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Abstract. We develop two algebraic semantics for bitten rough set theory ([19]) over similarity
spaces and their abstract granular versions. Connections with choice based generalized rough se-
mantics developed in [15] by the present author and general cover based rough set theories are also
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1. Introduction

In classical rough set theory, information systems with equivalence relations (or approximation spaces)
are studied. The data tables used have crisp symbolic values(see [16] for example). More general vari-
ants with other types of relations and values have also been extensively studied in the literature (see [11],
[9], [17], [13], [18] for example). The methods and concepts, including those of definability, approxima-
tion, granular representability of approximations, neighbourhoods and others, need many modifications
for application in these situations. We focus on similarityspaces or tolerance approximation spaces in
this research paper. Tolerance approximation spaces are also of interest in representation of inexact and
incomplete knowledge (see [17], [21]).

In classical rough set theory, the negative region of a set isthe lower approximation of the comple-
ment of the set. This region is disjoint from the upper approximation of the set in question. An analogous
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property fails to hold in tolerance approximation spaces (TAS). To deal with this a different semantic ap-
proach (to TAS) involving modified upper approximations is proposed in [19]. These modified upper
approximations are formed from upper approximations by ’biting off’ a part of it to form ’bitten upper
approximations’. The new approximations turn out to be disjoint from the negative region of the subset
and also possess better properties.

More specifically, the upper approximation of a subset of a TAS formed by a set of granules (with
respect to those on the subset) is reduced by the deletion of the negative region of the subset to form the
’bitten upper approximation’ of the subset. This ensures that the new upper approximation is disjoint
from the negative region of the subset. In the formation of approximations explicit constraints are not
imposed on the possible type of granules. The authors also pose the problem of developing an algebraic
semantics for the approach.

In the present paper, we develop two different algebraic semantics for the same. The first of these
actually captures reasoning within the power set of the set of possible order-compatible partitions of the
set of roughly equivalent objects. We also prove suitable representation theorems in the third section.
The main result of [2] is required in the proof of the same theorem.

Between formalizing the interaction of roughly equivalentobjects and formalizing the approxima-
tions in a classicalist setting, we prefer the former or a dialectical version thereof ([14]). But whether
this ’rough equivalence’ is to be an equivalence relation ora congruence or something else, is an open
question. We do not abandon the viewpoint that it should at least be an equivalence. Interestingly the
known algebraic approaches (like [4]) aimed at just the approximations and derived operations in a clas-
sicalist setting (as opposed to the domain of roughly equal objects) cannot be directly adapted (at least)
to the present context.

Given that it may not be possible to have suitable abstract representation theorems from partial al-
gebras over the set of roughly equivalent objects in the context, we use choice functions in a crucial
(though implicit) way to introducesimplified algebra of the bitten granular semanticsSGBA. These
are developed up to the level of some solvable/open problems. Here the motivation is not to integrate
choice functions with rough set theory as in [15], but to build an easier semantics. At the same time
the semantics is also motivated by possible connections with choice inclusive similarity based rough set
theory.

In the following section we mention some of the essential notions and outline the bitten approach.
The first of the algebraic semantics for the bitten approach is developed in the third section. Some related
problems are also posed in the same. In the fourth section, a partial algebraic semantics over a relatively
easier semantic domain (with respect to the previous approach) is developed. These semantics are also
applicable to particular cases of other general rough set theories including the cover based ones. This is
indicated in the fifth section.

2. Background

By aTolerance Approximation Space(TAS), we mean a pair of the formS = 〈S, T〉, with S being a set
andT a tolerance relation over it - these are also known as similarity or tolerance spaces. Some references
for extension of classical rough set theory to TAS are [4], [10], [21], [5], [15] and [11]. These theories
differ in the types of granules, process of definition of approximations, semantics and on computational
aspects. We mention some important aspects of rough set theory over TAS before proceeding with the
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bitten proposalin [19].
An approach ([11]) has been to define a new equivalenceθ0 on S via (x, y) ∈ θ0 if and only if

domT (x) = domT (y) with domT (z) = ∩{[x]T : z ∈ [x]T }. This is essentially an unduly cautious
’clear perspective’ approach.

In [10], a theory of generalized rough sets based on covers ofsubsets of a given setS is considered.
Let S be a set andK = {Ki}

n
1 : n < ∞ be a collection of subsets of it. We will abbreviate subsets

of natural numbers of the form{1, 2, . . . , n} by N(n). If X ⊆ S, then consider the sets (withK0 = ∅,
Kn+1 = S for convenience):

(i) Xl1 =
⋃

{Ki : Ki ⊆ X, i ∈ {0, 1, ..., n}}

(ii) Xl2 =
⋃

{∩i∈ I(S \ Ki) : ∩i∈ I(S \ Ki) ⊆ X, I ⊆ N(n + 1)}

(iii) Xu1 =
⋂

{∪i∈ IKi : X,⊆ ∪i∈ I Ki, I ⊆ N(n+ 1)}

(iv) Xu2 =
⋂

{S \ Ki : X ⊆ S \ Ki, i ∈ {0, ..., n}}

The pair(Xl1, Xu1) is called aAU-rough setby union, while(Xl2, Xu2) a AI-rough setby inter-
section (in the present author’s notation [13]). In the notation of [10] these are(F∪

∗ (X), F
∗
∪(X)) and

(F∩
∗ (X), F

∗
∩(X)) respectively. We will also refer to the pair〈S, K〉 as aAUAI-approximation system.

In the TAS context, let the granules be[x]T = {y ; (x, y) ∈ T } for each elementx, andK be the
collection of such sets. Thenl1 andu1 approximations of a setA should be given by (i) and (iii) above
respectively. FurtherAl =

⋃

{[x]T ; [x]T ⊆ A} = Al1 andAu =
⋃

{[x]T ; [x]T ∩ A 6= ∅, x ∈ A} 6=
Au1. Note that the generalized cover approach does not prescribeany specific type of granules.

