Fundamenta Informaticae XXI (2001) 1001-1010 1001
10S Press

Faster Algorithms for Computing Maximal Multirepeats in Multiple
Sequences

Costas S. lliopoulos

Algorithm Design Group, Department of Computer Science, King’s College London
The Strand, London WC2R 2LS, England, csi@dcs.kcl.ac.uk

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

W. F. Smythf*

Algorithms Research Group, Department of Computing & Software, McMaster University
Hamilton, Ontario, Canada L8S 4K1, smyth@mcmaster.ca

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

Munina Yusufu

Algorithms Research Group, Department of Computing & Software, McMaster University
Hamilton, Ontario, Canada L8S 4K1, yusufum@mcmaster.ca

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

Abstract. A repeatin a string is a substring that occurs more than once. A repeaténdiblef

every occurrence of the repeat has an identical letter either on the left or on the right; otherwise, it is
maximal A multirepeatis a repeat that occurs at least,,;,, times (n,,.;, > 2) in each of at least

g > 1 strings in a given set of strings. In this paper, we describe a family of efficient algorithms
based on suffix arrays to compute maximal multirepeats under various constraints. Our algorithms
are faster, more flexible and much more space-efficient than algorithms recently proposed for this

Address for correspondence: Munina Yusufu, Algorithms Research Group, Department of Computing & Software, McMaster
University, Hamilton, Ontario, Canada L8S 4K1, yusufum@mcmaster.ca

*The author wish to acknowledge the contribution of anonymous referees, whose suggestions materially improved this paper.
TThe work of the author was supported in part by the Natural Sciences & Engineering Research Council of Canada.

1002 C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats

problem. The results extend recent work by two of the authors computing all maximal repeats in a
single string.

Keywords: maximal multirepeats, repeats, gaps, biological sequences, suffix arrays

1. Introduction

In this paper, we propose efficient algorithms for finding the maximal multirepeats in a set of strings
under various constraints. The problem of finding common regularities among a set of strings is very
important [4]. In biological sequences (DNA, RNA, or protein) the problem of locating repeats in a set
of strings (multirepeats) arises in many contexts, such as database searching and sequence alignment [1].
It is also important in data mining [8, 3].

A repeatin a string is a substring that occurs more than once. The distance (number of intermediate
letters) between the occurrences of the same substring is cajlgal A repeat ideft-maximal if not all
occurrences have the same letter on the taght-maximal if not all occurrences have the same letter
on the right — thusnaximalif both left- and right-maximal. Reporting only maximal repeats avoids
redundant reporting of repeats that are embedded in other repeats.

In [10], several fast algorithms for computing different kinds of maximal repeats under some restric-
tions were proposed, but only for a single string. To compute repeats in a set of stuurgplé repeaty
there exists only one algorithm [1]. This algorithm is not space-efficient since it uses suffix trees, one for
each string in the set plus a “generalized” suffix tree for all of them. Thus it is not easy to implement. In
addition, it has high time complexity. If gaps are unrestricted, the algorithm of [1] req{ed >n-+a)
time; if gaps are required to fall in a range of lengthit requiresO ((c* + 0?)mN?nlog(Nn) +«a)
time. Hereo is the alphabet sizey the number of strings; the average length of th& strings,m
the multiplicity (number of occurrences) of the multirepeat, antthe total number of occurrences of all
reported repeats. While may be quite large (millions), in applicatiod$ is generally a small integer
(at most two digits). Similarly, we may suppose that the nunibef reported repeats is(n). Further,
in keeping with the application, we suppose throughout that alphabet siz256, so that an individual
letter requires at most one hyte for storage.

Here we extend previous work [10] to the problems considered in [1], proposing algorithms that
are more time-efficient, as well as being easier to implement and using much less space. We describe
algorithms to find complete maximal multirepeats that occur at legst, times in each of at least
strings in a given sef of N strings, first with no restriction on gap length, then with bounded gaps. For
the first problem, we propose two algorithms with worst-case time complekhiég, +« log, N) and
O(Nn+«) that us@Nn and10Nn bytes of space, respectively. For the second problem, we describe an
algorithm with worst-case time complexi€y(R Nn) that requires approximatelyf) Nn. bytes. Note that
all times are independent of alphabet size. Extending the algorithms of [1], our three algorithms output
only repeats whose occurrences are substrings of length aplgas(user-specified), thus eliminating
trivial outputs.

