = Lx
7. x U Léx = &x
8. —éx = L—x
9. -Lx = é—x
Proof:

1. IfA € xandB < y, thendx = [Gr;(A)], 4y = [Gr{(B)]. Given the existence of the terms
in the premise, we can assume that there exists [Gr(A)] U [Gry(B)] andE € 4(x U y).
Gr.(C) C Gr.(E)andGri(C) € Gri(E). So, given the existence of the terms in the premise,
we have$éx U 4y < 4(x U y).

2. If A € x,then®x = [Gr}(A)]. ASA C Gr{(A), sox M #x = x.
3. IfA € x,thenddx = #[Gr{(A)] = [GT{(GTE(A))] = [Grp(A)] = #x.

4. The proof of(éx M ¢y = a, #(x My) — €(x Mmy) < éx M @y) is similar to that of the
first item.

5. Given the existence of the terms in the premise) ife x andB € y, thenLx = L[A] =
[Gr.(A)] andLy = [Gr.(B)]. If C € Lx W Ly andE € L(x U y), thenGr,(C) C Gr.(A) U
GT4(B), Gr4(A) U Grg € Gr,(E) andGry(C) € Gry(E). So,Lx U Ly < L(x U y).

6. If A € x,thenLx = L[A] = [Gr.(A)] and¢Lx = [Gr{Gr.(A)]. ButGr,(A) C GriGr.(A).
SolLx m 4Lx = Lx.

7. 1A € x, thendx = @[A] = [Grj(A)] andLex = [Gr.Gr}(A)]. But Gr,Gr{(A) C
Grj(A). SO,4x U Léx = #x.
8. If A € x, then—¢x = —4[A] = —[Gr}(A)]l. —[Gri(A)] = UGrE(A))], = [Gri(A%)] =
Lneg[A]. So,—¢x = L—x.
9. If A € x,then—Lx = —[Gr,(A)] = [(Gr.(A))¢]. But[(Gr.(A))] = [Gry(AC)]. This yields
—Lx = ¢—x.
O

A semantics using the partial algebra over the associatetiegiimay be difficult because of axioma-
tisability issues. So we use a higher order approach, tatang not to introduce extraneous properties.
Eventually the constructed algebra ends up with threegbantders. In the following construction the
use of a modified concept of filters simplifies the eventualasgntation theorem.



A. Mani/ Algebraic Semantics of Bitten Rough Sets 185

If p(S)] ~= K, then letkK* = {f : f : K — Iisisotong, I being the the totally ordered two
element sef0, 1} under0 < 1. For anyA C K*, a subset is anA-idealif and only if

F= () x {0

xXeEA

Dually F is anA-filter if and only if

F= () x '

xXeEA
All A-ideals are order ideals (w.r.t the induced ordeKéh but the converse need not holl. ¢ K*

is said to beull if Vp £ q3x € Ax(p) = 1, x(q) = 0. A is said to beseparatingif for any disjoint
idealI and filterF, there exists a € A such thaty; = 0 andx = 1

Lemma 3.1. If A is a separating subset Kf and(Vp, q € K)(q £ p — p la Nq Ta= 0), then
A is full.

If p € K, thenletdP(p) = {x : x(p) = 1}andLO(p) = {x : x(p) = 0}, then we can define
two closure operator€;, C, via
Ci = clos{UP(plhyex

(aCy-closed set is an intersection of elements6P (p)}, <) and
Cy = clos{LO(p)lpex

Note that elements @#P(p)}, ck are in factC;O;-sets (that is sets that are open w.r.t the second
closure system and closed with respect to the first). The fsetich sets on a systefis, C;, C;),
will be denoted byC;0,(S, C;, C,). The associated closure operators will be denotedlbyndcl,
respectively.

On any subsefA C K*, we can define closure operators g, (X) = C; N A, with associated
closure system&Pa (p) = UP(p) N AandLOA(p) = LO(p) N A respectively. It can be seen that,
in the situationCia = clos{UUP(p)}, € PandCya = clos{LO(p)}, € P.

Theorem 3.2.1f A C K*ando : K — C;0;(A, Cia, Coa) is @ map defined by(p) = UP(p)
then

1. oisisotone
2. If Alisfull, theno is injective

3. If A is separating, then is surjective.

Proof:
This theorem and the following theorem are proved for artianlyi partially ordered seX in [2]. O

Theorem 3.3. If A is a full and separating subset¥f, thenK = C;0,(A, Cya, Coa). In particular,
K = C10;,(K*, Cy, Cy) (asK* is a full and separating set). Evéti \ {0, 1} is a full and separating set.
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We state the following for clarifying the connection withetmore common way of using closure
operators.