In [4], the following improved approximations are defined:

Al∗ = {x ; (∃y) (x, y) ∈ T, [y]T ⊆ A}

Au∗ = {x ; (∀y) ((x, y) ∈ T −→ [y]T ∩ A 6= ∅)}

Proposition 2.1. For any subsetA, Al ⊆ Al∗ ⊆ A ⊆ Au∗ ⊆ Au

Using this approximation, we can define a Brouwerian orthocomplementation on℘(S), via A# =

{x ∈ S; (∀y ∈ A)(x, y) /∈ T }. These approximations and possible variants may be seen as away of
distinguishing between objects on a heuristic. The BZ and Quasi-BZ -algebraic approach ([5]) make use
of a preclusivityrelationP, which is defined via(a, b) ∈ P if and only if (a, b) /∈ T . Semantically
the derived rough operators of lower and upper approximation are generated by the preclusivity operator
and the complementation relation on the power set of the approximation space or on a collection of sets
under suitable constraints in a more abstract setting. For anyH ⊆ S, the Brouwerian orthocomplement is
H♯ = {x : (∀y ∈ H) (x, y) ∈ P}. Then the operators defined byL♯(H) = Hc♯♯c andM♯(H) = H♯♯

behave like lower and upper approximation operators on℘(S) and are proper generalizations of the
corresponding notions in the approximation space context.

Semantically the BZ-algebra and variants do not capture allthe possible ways of arriving at concepts
of discernibility over similarity spaces. While the quasi-BZ lattice does not encompass a paradigm shift
relative the BZ-algebra, the BZMV variants are designed to capture fuzzy aspects. A major problem with
this approach is that the intended semantic domain is uniformly classicalist and at the object level too.
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In subjective terms reducts are minimal sets of attributes that preserve the quality of classification.
An important problem is in getting good scalable algorithmsfor the computation of the different types
of reducts (or supersets that are close to them) (see [12, 1]). These depend on the concept of granules
used.

Some other notions that we will use are stated below:

Definition 2.1. A double Heyting algebraL = {L, ∧, ∨, →, ⊖, 0, 1} is an algebra satisfying:

• L = {L, ∧, ∨, →, 0, 1} is a complete atomic Heyting algebra

• x ⊖ x = 0; x ∨ (x ⊖ y) = x; (x ⊖ y)∨, y = x ∨ y

• (x ∨ y) ⊖ z = (x ⊖ z) ∨ (y ⊖ z)

• z ⊖ (x ∧ y) = (z ⊖ x) ∨ (z ⊖ y)

Definition 2.2. By a choice functionχ on a setS, we shall mean a functionχ : ℘(S) 7−→ S, which
satisfies all of the following:

• (∀x ∈ S)χ({x}) = x

• (∀A ∈ ℘(S))χ(A) ∈ A

Definition 2.3. Let P = 〈P, < 〉 be a partially ordered set and ifA is any subset ofP, let its lower and
upper cone beL(A) = {x ; (∀a ∈ A) x ≤ a} andU(A) = {x ; (∀a ∈ A)a ≤ x} respectively. A
functionλ : ℘(P) 7→ P will be said to belattice-coherentwith < if and only if the conditiona ≤ b

thenλ(L(a, b) = a) andλ(U(a, b)) = b.

λ-lattices were considered as a generalization of lattices in [20]. In the partially ordered setP above
If λ is a lattice coherent operation, leta · b = λ(L(a, b)) anda + b = λ(U(a, b)), then the algebra
Q = 〈P, ·, +〉 is said to be aλ-lattice. It can be shown that if a partially ordered set has a lattice-coherent
operation then it can be endowed with aλ-lattice structure and conversely.

Theorem 2.1. In aλ-latticeQ = 〈P, ·, +〉 all of the following hold:

• + is an idempotent and commutative operation

• · is an idempotent and commutative operation

• a · (a + b) = a

• a + (a · b) = a

• a · ((a · b) · c) = (a · b) · c

• a + ((a + b) + c) = (a + b) + c
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We will use two kinds of equalities in a partial algebra (of a single sort)P = 〈P, f1, . . . fn, ν〉,
fis being partial or total function symbols andν being an interpretation of these on the setP. Strictly
speaking, the interpreted partial function should be written asfPi , but we will drop the superscript for
simplicity. The basic theory of partial algebras can be found in [3] for example.

For two termss andt, thestrong weak equalityis defined as follows:t(x)
ω∗

= s(x) if and only if

(∀x ∈ dom(t) = dom(s)) t(x) = s(x).

In contrast, the weak equality is defined viat(x)
ω
= s(x) if and only if

(∀x ∈ dom(t) ∩ dom(s)) t(x) = s(x).

2.1. Bitten Approach

In this section we recapitulate the essentialbittenproposal of [19] with some modifications. Actually the
authors introducebitedupper approximations in a study on tolerance spaces. However in [21], ’bitten ap-
proximations’ are also considered. We will uniformly referto these and approach by the adjectivebitten.
The theory apparently lays emphasis on desired mereological properties at the cost of representation.

Let Gr(S) ⊆ ℘(S) be the collection of granules for a TAS defined by some conditions including
⋃

Gr(S) = S. A subsetX is granularly definableif and only if ∃B ⊆ Gr(S)X =
⋃

B. The collection
of granularly definable sets shall be denoted byDefGr(S). The lower and upper approximations ofX

is defined viaGr∗(X) =
⋃

{A : A ⊆ X, A ∈ Gr(S)} andGr∗(X) =
⋃

{A : A ∩ X 6= ∅, A ∈
Gr(S)}. The positive and negative region, defined byPOSGr(X) = Gr∗(X) andNEGGr(X) = Gr∗(X

c)

respectively, are granularly definable. But in this scheme of thingsGr∗(X)∩NEGGr(X) 6= ∅ is possible.
To avoid this, a concept ofbitten upper approximationis defined viaGr∗b(X) = Gr∗(X) \ NEGGr(X).
Relative this the boundary is given by

BNGr(X) = Gr∗b(X) \ Gr∗(X) = S \ (POSGr(X) ∪ NEGGr(X)).

Gr(S) may be taken to be the set ofT -relateds or the set of blocks ofT or something else. For exam-
ple, if Gr(S) is the set of all sets of the formTx (Tx = {y ; (x, y) ∈ T, y ∈ S}), thenS =

⋃

Gr(S)

and of courseGr(S) ⊆ ℘(S). Given the latter two properties, the upper and lower approximations of a
subsetX are then given by :

Gr∗(X) =
⋃

{Y ∈ Gr(S); Y ⊆ X}, Gr∗(S) =
⋃

{Y ∈ Gr(S); Y ∩, X 6= ∅}.

