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Abstract

An arithmetic circuitis a labeled, acyclic directed graph specifying a sequefi@ithmetic and logical
operations to be performed on sets of natural numbers. rAdtit circuits can also be viewed as the elements
of the smallest subalgebra of the complex algebra of thergagmdf natural numbers. In the present paper
we investigate the algebraic structure of complex algebfamtural numbers and make some observations
regarding the complexity of various theories of such algsbr

1 Introduction

Let w be the set of natural numbef®,1,2,...}. An arithmetic circuit(AC) [|1_.’l||ﬂ] is a labeled, acyclic directed
graph specifying a sequence of arithmetic and logical diger®to be performed on sets of natural numbers.
Each node in this graph evaluates to a set of natural numiegrgsenting a stage of the computation performed
by the circuit. Nodes without predecessors in the graphatedinput nodesand their labels are singleton sets
of natural numbers. Nodes with predecessors in the grapbadlesl arithmetic gatesand their labels indicate
operations to be performed on the values of their immedisdgressors; the results of these operations are then
taken to be the values of the arithmetic gates in questior ddthe nodes in the graph (usually, a node with no
successors) is designated aschreuit output the set of natural numbers to which it evaluates is takeretthe
value of the circuit as a whole.

More formally, an arithmetic circuit is a structu@= (G,E,gc,a), where(G,E) is a finite acyclic and asym-
metric graph over 2, In(g) <2 forallge G, anda : G — {U,N,”,+,e} U{{n} :n€ w} U {0, w} is a labeling
function for which

{{n} :ne w}u{0O,N}, ifin(g)=0,
(1.1) a(@ el {7}, if In(g) =1,
{U,N,+,e}, if In(g) =2
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Here, Ing) is the in—degree af and+ ande are the complex extensions ¢fand-, i.e.
1.2 a+b:={k+n:kea necb}, aeb:={k-n:kea, neb}.
gc is called theoutput gateif In(g) = 0, we callg aninput gateor asource

The arithmetical interpretation @fis as follows:

(i) IfIn(g) =0, thenl(g) = a(g).
(il) IfIn(g) =1, andd' is the unique predecessor@fthenl (g) = N\ 1(d).
(ii) IfIn(g) = 2, andgp, g1 are the two predecessors@fthenl (g) :=1(go) a(9) I (91).

I(C) is defined as$(gc).

Fig.[d shows two examples of arithmetic circuits, where tbguot gate is indicated by the double circle. In
Fig.[da, Node 1 evaluates {d}, and Node 2 tav; hence, Node 3 evaluates{d} + {1} = {2}, and Node 4, the
output of the circuit, to{2} e w, i.e. the set of even numbers. The circuit of [Eig. 1b functisimilarly: Node 2
evaluates td0} U {n € w:n> 2}, and Node 3td0} U {n € w: nis composité; hence, Node 4 evaluates to the
set numbers which are either prime or equal to 1, and Nodeejutput of the circuit, to the set of primes. We
say that the circuits of Fi§]l 1a and Hig. define respectively, the set of even numbers and the set of priAmas.
arithmetic circuit defines a set of numbers in this way.

Figure 1: Arithmetic circuits defining: (a) the set of evermers; (b) the set of primes. The integers next to the
nodes are for reference only.
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If & C{N,U, ,+,e}, and — circuit is an arithmetic circuit whose non—input labels are amoogeltontained
in 0. Let

(1.3) MC(0) = {(C,n):Cisand —circuitne | (C)}.

The membership problem fof is the question whetheMC(¢) is decidableﬂl]. In other words, is there an
algorithm which decides membership of an arbitrarg w in an arbitrary outpu€ of an & — circuit? If the
problem is decidable, then its complexity is of interestr &onost all cases of’, the complexities have been
determined by McKenzie and Wagner|[11]. The question whéit& &) is decidable where = {n,U, ~,+, ¢}

is still open. The table of complexities for the membershipbem where all Boolean operators are present is
given in Tabldl.

Algebraically speaking, an arithmetic circuit can be relgaras a well — formed term over an alphabkéicon-
taining operations fror{N,U, ~,0,w,+, e} and constants froni{n} : n € w} as input gates. I# is present,
then{0} will suffice since

(1.4) {1} = {0} +{0} n{0}.