Proposition 3.3. A € C;0,(K*, Cy, Cy) ifandonly if A C K*and(3B, E C K*)A = c4B, A =
K* \ cly(E).

K* can be interpreted as the set of partitions of the set of dgugfuivalent elements into an upper
and lower region subject to the new order being a coarsetfitttemriginal order. The important thing
is that this restricted global object is compatible with tegural global’ versions of the other operations
and leads to a proper semantics. We show this in what follows.

Definition 3.2. OnK*, the following global operations (relative those ibhcan be defined:

e If A € C10,(K* Cyq, C), thenZ(A) = L(i(A)), i being the canonical identity map from
C10,(K*, Cq, Cy) ontopK.

e AV B = clj(A U B) (if the RHS is also open with respect to the second closureisysu
being the union operation ov&r

e A A B = cliy(A n B) (if the RHS is also open with respect to the second closureisysnN
being the intersection operation ou&r

e If A € C;0,(K* Cy, Cy) thenOA = #i(A)

o If A € C;0,(K* Cy, Cy) then~ A = —i(A)

e cly, cly can be taken as unary operatorskon

e 1, |, T, shall be0-ary operations with interpreted values correspondini,t, K* respectively
e If A, B € C;0,(K*, Cy, C;) thenA 1 B,= i(A) m i(B)

e If A B € C;0,(K*, Cy, C;) thenA U B,= i(A) U i(B)

Proposition 3.4. A partial operation is well defined if it is either uniquelyfoleed or not ambiguously
defined. In this sense all of the operations and partial dpesaare well-defined.

Proof:
Most of the verification is direct. O

Definition 3.3. An algebra of the form
W = <ZQ(K*), \/a /\a M, U, Uy M, c) )Clh ClZa ) Sa <>a J—> ]) T>

of type (2, 2,2,2,1, 1,1, 1, 1, 1, 0, 0, 0) in which the operations are as in the above definition will
be called aconcrete bitten algebraJ, N, © are the union, intersection and complementation opestion
respectively onp(K*). We usef(x) as an abbreviation farl;x = x, cl,x¢ = x€. Further§(x, y, ...)
shall mearg(x), &(y) and so on. IfS is the original TAS, then we will denote its associated ceter
bitten algebra byBite(S).
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Theorem 3.4. A concrete Bitten Algebr@ satisfies all of the following:

1.

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.

22.
23.
24,

© N o U~ W N

<p(K*), U, N, < L, T> is a Boolean algebra. Note that after forming associateghoaes with
the usual concept of morphisms, we can realize this throagjetful functors.

.x\/yw:*y\/x
xVyVz)ExVy Vz

(E(x) — x V x = cli(x))

. (xVy=z— cliz =z clz® = z°)

.xVx =y — clh(x*) =x5y =cli(x) = x A x)
cli(x) Nx = x; celicli(x) = cli(x);i=1,2

. (xNy =x — clilx) Nclily) = cli(x));i=1,2

.x/\yw:*y/\x

x/\(y/\z)g(x/\y)\/z

(x Ax =y — clh(x?) = x5y = cly(x))
(clh((clix)®) = (clhix)* — x A x = cly(x))
(x Ny =z — cliz = z, clpz® = z°)

(x ANy Vx=z—z=cli(x))
(x/\y)\/xw:*x/\(y\/x)

L1 =1;£1 =1

(clix = x, clh(x) = x¢ — x V £x = x, £&x = £x)
xMy =z — &lxy, z))

(xUy =z — &xvy,z)
xl‘lyw:*yl‘lx

xMynz)2 (xny) Nz
xLJyw:*yl_lx
xl_l(yl_lz)g(xl_ly)l_lz

(Ex,y) — Ox Uy) N (Ox U Qy) = Ox U Qy)
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25. (E(x) — x M Ox = x, OOx = Ox)

26. (E(x, y) — Clx My) N (Ox M Qy) = Ox U y))
27. (Ex,y) — L(x Uy) N (&x U Ly) = £x U Ly)
28. (E(x) — £x M $Lx = £x)

29. (E(x) — Ox U L£Ox = Ox)

30. (Ex —~Ox = £~%)

3L (&x —~£x = O ~x)

32.xMNMy=x —xUy =y)

Proof:

1. That<p(K*), U, n, < L, T> is a Boolean algebra can be proved by part of Stone’s repedgen

theorem.

w*

2. Forprovingx V' y = y V x, if x V y is defined, therl;(x U y) is open with respect tol,.
Socly(y U x is also open with respect td, and the two sides of the equality must be equal.
Similarly for the reversed argument.