The bitten upper approximation is simplyGr∗b(X) = Gr∗(X) \ Gr∗(X). If they are related to a specific
tolerance, then we will call the tuple〈S, Gr(S), T, Gr∗, Gr∗b〉 abitten approximation system(BAS).

The properties of the approximations are as follows:
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l1-Property u2-Property

1a.) Gr∗(X) ⊆ X 1b.) X ⊆ Gr∗b(X)

2a.) (X ⊆ Y −→ Gr∗(X) ⊆ Gr∗(Y)) 2b.) (X ⊆ Y −→ Gr∗b(X) ⊆ Gr∗b(Y))

3a.) Gr∗(∅) = ∅ 3b.) Gr∗b(∅) = ∅

4a.) Gr∗(S) = S 4b.) Gr∗b(S) = S

5a.) Gr∗(Gr∗(X)) = Gr∗(X) 5b.) Gr∗b(Gr∗b(X)) = Gr∗b(X)

6a.) Gr∗(X ∩ Y) ⊆ Gr∗(X) ∩ Gr∗(Y) 6b.) Gr∗b(X ∩ Y) ⊆ Gr∗b(X) ∩ Gr∗b(Y)

7a.) Gr∗(X) ∪ Gr∗(Y) ⊆ Gr∗(X ∪ Y) 7b.) Gr∗b(X) ∪ Gr∗b(Y) ⊆ Gr∗b(X ∪ Y)

8a.) Gr∗(X) ⊆ Gr∗b(Gr∗(X)) 8b.) Gr∗(Gr∗b(X)) ⊆) Gr∗b(X)

9a.) (Gr∗(X))
c = Gr∗b(X

c) 9b.) (Gr∗b(X))
c = Gr∗(X

c)

10A.) X ∈ DefGr(S) ←→ X = Gr∗(X)

10B.) X ∈ CrGr(S) ←→ Gr∗(X) = Gr∗b(X)

11A.) X, Y ∈ DefGr(S) −→ X ∪ Y ∈
DefGr(S)

(Implies equality in7a)

11B.) X, Y ∈ CrGr(S) −→ X ∩ Y, X ∪ Y ∈
CrGr(S)

(Implies equality in6a, 6b, 7a, 7b, 8a, 8b)

In the same paper ([19]), the authors pose the problem of developing an algebraic semantics for the
approach.

In a TASS, ablockB ⊆ S is a maximal set that satisfiesB2 ⊆ T . In [21], these are termedclasses,
while the former is the standard terminology in universal algebra. IfHT is the collection of all blocks
of T , then letAT = {∩F : F ⊆ HT }. Taking this large collection as the set of granules, the authors
define the the lower and bitten upper approximation of aX ⊆ S asXl =

⋃

{A : A ⊆ X, A ∈ AT } and
Xu
b =

⋃

{A : A ∩ X 6= ∅, A ∈ AT } \ (X
c)l. On the set of definable objects∆(S), let

• X → Y =
⋃

{A ∈ AT ; X ∩ A ⊆ Y}

• X ⊖ Y =
⋂

{B ∈ AT ; X ⊆ Y ∪ A}.

Then the following theorem provides a topological algebraic semantics ([21]):

Theorem 2.2. 〈∆(S), ∩, ∪, →, ⊖, ∅, S〉 is a complete atomic double Heyting algebra.

However extensions of the theorem to other types of granulesare not known. No abstract represen-
tation theorem is also proved in the particular situation.

3. Semantics for Bitten Rough Set Theory

The concept of granules to be used in the theory is essentially kept open. Many types of granules may
not permit nice represention theory. Despite this, our firstsemantics over roughly equivalent objects does
well. This is due to the higher order approach used.
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Definition 3.1. If S is a TAS, then over℘(S) let

A ∼ B iff Gr∗(A) = Gr∗(B) andGr∗b(A) = Gr∗b(B)

The following proposition and theorem basically saythe quotient structure (or the set of roughly
equivalent objects) has very little structurewith respect to desirable properties of a partial algebra. They
are clearly deficient from the rough perspective as we do not have proper conjunction and disjunction
operations. But ’biting’ may actually make the partial operations total in many contexts.

Proposition 3.1. ∼ is an equivalence on the power set℘(S). Moreover the following operations and
relations on℘(S)| ∼ are well-defined:

• L([A]) = [Gr∗(A)]

• ¬[A] = [Ac] if defined

• �([A]) = [Gr∗b(A)]

• [A] ≤ [B] if and only if, for anyA ∈ [A] andB ∈ [B] Gr∗(A) ⊆ Gr∗(B) andGr∗b(A) ⊆
Gr∗b(B).

• [A] ⋓ [B] = [C] if and only if [C] is the infimum of[A] and[B] w.r.t ≤. It shall be taken to be
undefined in other cases.

• [A] ⋒ [B] = [C] if and only if [C] is the supremum of[A] and[B] w.r.t ≤. It shall be taken to be
undefined in other cases.

Moreover≤ is a partial order on℘(S)| ∼ that is partially compatible withL on the crisp elements.

Proof:

• For anyA ∈ ℘(S) and anyB ∈ [A], Gr∗(Gr∗(A) = Gr∗(A) = Gr∗(B) andGr∗b(Gr∗(A)) =

Gr∗b(Gr∗(B)). This proves thatL is well-defined.

• For anyA ∈ ℘(S) and anyB, E ∈ [A], (Gr∗(B))
c = Gr∗b(B

c) = (Gr∗(E))
c = Gr∗b(E

c) and
(Gr∗b(B))

c = Gr∗(B
c) = (Gr∗b(E))

c = Gr∗(E
c).