Table 1: Complexity results for M(Eﬂll]

o Lower bound| Upper bound
NU,  ,+ PSPACE PSPACE
N,U, e PSPACE PSPACE
N,U, ,+,e | NEXPTIME ?

The membership problem now can be seen as a word problemzbver
(1.5) Givenn € w and a well formed termr over.«7, is{n} N1 = {n}?

It is natural to generalize the notion of arithmetic cirsuity allowing input nodes to represerariable sets of
numbersﬁb]. Logically speaking, we enhance our language stV of variables which are interpreted as sets
of natural numbers; arithmetic circuits correspond to thgable free terms of this language. It now makes
sense to consider satisfiability and validity of (in—) edug of terms of this language under this interpretation.
Furthermore, the operatiorfs: (2°)k — 2 definable from the given operatofscan be studied__[_iB].

In analogy to the membership problem, Glal3er et al. [5] dmrdhe complexity of

SC0) = {(C(xo,--.,%),K) : Cis and circuit and(Iko, ... k) [k € I (C(Ko, ... ,K)]}

for various set¥’’ and determine many of these complexities. The main openeols the question whether
SCN,U, ~,e) is decidable. In other words, is it decidable whether theagqn

(1.6) {k}N1(x0, .- Xn-1) = {k}

has a solution over the subsetsugt?

In this paper we shall shed some light on these question andtthcture of arithmetic circuits from an alge-
braic viewpoint. Our main tool will be the apparatus of B@slealgebras with operators, in particular, complex
algebras of first order structures, which were introduceddmsson and Tarslﬁ|[9].

2 Notation and definitions

2.1 Algebras

An algebrall is a pairl = (A, &), whereAis a set and’ = { f; : i € | } a set of operation symbofseach having a
finite arity a (f); if we write f(Xo,...,X,—1) we implicitly assume thatr(f) = n. Operations of arity O are called
(individual) constants We will usually denote algebras by gothic lett@€s25, ..., and their universes by the
corresponding roman letté; B, .. .. 2( is calledsubdirectly irreducibléf it has a smallest nontrivial congruence,
andcongruence—distributivé its congruence lattice is distributive.

Suppose that K is a class of algebras (of the same &jpd-or2, B € K, 2 < B means thafl is a subalgebra
of 8. The operators$, S;H andP have their usual meaninar (K) is the variety generated by K, i.¥ar (K) =
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HSP(K). A variety V is calledfinitely basedf there is a finite sek of equations in the language ¥fsuch that
2 e Vifand only if 2 = Z, andV is calledfinitely generatedf there is a finite set K of finite algebras such that
V = Var (K).

Suppose that K is a class of algebras of the same &yp&Ve consider the following sets of formulas in the
language o (plus equality).

(i) Thefirst-order theoryFO K of K: The set of first-order formulas true in each member of K.

(i) Theequational theonEq K of K: The set of formulas of the forms(xo,...,%n) = 0(Xo,...,X3) whose
universal closures are true in each member of K.

(iii) The satisfiable equation&qgSat K of K: The set of formulas of the forms(xo,...,Xn) = 0(Xo,--.,Xn)
whose existential closures are true in each member of K.

If K = {2}, we usually writeFO 2, Eq 2, etc.

2.2 Boolean algebras with operators

In the following, letB = (B,Vv,A,~, L, T) be a Boolean algebra (BA); here, is the smallest and” is the
largest element oB. If a,b € B, thena A b denotes the symmetric differen¢aA b) v (b A 3); note thata = b
if and only if aan b= 1. If B is atomic,FC(B) is the finite—cofinite Boolean subalgebra‘Bf i.e. every
be FC(B)\{L, T} is afinite sum of atoms or the complement of such an element.

Suppose that is an n—ary operator oR.

(i) fis calledadditive in its i—th argumenif
f(a07"'7aiflax7ai+17"'7an*l)\/ f(a07"'7ai717y7a1'+17"'7an*l) = f(a07'"7aiflyx\/y7ai+ly"'7anfl)'

(i) fis callednormal in its i-th argumenif f(ap,...,&-1,1,81,...,a8n-1) = L.

Note that an additive operatorisotong i.e. it preserves the Boolean order in each of its arguments

A Boolean algebra with operatofAO) is a Boolean algebra with additional mappings of finiteank that are
additive and normal in each argumdﬂt [9].