3. 1fx V (y V z)and(x V y) V z are defined, then they must equd| (x U cly(y U z)) and
cli(cli(x U y)) U z) respectively. Further these anti (x U y), andcly(y U z) must be open
with respect tal,. Butcl; are topological closures. SoV (y V z) £ (x V y) V z

4. (£(x) — x V x = cly(x)) can be derived directly.

5 1f (x Vy = zthenz = clj(x U y) and it must be open with respect to the second closure
system. So(x V' y =z — cljz = z, clz® = z°)

6. If x V x = y, thenx A x will also be equal tal;(x). Therestofix V x =y — clp(x°) =
x4y = cli(x) = x A\ x) follows from the previous observation.

7. cli(x) N x = x; clicli(x) = cli(x); 1 = 1, 2 follows from definition

8. (x Ny =x — cli(x) Nclily) = cli(x)); 1 = 1, 2 expresses monotonicity

9. The proof ofx A y - y /\ x is similar to that of its dual.

10. The proof ofk A (y A z) £ (x A y) V zis similar but easier than that of its dual.
11. (x A x =y — clp(x®) = x¢, y = cly(x)) follows directly from definition.

12. (cla(clix)€) = (chix)¢* — x A x = cly(x)) is also direct.
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13. Ifx A y = z, thenz must necessarily be closed with respeatitpand open with respect d,.
So(x Ny =z — cliz = z, clz® = z°)

14. (x /A y) = a (say) is certainly lesser thari;(x), so(x A y) V x = clij(a U x) = cly(x).
This proves((x A y) V x =z — z = clj(x))

15. The argument of the previous conditional implication ba extended to provec A\ y) V x @
x A\ (y V x).

16. £1 = 1,andg£1 = 1 follow from definition.

17. If (clix = x, clh(x®) = x¢, thenx is essentially in the main quotient structure of intereg.
Lx will be defined and the rest dtlix = x, clh(x®) = x¢* — x V £x = x, £&x = £x)
follows.

18. If (x My = z, thenx, y are essentially it O, (K*, C;, C;, but thenx M y must be the infimum
of x andy with respect to<. Soz must also be iIC;0,(K*; C;, C;and(x Ny = z —

&(x, v, ).
19. The proofofix LIy = z — &(x, y, z)) is similar to that of the above statement.

20. Ifeitherx My ory rx is defined, then the other is and the two must be equal to theitification
withi(x) m i(y). Sox My = y M «x.

21.x|‘|(y|‘|z)g (xMy) Nz
22. x Uy © y U x can be proved in the same way as its dual statement (With

23. The rest of the proof follows from the first theorem of thégtion.

We have defined a concrete bitten algebra in such a way thimaetisn becomes easy.

Definition 3.4. By anabstract bitten algebrawe shall mean a partial algebra of the form
A= (A V,A\ MU U N < cly, clyy ~ £, O, L, 1, T) that satisfies all of the following:

1. (A,u,n, ¢ L, T)is aBoolean algebra.
.xVy gy\/x
xVyVz)ExVy Vz

. (xVy=z-— cliz =z clz® = z°)

2

3

4. (cly(clix)®) = (chix)® — x V x = cli(x))

5

6. (x Vx =y — clh(x) =xy =cli(x) =x Ax)
7

ccli(x) N x = x; click(x) = cli(x);i = 1,2
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8. (x Ny =x — clilx) Nclily) = clilx));i=1,2
9. x Ay =y Ax
10.xA(yAz)Z (x Ay)Vz
11. (x Ax =y — clh(x?) = x5y = cly(x))
12. (cL((chx)¢) = (chix)® — x A x = cly(x))
13. x Ny =z — cliz = z, clpz® = z°)
14. (x Ny) Vx =z — z = cli(x))
15. (x Ay) Vx =xA(yVx)
16. £1 = 1;£1 =1
17. (clix = x, clh(x®) = x* — x V £x = x, £&x = £x)
18. x Ny =z — &x, vy, 2))
19. x Uy =z — &x, vy, 2))
20.x My =ynx
2L.xMN(ynz) =2 (xNy) Nz
22.xUy 2 yUx
23.xU(yUuz)2 (xUy Uz
24, (E(x,y) — Ox L y) N (Ox U Qy) = Ox U Qy)
25. (E(x, y) — Olx My) N (Ox M Qy) = Olx U y))
26. (§(x,y) — L(x Uy) N (£x U L£y) = £x U Ly)
27. (§(x) — £x 1 OLx = £x)
28. (E(x) — Ox U L£Ox = Ox)
29. (&x —~Ox = £~x)
30. (&x —~Lx = O ~x)
Definition 3.5. Let T be a collection of subsets &findexed byK, that satisfies
1. (WxeK)(xly e 1)x €y
22Ut =K