We can verify the rest in a similar way. ⊓⊔

Proposition 3.2. In the above context,

([A] ≤ [B] −→ ¬[B] ≤ ¬[A])

Theorem 3.1. All of the following hold in℘(S)| ∼ (we assume that unary operators bind more strongly
than binary ones):

1. (�x ⋒ �y = a, �(x ⋒ y) = b −→ �x ⋒ �y ≤ �(x ⋒ y))

2. x ⋓ �x = x
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3. ��x = �x

4. (�x ⋓ �y = a, �(x ⋓ y) = b −→ �(x ⋓ y) ≤ �x ⋓ �y)

5. (Lx ⋒ Ly = a, L(x ⋒ y) = b −→ Lx ⋒ Ly ≤ L(x ⋒ y))

6. Lx ⋓ �Lx = Lx

7. �x ⋒ L�x = �x

8. ¬�x = L¬x

9. ¬Lx = �¬x

Proof:

1. If A ∈ x andB ∈ y, then�x = [Gr∗b(A)], �y = [Gr∗b(B)]. Given the existence of the terms
in the premise, we can assume that there existsC ∈ [Gr∗b(A)] ⋒ [Gr∗b(B)] andE ∈ �(x ⋒ y).
Gr∗(C) ⊆ Gr∗(E) andGr∗b(C) ∈ Gr∗b(E). So, given the existence of the terms in the premise,
we have�x ⋒ �y ≤ �(x ⋒ y).

2. If A ∈ x, then�x = [Gr∗b(A)]. AsA ⊆ Gr∗b(A), sox ⋓ �x = x.

3. If A ∈ x, then��x = �[Gr∗b(A)] = [Gr∗b(Gr∗b(A))] = [Gr∗b(A)] = �x.

4. The proof of(�x ⋓ �y = a, �(x ⋓ y) −→ �(x ⋓ y) ≤ �x ⋓ �y) is similar to that of the
first item.

5. Given the existence of the terms in the premise, ifA ∈ x andB ∈ y, thenLx = L[A] =

[Gr∗(A)] andLy = [Gr∗(B)]. If C ∈ Lx ⋒ Ly andE ∈ L(x ⋒ y), thenGr∗(C) ⊆ Gr∗(A) ∪
Gr∗(B), Gr∗(A) ∪ GrB ⊆ Gr∗(E) andGr∗b(C) ⊆ Gr∗b(E). So,Lx ⋒ Ly ≤ L(x ⋒ y).

6. If A ∈ x, thenLx = L[A] = [Gr∗(A)] and�Lx = [Gr∗bGr∗(A)]. ButGr∗(A) ⊆ Gr∗bGr∗(A).
SoLx ⋓ �Lx = Lx.

7. If A ∈ x, then�x = �[A] = [Gr∗b(A)] andL�x = [Gr∗Gr∗b(A)]. But Gr∗Gr∗b(A) ⊆
Gr∗b(A). So,�x ⋒ L�x = �x.

8. If A ∈ x, then¬�x = ¬�[A] = ¬[Gr∗b(A)]. ¬[Gr∗b(A)] = [(Gr∗b(A))c],= [Gr∗(A
c)] =

Lneg[A]. So,¬�x = L¬x.

9. If A ∈ x, then¬Lx = ¬[Gr∗(A)] = [(Gr∗(A))c]. But [(Gr∗(A))c] = [Gr∗b(A
c)]. This yields

¬Lx = �¬x.
⊓⊔

A semantics using the partial algebra over the associated quotient may be difficult because of axioma-
tisability issues. So we use a higher order approach, takingcare not to introduce extraneous properties.
Eventually the constructed algebra ends up with three partial orders. In the following construction the
use of a modified concept of filters simplifies the eventual representation theorem.
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If ℘(S)| ∼= K, then letK∗ = {f : f : K 7→ I is isotone}, I being the the totally ordered two
element set{0, 1} under0 < 1. For anyA ⊂ K∗, a subsetF is anA-ideal if and only if

F =
⋂

x∈A

x−1{0}.

Dually F is anA-filter if and only if

F =
⋂

x∈A

x−1{1}.

All A-ideals are order ideals (w.r.t the induced order onK∗), but the converse need not hold.A ⊂ K∗

is said to befull if ∀p � q∃ x ∈ Ax(p) = 1, x(q) = 0. A is said to beseparatingif for any disjoint
idealI and filterF, there exists ax ∈ A such thatx|I = 0 andx|F = 1

Lemma 3.1. If A is a separating subset ofK∗ and(∀p, q ∈ K)(q � p −→ p ↓A ∩q ↑A = ∅), then
A is full.

If p ∈ K, then letUP(p) = {x : x(p) = 1} andLO(p) = {x : x(p) = 0}, then we can define
two closure operatorsC1, C2 via

C1 = clos{UP(p)}p∈K

(aC1-closed set is an intersection of elements of{UP(p)}p∈K) and

C2 = clos{LO(p)}p∈K

Note that elements ofUP(p)}p∈K are in factC1O2-sets (that is sets that are open w.r.t the second
closure system and closed with respect to the first). The set of such sets on a system(S, C1, C2),
will be denoted byC1O2(S, C1, C2). The associated closure operators will be denoted bycl1 andcl2
respectively.

On any subsetA ⊆ K∗, we can define closure operators viaCiA(X) = Ci ∩ A, with associated
closure systemsUPA(p) = UP(p) ∩ A andLOA(p) = LO(p) ∩ A respectively. It can be seen that,
in the situation,C1A = clos{UP(p)}p ∈ P andC2A = clos{LO(p)}p ∈ P.

Theorem 3.2. If A ⊆ K∗ andσ : K 7→ C1O2(A, C1A, C2A) is a map defined byσ(p) = UP(p)

then

1. σ is isotone

2. If A is full, thenσ is injective

3. If A is separating, thenσ is surjective.

Proof:
This theorem and the following theorem are proved for an arbitrary partially ordered setK in [2]. ⊓⊔

Theorem 3.3. If A is a full and separating subset ofK∗, thenK ∼= C1O2(A, C1A, C2A). In particular,
K ∼= C1O2(K

∗, C1, C2) (asK∗ is a full and separating set). EvenK∗ \ {0, 1} is a full and separating set.
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We state the following for clarifying the connection with the more common way of using closure
operators.

Proposition 3.3. A ∈ C1O2(K
∗, C1, C2) if and only if A ⊆ K∗ and(∃B, E ⊆ K∗)A = cl1B, A =

K∗ \ cl2(E).

K∗ can be interpreted as the set of partitions of the set of roughly equivalent elements into an upper
and lower region subject to the new order being a coarsening of the original order. The important thing
is that this restricted global object is compatible with the’natural global’ versions of the other operations
and leads to a proper semantics. We show this in what follows.

Definition 3.2. OnK∗, the following global operations (relative those onK) can be defined:

• If A ∈ C1O2(K
∗, C1, C2), thenL(A) = L(i(A)), i being the canonical identity map from

C1O2(K
∗, C1, C2) onto℘K.