A (unary) discriminator functioron B is an operatiord on 3 such that for alh € B,

2.1) day=q o A=t
T, otherwise

If B has a discriminator function, we c& adiscriminator algebra

For a class K of BAOs, a unary terimis adiscriminator termif it represents the discriminator function on each
subdirectly irreducible member of K. A variety of BAOs is leal adiscriminator varietyif it is generated by a
class of algebras with a common discriminator term.
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Having a discriminator function allows us to convert satisfiability (validity) of inequati® into satisfiability
(validity) of equations: Suppose thaetX) ando (X) are terms with variableg Then

(22) (F[T(R) # 0(®)] < (E[1(X) & 0(%) # 1] <= E[d(1(%) 2 o(%))
(23) (R[T(R) # 0(®)] <= (W[T(X) & 0() # L] <= (vR[d(T(%) 2 o(%))

T,
T].

If K is a class of algebras of the same type, we denote byhi¢ class obtained from adding a unary operation
symbol which represents the discriminator function on tkeeniers of K.

2.3 Complex algebras

Traditionally, a subset of a group is called acomplex of G the power algebraof G has £ as its universe,
and the group operations lifted t&2 Complex algebras are a generalization of this situatiah special in-
stances of BAOs. Suppose that, &) is an algebra, andl € ¢ is n—ary. Thecomplex operatiori : (24)" — 24
corresponding td is defined by

(2.4) f(ao,...,an-1) = {f(X0,...,Xn-1) : X0 € A0, ..., Xn—1 € @n_1}

Thefull complex algebra ofl, denoted bym(, has as its universe the powerseiadind, besides the Boolean
set operations, for eache ¢ its complex operatof defined by[(Z.H4).

More generally, théull complex algebra&m % of a relational structuréJ, %) is the algebrg2”,u,n,~,0,U),
which has for evenR € Z of, say, arityn+ 1, ann — ary operatorfg : (2Y)" — 2Y defined by

(25)  frR(Xo,..., Xn-1) ={y €U : (3xo,..., Xn-1)[%0 € Xo,. .., Xn—1 € Xn—1 @ANAR(Y, X0, ..., Xn-1)]},
see e.g.|]6].

Each subalgebra @fim 2l is called acomplex algebra dil. Of particular interest for us are the subalgebraafl
generated by the constants, which we denot&ihy?(, and the subalgebra @in®l generated by the singletons
{a}, wherea € A; we denote this algebra m;2(. Then,&my2l is the smallest subalgebra #fandCm; 2 is
the subalgebra afm?l generated by the atoms. Cleadimo2l < €m4 2, but the converse need not be true; an
example will be given below.

2.4 Boolean monoids

The complex algebras of the various structures which weasifisider have one or more commutative Boolean
monoids as a reduct: fommutative Boolean mono{@BM) is an algebr& = (A, V,A,~, L, T,o,€) such that

(2.6) (A,V,A, 7, L, T)is a Boolean algebra
(2.7) (A, 0,€) is a commutative monoid.
(2.8) xol =1.

(2.9) Xo (yVz) = (xoy)V (Xoz).

In the sequel, we lat(x) = xo T; itis well known thatc is an additive closure operator on CBMS [8]. Furthermore
[see e.g.17],



Lemma2.1. (i) The class CBM is congruence distributive.

(ii) 1is a congruence ideal —i.e. the kernel of a congruence — oB&IQ( if and only if | is a Boolean ideal
and xe | implies ax) € | for all x € A.

(iii)y The principal (Boolean) ideal generated biktis the smallest congruence ideal containing x.

An elementx € Ais called acongruence elemeiftc(x) = x. By Lemmd 2.1(3), each principal congruence ideal
| of 2 is of the forml = {y:y < x} for some congruence elementNote that a CBM is simple — i.e. has only
two congruences — if and only if it satisfies

(2.10) (VX)[x=LVvex)=T].

3 Complex algebras ofN

Let N = (w,0,+,-,1) be the semiring of natural numbers, ata N = (2° N, U, ,0,w,{0},+,{1},e) be its
full complex algebra, i.e.

a+b={n+m:neca meb},

aeb={n-m:neca, meb}.