The remainder of the paper is organized as follows. In Section 2, we give definitions and formulate
the problems. In Section 3, we give details of the three algorithms noted above. Finally, in Section 4 we
give conclusions and thoughts on further research.

C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats 1003

2. Preliminaries

Basic string terminology in this paper follows [12].

2.1. Repeats & Data Structures

A repeatin z is a tupleM, ,, = (p;i1,i2,...,%m), Wherem > 2,1 < i; < iz < ... < i, < n, and
u = zli1..i1+p—1] = xfiz..is+p—1] = ... = Z[iyy..im+p—1]. We callu thegenerator p the period
andm themultiplicity of M, ,,. If v occurs at two positionsand; in x, then the distance = |i—j|—p
is called agap. Note thatg may be negativeolverlappingoccurrences) or zerdgndemoccurrences).

Our second problem considers restrictions on the gaps as follows: i&far. u—1, wherey = my,n,
gi is the gap between thiéh and(i + 1)th occurrences af, then we requir@,,in, < ¢; < dmaa,, lower
and upper bounds aj. Collectively, these restrictions are represented by-al)-tuple

d= ((dminl’dmaxl)a (dminza dmaxg)’ cee (dminlt_l’dmaxu_ﬂ)' (1)

As remarked above, our PSY1 algorithm [10] outputs maximal repeats of perod,,;,. For this,
certain well-known data structures are required.

Given a strings = s[1..¢] of length/, the arraysa = sa[l../] is asuffix arrayof s iff its entries are a
permutation ofl..Z such that forj € 1..4, sa[j] = i whenever suffixs[i..(] is thejth in lexicographical
order among all the suffixes of For brevity, we sometimes refer o= s[i..¢] simply assuffix i Often
the suffix array is used in combination with tlieagest common prefix (Icgyray which gives the length
of the longest common prefix between consecutive suffixes;dhat is,Icp[j] is the length of the longest
common prefix ofs[sa[j]..n] ands[sa[j — 1]..n]. Also required is the Burrows-Wheeler transform [2],
an arraybwt = bwt[1..¢], most simply defined as follows: feu[j] > 1, bwt[j] = s[sa[j]—1], while
for j such thatsa[j] = 1, bwt[j] = $, a sentinel letter less than any other letter in the alphabet.

2.2. Formulation of Problems

We define two problems:

Unconstrained Multirepeats (abbreviatedMultiRep): Given a setS = {sy, sa, ..., sy } of strings,
where each string, 1 < k& < N, has length (if the lengths of the strings vary, represents their
average length), and a tuple of positive integB¥s= (pmin, 4, Mmin), Wherepy,, > 1, ¢ € 1..N,
mmin > 2, We output all maximal multirepeats of period at least,, that occur at least,,;,, times in
each of at leasj strings ofS. Following [1], we callg the quorumandm,,;, the minimum multiplicity

Example 1 Given a set of three strings={s1, s2, s3}, with D = (3,2, 2), we find a maximal repeat
ACG of lengthp,,,;, = 3 that occurs at least,,,;,, = 2 times in all3 > ¢ = 2 of the strings. Thus the
repeat would be output. However, for = (3, 3, 3), s3 would not satisfyn > 3 and so only2 < ¢ = 3
of the strings would have the minimum number of occurrences; in this case no output would occur.

sl=A C GTACGACGTGCACGATCTAA
$2=A C T ACGT GAC G CCTCAATCGT G
3=G A CCGRACGgdasecc T C G TRACFgcc T A

1004 C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats

Multirepeats with Constrained Gaps (abbreviated MultiRepG): In addition toS and D, we are
given a tuple of gap constraints (1). We compute all the repeats that satisfy (1) gttieass as well as
the constraint®. More precisely, in each individual string € S that containsn > m,,;, occurrences
of the repeating substring, we look for a sequencg ef m,,;, consecutive occurrences that satisfies
(2); if such a sequence exists in at leastrings, we output alln occurrences in every, for which (1)
is satisfied.