• A ∨ B = cl1(A ∪ B) (if the RHS is also open with respect to the second closure system),∪
being the union operation overK∗

• A ∧ B = cl1(A ∩ B) (if the RHS is also open with respect to the second closure system),∩
being the intersection operation overK∗

• If A ∈ C1O2(K
∗, C1, C2) then♦A = �i(A)

• If A ∈ C1O2(K
∗, C1, C2) then∼ A = ¬i(A)

• cl1, cl2 can be taken as unary operators onK∗

• 1, ⊥, ⊤, shall be0-ary operations with interpreted values corresponding toK, ∅, K∗ respectively

• If A, B ∈ C1O2(K
∗, C1, C2) thenA ⊓ B,= i(A) ⋓ i(B)

• If A, B ∈ C1O2(K
∗, C1, C2) thenA ⊔ B,= i(A) ⋒ i(B)

Proposition 3.4. A partial operation is well defined if it is either uniquely defined or not ambiguously
defined. In this sense all of the operations and partial operations are well-defined.

Proof:
Most of the verification is direct. ⊓⊔

Definition 3.3. An algebra of the form

W =
〈

℘(K∗), ∨, ∧, ⊓, ⊔, ∪, ∩, c, , cl1, cl2, ∼, L, ♦, ⊥, 1, ⊤
〉

of type (2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) in which the operations are as in the above definition will
be called aconcrete bitten algebra. ∪, ∩, c are the union, intersection and complementation operations
respectively on℘(K∗). We useξ(x) as an abbreviation forcl1x = x, cl2x

c = xc. Furtherξ(x, y, . . .)
shall meanξ(x), ξ(y) and so on. IfS is the original TAS, then we will denote its associated concrete
bitten algebra byBite(S).
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Theorem 3.4. A concrete Bitten AlgebraW satisfies all of the following:

1.
〈

℘(K∗), ∪, ∩, c, ⊥, ⊤
〉

is a Boolean algebra. Note that after forming associated categories with

the usual concept of morphisms, we can realize this through forgetful functors.

2. x ∨ y
ω∗

= y ∨ x

3. x ∨ (y ∨ z)
ω
= (x ∨ y) ∨ z

4. (ξ(x) −→ x ∨ x = cl1(x))

5. (x ∨ y = z −→ cl1z = z, cl2z
c = zc)

6. (x ∨ x = y −→ cl2(x
c) = xc, y = cl1(x) = x ∧ x)

7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2

8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2

9. x ∧ y
ω∗

= y ∧ x

10. x ∧ (y ∧ z)
ω
= (x ∧ y) ∨ z

11. (x ∧ x = y −→ cl2(x
c) = xc, y = cl1(x))

12. (cl2((cl1x)c) = (cl1x)
c −→ x ∧ x = cl1(x))

13. (x ∧ y = z −→ cl1z = z, cl2z
c = zc)

14. ((x ∧ y) ∨ x = z −→ z = cl1(x))

15. (x ∧ y) ∨ x
ω∗

= x ∧ (y ∨ x)

16. L⊥ = ⊥; L1 = 1

17. (cl1x = x, cl2(x
c) = xc −→ x ∨ Lx = x, LLx = Lx)

18. (x ⊓ y = z −→ ξ(x, y, z))

19. (x ⊔ y = z −→ ξ(x, y, z))

20. x ⊓ y
ω∗

= y ⊓ x

21. x ⊓ (y ⊓ z)
ω
= (x ⊓ y) ⊓ z

22. x ⊔ y
ω∗

= y ⊔ x

23. x ⊔ (y ⊔ z)
ω
= (x ⊔ y) ⊔ z

24. (ξ(x, y) −→ ♦(x ⊔ y) ∩ (♦x ⊔ ♦y) = ♦x ⊔ ♦y)
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25. (ξ(x) −→ x ⊓ ♦x = x, ♦♦x = ♦x)

26. (ξ(x, y) −→ ♦(x ⊓ y) ∩ (♦x ⊓ ♦y) = ♦(x ⊔ y))

27. (ξ(x, y) −→ L(x ⊔ y) ∩ (Lx ⊔ Ly) = Lx ⊔ Ly)

28. (ξ(x) −→ Lx ⊓ ♦Lx = Lx)

29. (ξ(x) −→ ♦x ⊔ L♦x = ♦x)

30. (ξx −→ ∼ ♦x = L ∼ x)

31. (ξx −→ ∼ Lx = ♦ ∼ x)

32. (x ⊓ y = x −→ x ⊔ y = y)

Proof:

1. That
〈

℘(K∗), ∪, ∩, c, ⊥, ⊤
〉

is a Boolean algebra can be proved by part of Stone’s representation

theorem.

2. For provingx ∨ y
ω∗

= y ∨ x, if x ∨ y is defined, thencl1(x ∪ y) is open with respect tocl2.
So cl1(y ∪ x is also open with respect tocl2 and the two sides of the equality must be equal.
Similarly for the reversed argument.

3. If x ∨ (y ∨ z) and(x ∨ y) ∨ z are defined, then they must equalcl1(x ∪ cl1(y ∪ z)) and
cl1(cl1(x ∪ y)) ∪ z) respectively. Further these andcl1(x ∪ y), andcl1(y ∪ z) must be open
with respect tocl2. But cli are topological closures. Sox ∨ (y ∨ z)

ω
= (x ∨ y) ∨ z

4. (ξ(x) −→ x ∨ x = cl1(x)) can be derived directly.

5. If (x ∨ y = z thenz = cl1(x ∪ y) and it must be open with respect to the second closure
system. So,(x ∨ y = z −→ cl1z = z, cl2z

c = zc)

6. If x ∨ x = y, thenx ∧ x will also be equal tocl1(x). The rest of(x ∨ x = y −→ cl2(x
c) =

xc, y = cl1(x) = x ∧ x) follows from the previous observation.

7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2 follows from definition

8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2 expresses monotonicity

9. The proof ofx ∧ y
ω∗

= y ∧ x is similar to that of its dual.

10. The proof ofx ∧ (y ∧ z)
ω
= (x ∧ y) ∨ z is similar but easier than that of its dual.

11. (x ∧ x = y −→ cl2(x
c) = xc, y = cl1(x)) follows directly from definition.