3. Tis an antichain with respect to inclusion
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4. For a not necessarily disjoint partitighof K, {Uyc a{Hx : Hy € THacp} = B satisfies:

e [3is an antichain with respect to the usual inclusion order.
e If A is asubset oK not included in any element &, then there exists a two element subset
of A with the same property.

Thent will be called anortho-normal covelof K
Definition 3.6. Let T be a collection of subsets of an algelra= (K, f, f, ... f) indexed byK, that
satisfies
1. (WxeK)(lyeT)x €y
2.t =K
3. Tis an antichain with respect to inclusion
4. For a not necessarily disjoint partitihof K, {Uy c a{Hx : Hx € THacp} = B satisfies:

e 3 is an antichain with respect to the usual inclusion order.

e If Ais asubset oK not included in any element &, then there exists a two element subset
of A with the same property.

e For anyf; of arity n and element8;,...,B, € B there exists an elemeBt € B such that
f(B1y...,Bn) C B

Thent will be called anortho-normal coveof the algebr& for the tolerance determined I8

Note thatB is a normal system of subsets of the algekrand therefore determines a unique com-
patible tolerance oK (see([6]) and conversely. The same thing happens in case &ifshdefinition for
the setk.

Definition 3.7. Let the set of minimal elements {px : &x : £x # 0} of an abstract bitten algebfa
beHy, then letH = {x : {x € Hp}. If H determines an ortho-normal cover on a TRS= (P, T)
with Card(P) = Card(H) thenS will be said to be aefined abstract bitten algebra

Theorem 3.5. For each refined abstract bitten algebrénere exists a tolerance approximation spce
such thaBite(K) = S.

Proof:
The proof has already been done above. The essential seeps ar

1. The definition of a refined abstract bitten algefransures the existence of a related TAGay).

2. It can be checked that the TASand the TASK (mentioned in the statement of the theorem) are
isomorphic because of the representation theorem foraiodess.

3. Rest of the aspects have already been taken care of.
O

Theoreni 3.6 is hardly constructive in any sense of the temimaay prove to be difficult to apply in
particular situations.
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3.1. Discussion

In the above, a semantics for the logic of roughly similaresltsg is developed and it has a certain rela-
tionship with the original TAS. However the actual level efationship that is desired betwesuach a
semanticsand aroriginal generalized approximation space along with theasated process still the
subject to some judgement. This is definitely independemgi€-forming strategies like the Gentzen
style algebraic ([[7],[[8]) or abstract algebraic approdwit tan be applied.

Any bitten semantics with no restrictions on the type of gtes can be expected to fall short of a
unique representation theorem (in the sense that giverethargics, we have a specification for obtain-
ing the original TAS in a unigue way). We say this because imega, the process of forming approx-
imations actually obscures the distribution of blocks. Tdieer is essential for a unique representation
theorem because ).

When the set of granules used is the set-oélated elements, the required conditions for a unique
representation theorem will necessarily include a constl instance of the following process of for-
mation of blocks from sets df-related elements.

Let B denote the set of all blocks of the TAS= (S, T) and lett = {[x]1 : x &,S}.

Form the power sep(T)

Let u(t) = {U(K) : K € p(1), Ty is an equivalence Ty k) being the restriction of the
tolerance to the set(K).

e u(T) is partially ordered by the inclusion relation.

Umax (T), the set of maximal elements pft), is the set of blocks of. That is, e (T) = B.

3.2. lllustrative Example

LetS = {x;1,x2,x3,x4} and let the toleranc& be generated on it b§(x,x2), (x2,x3)}. Taking the
granules to be the set dfrelated elements, we ha®&(S) = {(x7 : x2), (x2 : x1,%3), (X3 :x2), (x4 :)}.
Here(x; : x2) means the granule generatedxyis (x1, x2). The different approximations are then as
in the table below.