Example 2 Given the same sef and D = (3,2,2) as in Example 1, we introduce the constraint
(dmin;, dmaz;) = (0,5) for everyi € 1..u—1. Because the gap betweeyj6..8] ands3[15..17] exceeds
5, ACG does not satisfy the gap constraints{nbut continues to do so iy andss, thus at leas = 2
times. Thus occurrences of ACG onlydn andss are output.

sl=A C G TACGACGTGCACGATCTAA
$2=A CTACGTGAC G COCTTCAATCGT G
3=G A CCGACGggasec TCOGTIRMCFgcocTA

3. Description of the Algorithms
The overall strategy for both problems MultiRep and MultiRepG is the same:
« form a single string from the given sef of IV strings;

x in a preprocessing phase, compute the suffix astaghe longest common prefix arrégp and the
Burrows-Wheeler transforit for s;

x use Algorithm PSY1 [10] to compute all maximal repeats of pefiod p,;,, in s;

x output the repeats that satisty (MultiRep) or bothD andd (MultiRepG).

3.1. No Constraints on Gaps
3.1.1. Algorithm MultiRep-1

np 113 n L NN

[s Isi[s J%[s]% . o s |

Figure 1. Form a new string using end-of-string sentinels

From the setS = {si1,s2,...,sn} of strings, forms = s1$152%2539%3...3x_15n%, as shown in
Figure 1, where the end-of-string sentingls 1 < j < N — 1, and$ are distinct symbols less in
lexicographic order than any of the letters in the 1 < k£ < N, and that moreover satisfyy < $; <
$o < ... <S$n_1. Letsy = si[l..ng].

C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats 1005

The preprocessing computes the lcp andbwt arrays fors using standard algorithms as described
in [10]: in these algorithms th®; are treated as normal letters, whilgust marks the end of and is not
included in calculations.

Example 3 Given S = {si,s2,s3}, wheres; = AAGTCAG, s; = AGAG, s3 = CAGTAGC, we
form s = s1$152%253% and preprocess.

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
S A A G T A G $ A G A G % C A G T A G C 3
sa 8 13 1 6 11 9 18 15 2 20 5 14 7 12 10 19 16 3 17 4
lep 1 0 0 1 2 2 2 2 3 0 1 3 o0 1 1 1 1 2 0 1 -1
bwt G G $ C $ T C A G T & A A A A A A G G $

PSY1 makes use of the preprocessed arrays to compute maximal repeats, each onépaitrjple
specifying a period > p,.i, and a range..j in sa such that for everyr € i..j, suffix sa[h] has an
identical prefix of lengttp, while suffixessa[i — 1] and sa[j + 1] (if they exist) do not. If we are
given p.,;, = 2 in Example 3, PSY1 would output only one maximal repeatifor AG in the form
(p;i,7) = (2;4,9) with periodp = 2, where the rangd..9 identifiessa[4] = 6, sa[5] = 11, sa[6] =
9, sa[7] = 18, sa[8] = 15, sa]9] = 2. Thus the maximal repeat occurs in positiéns1, 9, 18, 15,2 of s
as shown by the shading in Example 3.

Given an outputp; i, j) from PSY1, we need to determine if the conditions specified by the tuple
D are satisfied. Our first task is to use the suffix arsayto convert this output into the form/ =
(p; sali], sali+1],..., sa[j]) keyed to positions ir rather tharsa: over all repeats found by PSY1, this
will require O(«) time. We then make use of two arragyptsandcount Array divpts specifies the
starting points of each substrirg of s — this permits a binary search to be done to determine in which
substrings;, the current repeating substring is located. More precisely:

N—-1 N
divpts[L.N+1] = [1,n1+2,n1+ng+3,..., > (mp+1)+1, > (ng+1)+1].
k=1 k=1

The arraycount = count[1..N] just maintains a count of the number of repeating substrings that have
so far been found to lie within each of thé stringssy.

Using these arrays, it is straightforward to determine in tm(éj —i)log N) whether the repeat
(p;i,7) occurs at leastn,,;, times in each of at least substrings ofs, as shown in Figure 2. Note
that if j —i+1 < mmng, this condition cannot be satisfied and so no tests are required. The function
BinarySearch called in MultiRep-1 (see Figure 2) returns the irkdexdicating that positiosa[h] in s
occurs in substring;,.