12. (cl2(cl1x)c) = (cl1x)
c −→ x ∧ x = cl1(x)) is also direct.
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13. If x ∧ y = z, thenz must necessarily be closed with respect tocl1 and open with respect tocl2.
So(x ∧ y = z −→ cl1z = z, cl2z

c = zc)

14. (x ∧ y) = a (say) is certainly lesser thancl1(x), so(x ∧ y) ∨ x = cl1(a ∪ x) = cl1(x).
This proves((x ∧ y) ∨ x = z −→ z = cl1(x))

15. The argument of the previous conditional implication can be extended to prove(x ∧ y) ∨ x
ω∗

=

x ∧ (y ∨ x).

16. L⊥ = ⊥, andL1 = 1 follow from definition.

17. If (cl1x = x, cl2(x
c) = xc, thenx is essentially in the main quotient structure of interest. So

Lx will be defined and the rest of(cl1x = x, cl2(x
c) = xc −→ x ∨ Lx = x, LLx = Lx)

follows.

18. If (x ⊓ y = z, thenx, y are essentially inC1O2(K
∗, C1, C2, but thenx ⊓ y must be the infimum

of x andy with respect to≤. So z must also be inC1O2(K
∗, C1, C2 and (x ⊓ y = z −→

ξ(x, y, z)).

19. The proof of(x ⊔ y = z −→ ξ(x, y, z)) is similar to that of the above statement.

20. If eitherx ⊓ y ory ⊓ x is defined, then the other is and the two must be equal to their identification

with i(x) ⋓ i(y). Sox ⊓ y
ω∗

= y ⊓ x.

21. x ⊓ (y ⊓ z)
ω
= (x ⊓ y) ⊓ z

22. x ⊔ y
ω∗

= y ⊔ x can be proved in the same way as its dual statement (with⊓).

23. The rest of the proof follows from the first theorem of thissection.
⊓⊔

We have defined a concrete bitten algebra in such a way that abstraction becomes easy.

Definition 3.4. By anabstract bitten algebra, we shall mean a partial algebra of the form
A = 〈A, ∨, ∧, ⊓, ⊔, ∪, ∩, c, , cl1, cl2, ∼, L, ♦, ⊥, 1, ⊤〉 that satisfies all of the following:

1. 〈A, ∪, ∩, c, ⊥, ⊤〉 is a Boolean algebra.

2. x ∨ y
ω
= y ∨ x

3. x ∨ (y ∨ z)
ω
= (x ∨ y) ∨ z

4. (cl2(cl1x)
c) = (cl1x)

c −→ x ∨ x = cl1(x))

5. (x ∨ y = z −→ cl1z = z, cl2z
c = zc)

6. (x ∨ x = y −→ cl2(x
c) = xc, y = cl1(x) = x ∧ x)

7. cli(x) ∩ x = x; clicli(x) = cli(x); i = 1, 2
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8. (x ∩ y = x −→ cli(x) ∩ cli(y) = cli(x)); i = 1, 2

9. x ∧ y
ω
= y ∧ x

10. x ∧ (y ∧ z)
ω
= (x ∧ y) ∨ z

11. (x ∧ x = y −→ cl2(x
c) = xc, y = cl1(x))

12. (cl2((cl1x)c) = (cl1x)
c −→ x ∧ x = cl1(x))

13. (x ∧ y = z −→ cl1z = z, cl2z
c = zc)

14. ((x ∧ y) ∨ x = z −→ z = cl1(x))

15. (x ∧ y) ∨ x
ω
= x ∧ (y ∨ x)

16. L⊥ = ⊥; L1 = 1

17. (cl1x = x, cl2(x
c) = xc −→ x ∨ Lx = x, LLx = Lx)

18. (x ⊓ y = z −→ ξ(x, y, z))

19. (x ⊔ y = z −→ ξ(x, y, z))

20. x ⊓ y
ω
= y ⊓ x

21. x ⊓ (y ⊓ z)
ω
= (x ⊓ y) ⊓ z

22. x ⊔ y
ω
= y ⊔ x

23. x ⊔ (y ⊔ z)
ω
= (x ⊔ y) ⊔ z

24. (ξ(x, y) −→ ♦(x ⊔ y) ∩ (♦x ⊔ ♦y) = ♦x ⊔ ♦y)

25. (ξ(x, y) −→ ♦(x ⊓ y) ∩ (♦x ⊓ ♦y) = ♦(x ⊔ y))

26. (ξ(x, y) −→ L(x ⊔ y) ∩ (Lx ⊔ Ly) = Lx ⊔ Ly)

27. (ξ(x) −→ Lx ⊓ ♦Lx = Lx)

28. (ξ(x) −→ ♦x ⊔ L♦x = ♦x)

29. (ξx −→ ∼ ♦x = L ∼ x)

30. (ξx −→ ∼ Lx = ♦ ∼ x)

Definition 3.5. Let τ be a collection of subsets ofK indexed byK, that satisfies

1. (∀x ∈ K)(∃y ∈ τ) x ∈ y

2.
⋃

τ = K

3. τ is an antichain with respect to inclusion
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4. For a not necessarily disjoint partitionP of K, {∪x∈A{Hx : Hx ∈ τ}}A∈P } = B satisfies:

• B is an antichain with respect to the usual inclusion order.

• If A is a subset ofK not included in any element ofB, then there exists a two element subset
of A with the same property.

Thenτ will be called anortho-normal coverof K

Definition 3.6. Let τ be a collection of subsets of an algebraK = 〈K, f1, f2, . . . fl〉 indexed byK, that
satisfies

1. (∀x ∈ K)(∃y ∈ τ) x ∈ y

2.
⋃

τ = K

3. τ is an antichain with respect to inclusion

4. For a not necessarily disjoint partitionP of K, {∪x∈A{Hx : Hx ∈ τ}}A∈P } = B satisfies:

• B is an antichain with respect to the usual inclusion order.

• If A is a subset ofK not included in any element ofB, then there exists a two element subset
of A with the same property.

• For anyfi of arity n and elementsB1, . . . , Bn ∈ B there exists an elementB ∈ B such that
f(B1, . . . , Bn) ⊆ B

Thenτ will be called anortho-normal coverof the algebraK for the tolerance determined byB.

Note thatB is a normal system of subsets of the algebraK and therefore determines a unique com-
patible tolerance onK (see [6]) and conversely. The same thing happens in case of the first definition for
the setK.