A function F : (2¥)" — 2% is calledcircuit definableif there is a termr(vp, ...,vy-1) in the language ofm N
such thatF (sp,...,S-1) = 7(S/Vo,---,S-1/Vn-1) for all s,...,5-1 C w. A subseta of w is calledcircuit
definableif there is a closed (i.e. variable free) terrthat evaluates ta. Each element of the smallest subalgebra
¢myN of €m N corresponds to an arithmetic circuit with finite input nodesl vice versa via the interpretation
l.

Both (2“,+,{0}) and(2“,e,{1}) are commutative monoids. Furthermo#teande are normal and (completely)
additive operators with respecttg so that¢m N is a Boolean algebra with operators, and

<2w7U707_707w7+7{0}>7 <2w7U707_707w7.7{1}>
are CBMs.

Theorem 3.1. (i) ¢m N is a discriminator algebra.
(ii) Q:moN = leN.
(i) €moN is embeddable into any simple algebra\@ir (¢m N).

Proof. (i) Let f(x) be the functiorto+ ({0} eXx). If x= 0, then{0} ex =0, and thusf(x) = w+0="0. If x#£ 0,
then{0} ex = {0}, hencef(x) = w+ {0} = w.

(i) The atoms of¢m N are the singletonén}, and{n} = {1} +...{1} if n> 0.
H—/
ntimes

(i) Since €m N is a discriminator algebra, it suffices to show that the sesakubalgebral of an ultrapower
of copies of¢m N is isomorphic to€moN. Thus, let®s := “¢m N/U be an ultrapower o€m N. Suppose
thate: ¢m N — B is the canonical embedding, i.e(a) = fa/U, wheref,(i) = afor all i < k. Since€mgN is
generated by 0}, e[¢mgN] is generated bg({0}), and thus, sinceis an embeddingg[¢mgN] is the smallest
subalgebra of5. O



Theorem 3.2. The Boolean reduct @&mgN has2® ultrafilters.

Proof. Let po,..., Pk, o, -.,0k be different primes; then

Po - Pk € (WepPo)A...A(wep)A(we{do})A...A(we{0k}).

Hence {we {p} : p prime} is an independent set which generates an atomless Boolbalysbrall of ¢mgN.
2 has 2 ultrafilters, and thus, so hasngN. O

Theatom structuretm N of €m N has the se@ = {{n} : n€ w} as its universe, and for each n — ary operator
f an n+1-ary relatiolR; := {(p,q) : p€ Q"andge Q,qC f(p)}. Then,

R ({k}, {n},{m}) <= {m} C {k} +{n} <= k+n=m,
R’({k}7{n}7{m}) A {m} - {k}'{n} <~—k-n=m,

Itis well known thatt¢m N = N. Let us call a relation oRit¢m N, i.e. onN, circuit definableif it corresponds
to a circuit definable operator @m N. A striking example of the lack of expressiveness of arittieng@rcuits is
the following:

Theorem 3.3. (i) In N, the converse> of the natural ordering is circuit definable, white is not.

(i) Relative subtraction is not circuit definable.

Proof. Using [2.5) it is easily seen that is the relation corresponding to the function definedfby) = x+ w.
The ordering< on w corresponds to the function defined b{x) = {n € w: (3m)[m € xandn < m}, and we
have shown irJﬂB] that this function is not circuit definallethe same paper we have proved (ii). O

3.1 Complex algebras of w,+,0)

LetN*t = (w,+,0,), €m N* be its full complex algebra, and be the variety generated kiyn N*. Furthermore,
setc(x) = x+ w. Recall that the consta#t} is definable in®m N+ by

{1} = 0\ ((0\ {0} + w\ {0}) U{0}).
Note that for alla C w,

(3.2) c(a) =a+w={k: (In,m[me aandk=m+n|} = {k: min(a) <k} = c({min(a)}),
(3.2) c@) + {1} =a+c({1}) =a+{0}.

The following observation will be useful:

Lemma 3.4. Letab C w. Then,a=0or b=0if and only if da)Nc(b) = 0.

Proof. If, say,a= 0, thenc(a) = 0. Conversely, it(a) Nc(b) = 0, then one o€(a) or c(b) must be empty, since
the intersection of any two cofinite sets is not empty. Heace 0 orb = 0. O



Recall thattmo N is the smallest subalgebra &fa N*. The following result is well known:

Lemma 3.5. The universe ofmgN is the finite — cofinite subalgebra 2.

Next, we describe the congruencesfaf N*:

Theorem 3.6. The congruences d@fm N* form a chain of order typé + w*.