In Example 3divpts will be [1,9, 14, 22] and the output repeat will b@; 6, 11,9, 18, 15, 2). After
binary search we find thabunt[1] = 2 (positions 6 and 2)ount[2] = 2 (11 and 9), andount[3] = 2
(18 and 15): the repeat occurs at least twice in each of the three substrings. Thuyg;foe 2, ¢ = 3,
the repeat satisfies the constraints specifiedby

Now we analyze the time and space complexity of the algorithm. For constructiontbére are
algorithms linear in string length[7, 5], though in practice algorithms with worst-ca®¢/? log /) time
requirement are several times faster [11]. To compeidrom sa there are two linear-time algorithms

1006 C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats

Input: a maximal multirepead! = (p; salil, safi + 1], ..., sa[j]) of s,
together with integers,,,;, > 2, ¢ > 1.
Output: M if and only if its repeating substring occurs
at leastm,,,;,, times in each of at leagtsubstrings ok.
— Preprocessing: compute divpts[1..N+1].
r—j—i+1
if > gmumn then
count[1..N] « OV; qtotal « 0
for h«—itoj
k «— BinarySearcldivpts, sa[h])
count (k] < count[k] + 1
if count[k] = my;, then
gtotal «— qtotal + 1
if gtotal > ¢ then
output(M)

Figure 2. Algorithm MultiRep-1: Check Multiplicity & Quorum

[6, 9], and the easy calculation bfyt from sa is also linear. Givelicp andbwt, PSY1 executes in linear
time [10]. In our casé = N (n+1), and so all the repeat; i, j) in s can be computed in tim@(Nn).
For each ofD(R) repeats, the arragpunt must be cleared at a cost©Of V) time. In addition, for each
of at mosta occurrences of repeating substringssirthe time required is at mos?(log, N) for the
binary search. Thus to compute all the repeats satisfying consipaitite worst-case time complexity
of the algorithm shown in Figure 2 8(Nn+ RN +alogy N).

However, the asymptotic time complexity of MultiRep-1, though not perhaps the expected running
time in practice, can be slightly reduced, as we now explain. Instead of perfoeming — 0V as part
of the algorithm, execute it only once as preprocessing over all invocations of MultiRep-1. Introduce
into MultiRep-1 a listL, initially empty, to which each valué¢ computed by BinarySearch is added;
then at the end of MultiRep-1 introduce a new loop that removes ffoeach entryk and performs
countlk] < 0. The resulting algorithm executes in tird& Nn+« log, V), independent of.

Preprocessing for a string of lengthequires as few as/ bytes forsa [11], 9¢ for lcp [9] and 64 for
bwt, thus at mos9 N (n+1) bytes for¢ = N(n+1). PSY1 itself requires only¢ bytes for its execution
[10], plus a further/ for storage oka (since each range j in sa needs to be converted into a sequence
sali], sali + 1],...,sa[j] in s). Sincedivpts andcount are arraysl..N of integer, their total space
requirement i8S N bytes, and so the total I§(9n+17) bytes, in simple term8Nn.

The algorithm shown in Figure 2 outputs all of the repédtsit may instead be required to output
only those positions i/ that occur in thes; for whichm > m,,;,. One way to accomplish this is to
introduce a Boolean arrayiok = mok[1..N] (similar in its role to the arrayapsok described below for
MultiRepG) —mok records for eaclk € 1..N whether or not; contains at least,,,;,, occurrences of
M. Then a straightforward processing bf, again using BinarySearch, produces the required output,
using the same asymptotic time and space.

C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats 1007

3.1.2. Algorithm MultiRep-2

We briefly describe a strategy to avoid the binary search of MultiRep-1, at a cost of an additioadl)
bytes of storage (based on the assumption A& small — less than 256). In the preprocessing stage
we introduce an arrayos of byte such that, for eache 1..N(n+1), pos[i] = k iff i is a position

in sg, while otherwisepos[i] = 0 (s[i] is a sentinel). Thus for every pos[i] € 0..N. Usingdivpts,

pos can easily be computed i®(/Nn) time. Then, in order to determine, for each positioin sa
which substrings;, the positionsa[h] occurs in, it is necessary only to compute— pos[sa[h]]. This
O(1) computation replaces BinarySearch in MultiRep-1, reducing processing timeéNa + «), thus
asymptotically optimal.

3.2. Restricted Gaps (MultiRepG)

In this section, we introduce the algorithm MultiRepG, for which the input is a maximal multirepeat
(p;i,7) of s satisfying constraintd) = (pmin,q, mmin) and the output consists of the elements of
(p; 1, 7) that satisfy the gap constraintsn at leasty substringss;, of s.