Definition 3.7. Let the set of minimal elements in{♦x : ξx : Lx 6= 0} of an abstract bitten algebraS
beH0, then letH = {x : ♦x ∈ H0}. If H determines an ortho-normal cover on a TASP = 〈P, T〉
with Card(P) = Card(H) thenS will be said to be arefined abstract bitten algebra.

Theorem 3.5. For each refined abstract bitten algebraS there exists a tolerance approximation spaceK,
such thatBite(K) ∼= S.

Proof:
The proof has already been done above. The essential steps are:

1. The definition of a refined abstract bitten algebraS, ensures the existence of a related TASP (say).

2. It can be checked that the TASP and the TASK (mentioned in the statement of the theorem) are
isomorphic because of the representation theorem for tolerances.

3. Rest of the aspects have already been taken care of.
⊓⊔

Theorem 3.5 is hardly constructive in any sense of the term and may prove to be difficult to apply in
particular situations.
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3.1. Discussion

In the above, a semantics for the logic of roughly similar objects is developed and it has a certain rela-
tionship with the original TAS. However the actual level of relationship that is desired betweensuch a
semantics, and anoriginal generalized approximation space along with the associated processis still the
subject to some judgement. This is definitely independent oflogic-forming strategies like the Gentzen
style algebraic ([7], [8]) or abstract algebraic approach that can be applied.

Any bitten semantics with no restrictions on the type of granules can be expected to fall short of a
unique representation theorem (in the sense that given the semantics, we have a specification for obtain-
ing the original TAS in a unique way). We say this because in general, the process of forming approx-
imations actually obscures the distribution of blocks. Thelatter is essential for a unique representation
theorem because of[6].

When the set of granules used is the set ofT -related elements, the required conditions for a unique
representation theorem will necessarily include a constructive instance of the following process of for-
mation of blocks from sets ofT -related elements.

• LetB denote the set of all blocks of the TASS = 〈S, T〉 and letτ = {[x]T : x ∈, S}.

• Form the power set℘(τ)

• Let µ(τ) = {∪(K) : K ∈ ℘(τ), T|∪(K) is an equivalence}. T|∪(K) being the restriction of the
tolerance to the set∪(K).

• µ(τ) is partially ordered by the inclusion relation.

• µmax(τ), the set of maximal elements ofµ(τ), is the set of blocks ofS. That is,µmax(τ) = B.

3.2. Illustrative Example

Let S = {x1, x2, x3, x4} and let the toleranceT be generated on it by{(x1, x2), (x2, x3)}. Taking the
granules to be the set ofT -related elements, we haveGr(S) = {(x1 : x2), (x2 : x1, x3), (x3 : x2), (x4 :)}.
Here(x1 : x2) means the granule generated byx1 is (x1, x2). The different approximations are then as
in the table below.

The first column in the table is for keeping track of the elements in the quotient℘(S)| ∼ and can
be used for checking the operations of Prop. 3.1. The order structure is given by the Hasse diagram
following the table. More details of the construction are omitted because the next step will take some
space.
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℘(S)| ∼ Subset X Gr∗(X) Gr∗(X) Gr∗(Xc) Gr∗b(X)

B1 A1 {x1} ∅ {x2, x1} {x2, x3, x4} {x1}

B2 A2 {x2} ∅ {x1, x2, x3} {x4} {x1, x2, x3}

B3 A3 {x3} ∅ {x1, x2, x3} {x1, x2, x4} {x3}

B4 A4 {x4} {x4} {x4} {x1, x2, x3} {x4}

B5 A5 {x1, x2} {x1, x2} {x1, x2, x3} {x4} {x1, x2, x3}

B2 A6 {x1, x3} ∅ {x1, x2, x3} {x4} {x1, x2, x3}

B6 A7 {x1, x4} {x4} S {x2, x3} {x1, x4}

B7 A8 {x2, x3} {x2, x3} {x1, x2, x3} {x4} {x1, x2, x3}

B8 A9 {x2, x4} {x4} S ∅ S

B9 A10 {x3, x4} {x4} S {x1, x2} {x3, x4}

B10 A11 {x1, x2, x3} {x1, x2, x3} {x1, x2, x3} {x4} {x1, x2, x3}

B11 A12 {x1, x2, x4} {x1, x2, x4} S ∅ S

B12 A13 {x2, x3, x4} {x2, x3, x4} S ∅ S

B8 A14 {x1, x3, x4} {x4} S ∅ S

B14 A15 S S S ∅ S

B13 A16 ∅ ∅ ∅ S ∅

B14

B10

B5

B1

B2

B7

B12

B11

B8

B6

B9

B4

B3

B13

Fig.1: Partial Order on the Quotient Partial Algebra
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Problems

Some important problems that originate from the previous sections are:

1. Under what general conditions will the operation of biting make the partial operation in Prop. 3.1
total?

2. Find simpler conditions under which an abstract bitten algebra becomes a refined abstract bitten
algebra.

3. Describe the quasi equational classes (and variants) of refined abstract bitten algebras

4. Does a complete, atomic double Heyting algebra determinea unique BAS?

5. Which type of can reducts be computed with the help of thesealgebras?

4. Alternative Approach

The appropriate semantic domain for the above semantics maybe considered by some to be less natural
on subjective grounds. Among these, the difficulty involvedin reasoning within the power set of the set of
possible order-compatible partitions of the set of roughlyequivalent elements may be cited. We introduce
a simpler semantics for these reasons, and also because of possible connections with the semantics for
the choice inclusive similarity based rough set theory due to the present author in [15] (we consider
extensions of the same in two forthcoming papers).

There are many differences between the use of choice functions in [15] and in the present paper. In
the former, the use of blocks as granules permit an elegant interpretation in the context oflocal clear
discernibility and generalizations of Pawlak’s theory of knowledge. This paradigm needs a complete
reworking in the present context as blocks do not always relate nicely to the concept of granules used.
Moreover choice is used in the definition of approximations.So we avoid doing these in the present paper
and restrict ourselves to developing a semantics with less commitment to intended meaning. Choice
functions are used in defining the rough operations ofcombining setsandextracting the common part of
two sets.