Proof. By Lemma 2.1l c({n}) is a congruence element generating the congruépc€onversely, suppose that
= is a congruence induced by the non-trivial ideahen,| = 0, andl is closed undec. Sincel is also closed
underC, {min(a)} € | for everya € |, and thereforen := min({min(a) : a€ |, a# 0}) exists, anc({n}) € I.

If ac 1, a# 0, thenn < min(a), and it follows thata C c(a) = c({min(a)}) C c({n}). Hence| is the principal
ideal of 2° generated bg({n}).

Observing that({n}) = {m: n < m}, we see that

0C ...Con+1}) Ce(fn}) C... Ce({1}) € c({0}) = w,
and thus,
(3.3) 1C...CH1C6,C...COHLCHB=V,

where 1is the identity and/ the universal congruence. Clearly, this chain has order typw*. It follows that
¢m N has no smallest nontrivial congruence, and therefone N™ is not subdirectly irreducible. O

Corollary 3.7. The congruences @imgN™ form a chain of order typ& + w*.

Proof. Each congruencé, of ¢m N* is generated by a cofinite congruence element, which &igN™* by
Lemmd3.5. O

Let B, ;= ¢m N*t/6,,1, and g, : ¢m Nt — B, be the quotient mapping. Note that the kernebgf; is the

ideal of 2¥ generated bg({n+1}) = {n+ 1} + w = w)\ [0,n]. Thus, the Boolean part &, is isomorphic to
the powerset algebra 4D, ...,n} with atomsg; := m({i}) for i <n. In particular,B, is isomorphic to the two
element Boolean algebra, sincg1}) = w)\ {0} generates a prime ideal of2

The composition table far on the atoms o3, is given below. Observe thgs = 1,({0}) is the identity element
eof (Bn,0), andgm =0gpogi0...00;.
———

m —times
© 19 91 92 ... Or-1 On
oG O1 92 -.- On-1 On
O |01 92 93 ... On L
J2|9% 93 094 ... L L
Ohlon L L ... L1 L

Theorem 3.8. (i) Each®B is subdirectly irreducible.
(i) Var(Bn) € Var(Bni1).



(i) V =Var{%B,:nec w}, and thusV is generated by its finite members.

Proof. (i) The congruences &8, are in 1-1 correspondence to the congruence&wofN* containing8,. This
is a finite chain, and the smallest nonzero congruence eleoh&, is gp.

(i) Clearly, Var (B,) C Var(Bn:1)- N Bp, 01+ ...+ =L1,andgr1+...+ 091 =0ny1 # L in By,
———— ————

n+1 times n+1times

(iii) Clearly, %, € V for eachn € w. Conversely, by Birkhoff’s subdirect representation tieso B], ¢m Nt
is isomorphic to a subdirect product of its subdirectly dureible quotients, see e.gD [4], Theorem 8.6. By
Theoren 3B, the only proper quotientséfi N* are the algebra®,, and these are subdirectly irreducible by
1. above. O

V contains all Boolean algebras for which the extra operatstthe Boolean meet are= T, since the universe
of Bg is the two element Boolean algebra, @8d € V. Moreover,

Theorem 3.9. Var(*8,) is finitely based for each 8 w. HenceEq B, is decidable for all ne w.

Proof. SinceVar (By) is congruence distributive ari, is finite, Baker’s finite basis theorer [1] implies that
Var (B, is finitely based for each € w. The second claim follows from the fact that a finitely basadety
which is generated by a finite algebra has a decidable eqaaticeory. O

Corollary 3.10. Eq Visco—r.e.

Proof. Given an equatiorr = o we can check whethar = o holds inB,1,...,, sinceEq B, is decidable.
SinceV is generated by, : n € w}, any equation that fails ik must fail in somes,,. O
Let g be the term

(3.4) g:=€o€A&

In ¢m N*, g evaluates td1}. Furthermore, we set

e, ifn=0,
g = gogo...og, otherwise.
————
n—times

Consider the following identities in the language\af

(3.5 e (Xoy) = eAXAY.

(3.6) c(g"h) =gVv...vgiforallne w.

(3.7) cle(x) Ac(y)] Acle(y) Ac(x)] = L.

(3.8) gA (xoy) = [(eAX) o (gAY)]V[(gAX)o(eny)]
(3.9 (xAgMo(XAQ") = Lforallne w.