The first column in the table is for keeping track of the eletedn the quotientp(S)| ~ and can
be used for checking the operations of Pifiop] 3.1. The ordectste is given by the Hasse diagram
following the table. More details of the construction areitted because the next step will take some
space.
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©(S)|~ | Subset X Gr,(X) Gr*(X) Gr, (X% Gri(X)
By A {x1} 0 {x2, x1} {x2,x3, x4} {x1}
B Az {x2} 0 {x1,x2,x3} {xa} {x1,%2,%3}
B3 A3 {x3} 0 {x1,x2,x3} | {x1,x2, %4} {x3}
By Ay {x4} {xa} {xa4} {x1,x2,%x3} {xa4}
Bs As {x1,%2} {x1,x2} {x1,x2,x3} {xa} {x1,%2,%3}
B, Ag {x1,x3} 0 {x1,%2,x3} {x4} {x1,%2,%x3}
B¢ Az {x1,x4} {xa} S {x2,x3} {x1,x4}
B Ag {x2,x3} {x2,x3} {x1,x2,x3} {xa} {x1,%2,%3}
Bsg Ao {x2,xa} {xa} S 0 S
B A1o {x3,xa} {xa} S {x1,x2} {x3,x4}
Bio At {x1,x2,x3} | {x1yx2,x3} | {x1,%2,x3} {xa} {x1,%2,x3}
B A1z {x1yx2, x4} | {x1,%2,x4} S 0 S
Bz Al3 {x2,x3,xa} | {x2,x3,%4} S 0 S
Bg A1q {x1,x3, x4} {xa} S 0 S
By Ais S S S 0 S
Bis A6 0 0 0 S 0

Fig.1: Partial Order on the Quotient Partial Algebra
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Problems
Some important problems that originate from the previoutices are:

1. Under what general conditions will the operation of lgjtiake the partial operation in Prop. 13.1
total?

2. Find simpler conditions under which an abstract bitteyelata becomes a refined abstract bitten
algebra.

3. Describe the quasi equational classes (and variantsfinéd abstract bitten algebras
4. Does a complete, atomic double Heyting algebra determnum@que BAS?

5. Which type of can reducts be computed with the help of taésebras?

4. Alternative Approach

The appropriate semantic domain for the above semanticsomagnsidered by some to be less natural
on subjective grounds. Among these, the difficulty involiredeasoning within the power set of the set of
possible order-compatible partitions of the set of rougdtjyivalent elements may be cited. We introduce
a simpler semantics for these reasons, and also becausssiiblpaconnections with the semantics for
the choice inclusive similarity based rough set theory duéhé present author i [15] (we consider
extensions of the same in two forthcoming papers).

There are many differences between the use of choice funsciio[15] and in the present paper. In
the former, the use of blocks as granules permit an eleg&pietation in the context dbcal clear
discernibility and generalizations of Pawlak’s theory of knowledge. Thisadigm needs a complete
reworking in the present context as blocks do not alwayseeiecely to the concept of granules used.
Moreover choice is used in the definition of approximatid®s.we avoid doing these in the present paper
and restrict ourselves to developing a semantics with lessmatment to intended meaning. Choice
functions are used in defining the rough operationsoofbining setandextracting the common part of
two sets

Definition 4.1. Foranya, b € p(S)| ~, letUB(a, b) andLB(a, b) be the set of minimal upper bounds
and the set of maximal lower bounds@aindb (we assume that these are nonempty for all pajrs).

If A: p(p(S)| ~) — (S)| ~is a choice function, (by definition, it is such that < b —
AUB({a, b})) = b, A(LB({a, b})) = a)), then let

e a+ b =AUB({a, b}))
e a-b=A(LB({a, b})).

S = (p(S)|~, +-, L, 4, =) will be called thesimplified algebra of the bitten granular semantics
(SGBA)

Theorem 4.1. A SGBA, 8 = (B, +-, L, ¢, —) satisfies all of the following:
1. (B, +-) is aA-lattice
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22.a+b=b+aga-b=b-a

d.at+a=aq a-a=a

4. a+(a-b)=a a-(a+b)=a
5a+(a+(b+c)=a+(b+cha(a-(b-c)=a-(b-c)
6. a +Lla=a; a-La=La

7.0+ 4a=¢%a a-%a=a

8. L(La) = La; #(4a) = 4a

9. (a+b=a—Lla+Ib=1La); (a-b=a— La-Lb=La)
10. (a+b=a— 4a+ b =¢4a); (a-b=a— éa- b = ¢a)
11. —(La) = 4(—a); —(#a) = L(—a)