Definition 4.1. For anya, b ∈ ℘(S)| ∼, letUB(a, b) andLB(a, b) be the set of minimal upper bounds
and the set of maximal lower bounds ofa andb (we assume that these are nonempty for all pairsa, b).
If λ : ℘(℘(S)| ∼) 7−→ ℘(S)| ∼ is a choice function, (by definition, it is such that(a ≤ b −→
λ(UB({a, b})) = b, λ(LB({a, b})) = a)), then let

• a + b = λ(UB({a, b}))

• a · b = λ(LB({a, b})).

S = 〈℘(S)| ∼, + ·, L, �, ¬〉 will be called thesimplified algebra of the bitten granular semantics
(SGBA)

Theorem 4.1. A SGBA, B = 〈B, + ·, L, �, ¬〉 satisfies all of the following:

1. 〈B, + ·〉 is aλ-lattice
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2. a + b = b + a; a · b = b · a

3. a + a = a; a · a = a

4. a + (a · b) = a; a · (a + b) = a

5. a + (a + (b + c)) = a + (b + c); a · (a · (b · c)) = a · (b · c)

6. a + La = a; a · La = La

7. a + �a = �a; a · �a = a

8. L(La) = La; �(�a) = �a

9. (a + b = a −→ La + Lb = La); (a · b = a −→ La · Lb = La)

10. (a + b = a −→ �a + �b = �a); (a · b = a −→ �a · �b = �a)

11. ¬(La) = �(¬a); ¬(�a) = L(¬a)

12. L0 = 0, L1 = 1; �0 = 0, �1 = 1

13. L�a + �a = �a; L�a · �a = L�a

14. La + �La = �La; La · �La = La

Proof:
The proof consists in verification and is not very hard. ⊓⊔

4.1. Representation Problem for SGBAs

Given a TASS in a bitten rough semantic perspective, associating a single SGBA as its corresponding
semantics amounts to modifying the original meaning by the introduction of artificial choice functions
for the purpose of forming rough union and intersection-like operations. Either we need a justification
of such preference or accept all of the possible preferences. So the default semantics must be given by a
set ofSGBAs indexed by the set of all possible choice functions in the lambda lattice formation context.
In this perspective the semantics can be explained directlyand a sequent calculus associated (and with
little additional representation theory).

Let x ∈ S, then([x]T )l = [x]T , while ([x]T )
u
b = ([x]T )

u \ (S \ [x]T )
l). It is obvious that elements

with nonempty lower approximation that are minimal with respect to the rough order will be equivalent
to elements of this type. Once the order relation on the set ofroughly equivalent elements has been
deduced, then we can find the elements of this type. This permits the reconstruction of the equivalence
based partition of the power set ofS.

If we do not know all the choice functions involved, then it isnot possible in general to determine or
construct the blocks of the toleranceT . But when will a knowledge of given subsets of choice functions
permit us to determine the blocks ofT? This is the problem of representation ofSGBAs. It is also
significant in a more general algebraic setting.
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5. Connections with AUAI Approximation Systems

In aAUAI approximation system〈S, K〉, the collectionK need not be the most appropriate concept of
granule for the four different approximations of the theory(this is considered in detail in a forthcoming
paper by the present author). The implicit conditions on thepossible concepts of a granule in the bitten
approach are the following:

• The set of granulesS is a partition ofS, that is
⋃

S = S.

• The form of the lower and bitten upper approximation are given as in the subsection on ’Bitten
Approach’

Theorem 5.1. Given aBAS 〈S, Gr(S), T, Gr∗, Gr∗b〉, theAUAI approximation system〈S, Gr(S)〉 sat-
isfies

1. (∀X ∈ ℘(S))Xl1 = Gr∗(X)

2. (∀X ∈ ℘(S))Xu1 ⊆ Gr∗(X)

3. (∀X ∈ ℘(S))Gr∗b(X) = Gr∗(X) ∩ Xu2

Proof:

1. Xl1 =
⋃

{A : A ⊆ X ; A ∈ Gr(S)} = Gr∗(X)

2. Xu1 is the intersection of all unions of elements ofGr(S), whileGr∗(X) is the union of all elements
of Gr(S) that have non empty intersection withX. In general ifGr(S) is a collection of pairwise
disjoint sets thenXu1 = Gr∗(X), elseXu1 ⊆ Gr∗(X).

3. Gr∗b(X) = Gr∗(X) \ Gr∗(X
c) = Gr∗(X) ∩ (Gr∗(X

c))c. But
⋂

{Ac
i : X ⊆ Ac

i ; Ai ∈ Gr(S)} =
⋂

{Ac
i : Xc ⊆ Ai ∈ Gr(S)} = (

⋃

{Ai : X
c ⊆ Ai})

c = (Gr∗(X
c))c = Xu2. SoGr∗b(X) =

Gr∗(X) ∩ Xu2 holds.
⊓⊔

In the above theorem, we have taken the collectionK of theAUAI approximation system〈S, K〉 to
coincide with Gr(S). This need not be the case in general and many variations are possible on the point.
In particular we can select the collectionK so thatGr∗b(X) coincides withXu2.

6. Concluding Remarks

In this research paper, we have developed two different algebraic semantics of bitten rough set theory.
Topology is involved in a explicit way in the first of two. In the bitten approach, some types of granules
can hinder possible seamless representation theorems, while others may be more useful. So the theory is
not independent of the type of granules in entirety. The associated logics can be expected to have high
expressive power due to the higher order approach used.
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A positive solution for the first problem would mean a much simpler algebraic semantics provided
we can fix the notion of logical consequence in a suitable way.But even in those cases the first semantics
would remain relevant.

The nature of the semantic domain used and therefore the effective object level in the first approach
is very different and amounts to a new paradigm in rough set theory. In the second approach, though the
semantic domain is natural, it is not a fully explored one in the context of rough sets ([15]). If we use
different types of semantic domain at the object level, thensome natural relative distortions may creep
in. From the technical point of view this may or may not affectactual applications. A deeper study of
such distortions will be considered in future work.

The second approach can be accordant with different interpretations of choice and therefore is a more
open ended semantics. Application of this type of semanticsrequires a more conscious and regulated
way of forming approximations or ’specifying the indiscernibles’.

The algebraization strategy developed is relevant for other types of generalized rough set theory.
These include generalized cover and pure granule based approaches. For these reasons, we will consider
these connections and sequent calculi for the algebraic semantics in a separate paper.
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