(3.10) c(X) = C(XAXo®).



Lemma 3.11. (3.5)—- (3.10)hold in¢m N*, and thus, inv.

Proof. (38): Just note that @ a+ b <= 0 € aand O< b so that{0} N (a+b) # 0 if and only if {0} Na#0
and{0} Nb # 0.

@D): c({n+1}) = {n+1}+w=1{n+1} ={0,....n}.
(B2): The sef{c(a) : a C w} is a chain, thusg(x) N c(y) = 0 or c(y) Nc(x) = 0; hencegc(c(x) Nc(y)) = O or

c(c(y)nec(x)) = 0. Now apply Lemma3l4.
(3:8): This follows immediately from the definition &f.
(39): Eachg"is an atom offmoN*, soxAg"= L orxAg" = L forall x € ¢moN™.

(310): IfaC wanda= 0, the claim clearly holds. & +# 0, thenana+ {0} = min(a) whence the conclusion
follows. O

We do not know whethef (3.5) E(3]10) are sufficient to axioneay .

Theorem 3.12. Let 2 € V be subdirectly irreducible and suppose that d is the smalileszero congruence
element irl.
() eis anatom of A.
(i) The congruence elementsfare linearly ordered.
(i) If A is finite, then it is isomorphic to soni&,.
Proof. (i) Assume that there aeb € Asuch thatl <ab,aAnb= 1, andaVvb=e Then, the monotonicity of
oimplies thatacb < eoe=eg, and by[[3.5)acb= (acbh)Ae=anbre= L.

Sincea # 1, we haveao T # 1, and the fact thatl is the smallest non—zero congruence element implies
d <aoT. Now,

d<aoT =dob<aohoT=_1loT=1,
and, similarly,doa= 1. But then,
d=doe=do(avh)=(doa)Vv(dob)= 1,
contradicting our hypothesis thdt£ 1.

(i) Assume there are nonzero congruence elementsuch thatx Ay # L andyAX## L. Then, bothc(x AY)
andc(y A X) are nonzero congruence elements, and thereforec(x A y) A ¢(y AX). On the other hand,

C(XAY) A(yAR) = c(c(x) Ac(y)) Ac(e(y) Ac(X) = L
by (3.7) which contradictsl # L.

(iii) By (B.6), m# nimplies thatg™ A g" = L. Therefore, sincél is finite, there exists a smallestsuch that
g™ = 1. We will prove thatl = B,,.
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1. c(g") = g": Again by [3.6) we have®V .. g”*l\/c(

N = andc(g )Ag™ = L for all m< n. Suppose
there is some e Asuch thasAg"= L andsvg"=c(g"). T

gos= LV (gos)=(gog")V(gos) =go(g'Vs) =goc(d") =go(gloT)=(gog")oT =L,
and, by the normality of we obtaing™os= L for all 1 < m< n. Now,
(@) =g"o(°Vv...vg'vs) = (g"og®) vg'og'v...vg'og" Vg os=g".
— L
=1 =1 =1
It follows thats= 1 and also thag®Vv...vg"=T

2. d =g" Sinced is the smallest congruence element, we hdwveg". Assume there is sonte# | such
thatd At = L andd Vvt =g". Then, forx € {d,t} andy € {g,...g"} we havexoy = 1. Furthermore,
dod=dot=tot = 1, sinced,t <g"andg"! = L. This |mpI|es thatd andt are disjoint nonzero
congruence elements, contradlctmg the subdirect iribditg of L. It follows thatd = g".

3. Eachg™is an atom oR(: Assume that there are < s;t < g™ with sAt = L andsVvt = g™ for somem< n.
By (i) above, we have ¥ m. Froms < g™ it follows thatso g€ < gMogk = gtt™ £ g™ for k # 0. Therefore,

g"A(soT)=g"A(sV(sogh) V...V (sog")) =s

Similarly we obtaing™A (to T) =t. Sincet andsare nonzero and disjoirge T andto T are incomparable
congruence elements, contradicting (ii).

Theorem 3.13.2( € V is simple if and only if|A] < 2.

Proof. Clearly,2( is simple if it has at most two elements. ConverselyRldte simple. Ifg # L, thenc(g) = T
by (2.10), and thus]. = c(g) = e by (3.6). The normality of implies that, for allk € A, x=eox= Lox= 1,
and thereforell has only one element.