In order to satisfy constraintg in addition to those specified bf, we need to introduce a bit
vectorloc = loc[1..N(n + 1)]. In a single preprocessing stage every positiofoinis setFALSE in
time O(Nn/w), wherew is the computer word length, and the preconditioa/h] = FALSE for all
h is maintained thereafter. Then feachmaximal repeatp;i,j) of periodp > pm..n, the positions
loc[sa[hH,h =1,1+1,..., 7, are SeffRUE, so that a left-to-right scan dbc will yield in increasing
order the positions of the repeating substrings.isuch a scan is shown in Figure 3, used to determine
which of the substrings;, in s satisfy the gap constraints. A Boolean artaypsok = gapsok[1..N] is
used to record the valuése 1..NV for which s, satisfiesi (see the corresponding arrayk described
earlier for MultiRep-1). Algorithm MultiRepG executes in two phases, a checking phase and an output
phase.

In the checking phasdjuvpts is used to compute for easly an arrayocc of candidate positions. The
functioncheck, described below, actually applies the constraihts occ — its total time usage over all
invocations isO(r), wherer = j—i+1 < Nn; also, the positions inspected davpts andgapsok for
each repeat are at mast Thus for each candidate repeat, the time required to evaluate the constraints
is O(Nn). For R such repeats, the overall time requirement of the checking phase is thepéfdrén).

We note that sincee < RNn (the total number: of occurrences of repeats cannot exceed the number

R of repeats times the overall string lengifn), thereforeO(RNn) in fact represents the total time
required both for MultiRep-2 and the checking phase. For cases that arise in practice, a corresponding
statement holds also for MultiRep-1.

In the output phase, there is no action if less thaubstrings ofs contain repeats satisfying the
constraintsd. Otherwise,occ is recomputed for eack, that satisfiesl and the repeat is then output.
For the strings and gap constraints of Example 2, described above, the output of the algorithm given in
Figure 3 would bép, k, occ) = (3,1;1,5,8,14) and(3, 2; 4,9, 17). The overall time requirement of the
output phase is agaid(RNn).

The Boolean functiorheck, shown in Figure 4, slides a window of width,,;, over them >
mmen €Ntries inoce, corresponding to the substrirg, shifting right by one position at each step. For
each windowgcheck determines whether its entries satisfy the constraintéso, check returnsTRUE,
causing then repeating substrings akc that occur ins; to be output. If no window obcc satisfies

1008 C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats

— Precondition: loc = FALSEN("+1),
for h « ito j doloc[sa[h]] < TRUE
— First Phase: Checking
q' + 0; gapsok[1..N] « FALSEN
k—1;m«—0;r«j—it+l; 7 «—0; h«1
while 7’ < r do
if loc[h] then
r—r'+1
if h < divpts[k+1] thenm «— m+1; occm| — h
else
if m > mp, and check(p, occ, m, d, mp,,) then
q — ¢'+1; gapsok|k] — TRUE
m «— 1; occ[l] < h
repeatk «— k+1 until h < divpts[k+1]
h — h+1
if m > mypin and check(p, oce, m, d, mp,) then
q¢ — ¢'+1; gapsok[k] < TRUE
— Second Phase: Output
if ¢ > qthen
for k — 1to N do
if gapsok[k] then
m <« 0
for h «— divpts[k] to divpts[k+1]—1 do
m «— m+1; occ[m] — h
output(p, k, occ)
for 1« i to j doloc[sa[h]| < FALSE

Figure 3. Algorithm MultiRepG: for each substring of s, if occ contains a sequence of length= m,,,;,, that
satisfies (1), then outputc

d, check returnsFALSE. The constraintg are accessed as a two-dimensional adiay.m,,, —1, 1..2].
The outerwhile loop of check is executedm — my,;, + 1) times in the worst case, and the inner
while loop is executed at mosh,,;, times; thus the execution time aheck at each invocation is
O(mmin(m — mpin + 1)) = O(m). Here we assume that the specified input valyg;,, is constant
over the execution of the algorithm. Over all invocations, therefore, the execution tithedfis O(r).

We note that the corresponding algorithm described in [1] requires that the differences between
the maximum and minimum gaps specified in (1) should all be bounded by a small cansteime
methodology described here requires no such bound, and its effectiveness does not depend on such
differences. Note also that MultiRepG can easily be modified, with the same asymptotic complexity and
usage of space, to output only those ranges:othat satisfyd, omitting those entries that do not.

The additional storage required for MultiRepG consists of4he:/w bytes forloc plus up todn

bytes for the integer arraytc, a total ofdn(N/w+1). Forw = 32, this amounts ta.(/N/8+4), perhaps
as much as an additionaln bytes on top of th& Nn used by MultiRep-1.