12210 =0, LT =1; 40 =0, 41 =1

13. Léa + 4a = éa; Léa - 4a = Léa

14. La + ¢La = ¢La; La - ¢La = La

Proof:
The proof consists in verification and is not very hard. O

4.1. Representation Problem for SGBAs

Given a TASS in a bitten rough semantic perspective, associating asBGBA as its corresponding
semantics amounts to modifying the original meaning by theduction of artificial choice functions
for the purpose of forming rough union and intersectioe-ldperations. Either we need a justification
of such preference or accept all of the possible prefererf@eshe default semantics must be given by a
set of SGBAs indexed by the set of all possible choice functions in thablda lattice formation context.
In this perspective the semantics can be explained diraatllya sequent calculus associated (and with
little additional representation theory).

Letx € S,then(ix]t)! = I, while (XI1)¥ = (x]r)* \ (S \ [x]1)Y). Itis obvious that elements
with nonempty lower approximation that are minimal withgest to the rough order will be equivalent
to elements of this type. Once the order relation on the sebwjhly equivalent elements has been
deduced, then we can find the elements of this type. This peth@ reconstruction of the equivalence
based partition of the power set &f

If we do not know all the choice functions involved, then ihist possible in general to determine or
construct the blocks of the tolerante But when will a knowledge of given subsets of choice funtio
permit us to determine the blocks ®f This is the problem of representation ®GBAs. It is also
significant in a more general algebraic setting.
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5. Connections with AUAI Approximation Systems

In a AUAT approximation systenS, k), the collectionC need not be the most appropriate concept of
granule for the four different approximations of the thethis is considered in detail in a forthcoming
paper by the present author). The implicit conditions onpibgsible concepts of a granule in the bitten
approach are the following:

e The set of granule§ is a partition ofS, thatis| JS = S.

e The form of the lower and bitten upper approximation are igige in the subsection on ’Bitten
Approach’

Theorem 5.1. Given aBAS (S, Gr(S), T, Gr,, Gr), theAUAT approximation systers, Gr(S)) sat-
isfies

1. (VX € p(S) XY = Gr.(X)
2. (VX € p(S)) XY C Gr*(X)

3. (VX € p(S)) Gri(X) = Gre(X) N X4

Proof:

1. X" =UA: A CX;A € Gr(S)} = Gr(X)

2. X" is the intersection of all unions of elements®f(S), while Gr*(X) is the union of all elements
of Gr(S) that have non empty intersection wih In general ifGr(S) is a collection of pairwise
disjoint sets theixx*! = Gr*(X), elseX*! C Gr*(X).

3. GrE(X) = Gr*(X) \ Gri(X®) = Gr*(X) N (Gr«(X))C. BUtN{AS : X C AS; A; € Gr(S)} =
NMAS : XC C Ay € Gr(S)} = (A X© C A = (Gr(X9))® = X*2. SoGri(X) =
Gr*(X) N X*2 holds.

O

In the above theorem, we have taken the colleckioof the AUAT approximation systen(S, K) to
coincide with Gr(S). This need not be the case in general aartymariations are possible on the point.
In particular we can select the collectidhso thatGr; (X) coincides withx42,

6. Concluding Remarks

In this research paper, we have developed two differenbeadge semantics of bitten rough set theory.
Topology is involved in a explicit way in the first of two. Indlbitten approach, some types of granules
can hinder possible seamless representation theorenis,atliérs may be more useful. So the theory is
not independent of the type of granules in entirety. The@sasesd logics can be expected to have high
expressive power due to the higher order approach used.
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A positive solution for the first problem would mean a muchpien algebraic semantics provided
we can fix the notion of logical consequence in a suitable Bayeven in those cases the first semantics
would remain relevant

The nature of the semantic domain used and therefore thetieffe@bject level in the first approach
is very different and amounts to a new paradigm in rough srth In the second approach, though the
semantic domain is natural, it is not a fully explored onehie tontext of rough setd ([15]). If we use
different types of semantic domain at the object level, theme natural relative distortions may creep
in. From the technical point of view this may or may not affactual applications. A deeper study of
such distortions will be considered in future work.

The second approach can be accordant with different irg&xipons of choice and therefore is a more
open ended semantics. Application of this type of semanégsires a more conscious and regulated
way of forming approximations or 'specifying the indisciias’.

The algebraization strategy developed is relevant forrayyges of generalized rough set theory.
These include generalized cover and pure granule basedagg@s. For these reasons, we will consider
these connections and sequent calculi for the algebraiarstirs in a separate paper.
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