C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats 1009

function check(p, occ,m, d, my,ip) : boolean
Ip— 1T +1
while m—1 > m,,;,—1 do
J—1
while J < myyin, and d[J, 1] < occ[l + 1] — occ[I] — p < d[J, 2] do
I —T+1,J«—J+1
if J = mn then
return TRUE
else
Ip—T—1Ip+1
return FALSE

Figure 4. Functiomheck: given an arraycc of m occurrences of a repeating substringjndetermine whether
occ contains a subarray of length= m,,,;,, that satisfies the constraints

Table 1 compares the algorithms described here with those proposed in [1]. Note that even though

Problem Algorithm Time Space

MultiRep [1] O(cN?n + a) linear but large
MultiRep-1 O(Nn+alogy N) 9Nn bytes
MultiRep-2 O(Nn+a) 10Nn bytes

MultiRepG [1] O((c® + o?)mN?nlog(Nn)) + «) O(c*Nnm)
MultiRepG O(RNn) 10Nn bytes

Table 1. Comparison of Algorithms.

the suffix tree storage is linear, the large amount of information in each edge and node makes the suffix
tree very expensive, consuming about ten to twenty times the memory size of the input text in good
implementations. In [1], the algorithm MultiRep uses suffix trees, one for each string in the set plus a
“generalized” suffix tree for all of them, therefore the memory usage would be very large.

4. Discussion

We have formulated two problems related to multirepeats in sets of strings with various restrictions and
presented efficient algorithms with lower time complexity and less memory consumption compared to
previously proposed algorithms. We remark that if in Algorithm MultiRepG we setithe andmazx
constraints on gaps equal to zero, we can find all tandem repeats (repetitions) in arbitrary susets of
Future work includes the detection of degenerate (approximate) multirepeats and weighted multirepeats.

1010 C. S. lliopoulos, W. F. Smyth, M. Yusufu/Computing Maximal Multirepeats

References

[1] A. Bakalis, Costas S. lliopoulos, Christos Makris, Spyros Sioutas, Evangelos Theodoridis, Athanasios K.
Tsakalidis, Kostas Tsichlas: Locating maximal multirepeats in multiple strings under various constraints,
The Computer Journal 50+-2007, 178-185.

[2] Michael Burrows, David J. WheeleA Block-Sorting Lossless Data Compression Algoritfiethnical Re-
port 124, Digital Equipment Corporation, 1994.

[3] Johannes Fischer, Volker Heun, Stefan Kramer: Optimal string mining under frequency condiiats,
10th European Conf. on Principles and Practice of Knowledge Discovery in Datababi3S 4213,
Springer-Verlag, 2006, 139-150.

[4] Dan Gusfield:Algorithms on Strings, Trees and Sequen&zsnbridge University Press, 1997.

[5] Juha Karkkainen, Peter Sanders: Simple linear work suffix array construddmt,. 30th Internat. Collog.
Automata, Languages & ProgrammingNCS 2971, Springer-Verlag, 2003, 943—-955.

[6] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, Kunsoo Park: Linear-time longest-common-prefix
computation in suffix arrays and its applicatioRspc. 12th Annual Symp. Combinatorial Pattern Matching
LNCS 2089, Springer-Verlag, 2001, 181-192.

[7] Pang Ko, Srinivas Aluru: Space efficient linear time construction of suffix arfys;. 14th Annual Symp.
Combinatorial Pattern MatchindR. Baeza-Yates, E. Giez & M. Crochemore (eds.), LNCS 2676, Springer-
Verlag, 2003, 200-210.

[8] Sau Dan Lee, Luc De Raedt: An efficient algorithm for mining string databases under constPaiats,
KDID, LNCS 3377, Springer-Verlag, 2005, 108-129.

[9] Giovanni Manzini: Two space saving tricks for linear time LCP computatiyoc. 9th Scandinavian Work-
shop on Algorithm Theorn)tNCS 3111, Springer-Verlag, 2004, 372-383.

[10] Simon J. Puglisi, W. F. Smyth, Munina Yusufu: Fast optimal algorithms for computing all the repeats in a
string, Prague Stringology Conferencéan Holub & JarZd'arek (eds.), 2008, 161-169.

[11] Simon J. Puglisi, W. F. Smyth, Andrew Turpin: A taxonomy of suffix array construction algoritA@B|
Computing Surveys 39:-2rticle 4, 2007.

[12] Bill Smyth: Computing Patterns in StringPearson Addison-Wesley, 2003.