Now, suppose thag = L; then, | =c(g) =€by (3.8), and thuse=T. If x#£ L, then
X=Xoe=XoT =¢c(X)=T

)

the latter by the simplicity ofl. O

Since every nontrivial variety contains a nontrivial simplgebra, it follows that the subvariéty of V generated
by 98¢ is smallest nontrivial subvariety &f.

If 2L is a CBM, we calz € A anannihilator ofo, if xoz=zfor all xe A, x# L. The complex algebra dtv, 1, )
has{0} as a nonzero annihilator. This cannot happe¥:in

Theorem 3.14. Suppose thal € V and that|A| > 2. Then2( has no nonzero annihilator.

11



Proof. SinceV = HSP{B, : n € w}, there are a sequend€, : a < K} of algebras from{*B, : n € w}, a
subalgebra® of € := 14« €q, @and an onto homomorphism: © — A with kernell. Letg=egoeAgin ¢,
andg, = €o€AEIN €. Since® is a subalgebra of andg is a constant term, we haggc ©; furthermore,
g(a) =gq forall a < k.

Assume thatz is a nonzero annihilator dll, and letf € ©® with z= m(f); sincez# L we havef ¢, in
particular, f # L. Now,z=2zoT =mn(f)on(T) = m(foT), and we may suppose thétis a congruence
element. Sinc&l has more than two elements,< gy, and thereforeo gy = z. Hence, there is somies | such
that(fog)Vvi= f Vi, in particular,f < (fog)Vi; sincel is a congruence ideal, we may suppose w.l.0.g. that

i = c(i).

Let o < Kk such thatf(a) # L, and suppose that, = By; then, f(a) < (f(a)ogq) Vi(a). Sincef is a
congruence element, so f§a), and it follows from the definition of3, that there is somen < n such that
f(a)=-c(dy). Now,

f(a) < (f(a)og(a)) Vvi(a)

= (c(g7) 0Ga) Vi(a)
=(ggoToda)Vi(a)

=c(gzth) vi(a)

Q. Vghvi(a)

=(@QV..vgriagh vi(a)

= (f(a)Agg) vi(a),

o~ o~

g

which implies

fla)Agy <i(a).

Now, f(a)=gd V...vgltimpliesgl < f(a), and thusgl <i(a). Sincei(a) is a congruence element, we
havei =io T, and therefore,

f(a) =c(dgy) =dao T <i(a)oT =i(a).

Thus, f(a) <i(a) for all o < k and it follows thatf € |, contradicting our hypothesis. O

Let us briefly look at the complex algebgam N*= of (w,+,<,0). We have seen earlier that the complex
version of< is the operatoy.: 2° — 2% defined by a={n e w: (Im)[me aandn < m]}; thus, the universe
of EmoN™= is FC(w).

Since< is first order definable ifw, +,0), one might suspect thdim N*= and¢m N are not “too far apart”.
It turns out, however thatm N™= has much stronger properties théum N+,

Theorem 3.15. (i) ¢mN™= is a discriminator algebra.

(i) Eq €mN™=£Eq ¢mgNT=,

12



Proof. (i) Setd(x) := w+ | x. If x=0, then| x=0, and thusd(x) = 0. Otherwise, G=] x, hence,d(x) =
W+X=w.

(i) Consider the functiorfin : 2% — {0, w} defined byfin(a) := d(| a). Then,

fin(a) = {‘”’ it]al = w,

0, if ais finite.

Since for eacla € €moN™ =, eithera finite orais finite, the equatioffin(a) Nfin(a) = 0 holds in¢mN™=, but
notin¢m N*<, O

3.2 Complex algebras of w, -, 1)

LetN* = (w,-,1), €m N°* be its complex algebra, and be the variety generated Wm N°. Furthermore, let
c(a) ;== weafor everyaC w.

We will first describe the smallest subalgebrataf N°.

Theorem 3.16. ¢mo Nt =2 ¢mgN°®.

Proof. For each € w, let
an := {m¢e w: mhas exactlyn (possibly repeated) prime divisgrs
Then,ay = {1}, and the set of primes is circuit definable by
ap = (w\{1}) e (w\{1})\ {1}

It comes as no surprise that is nothing else than the constamtefined in[[3.4). Each, is circuit definable,
sincea, =aje...ea;. Clearly,ana; =0fori # j, andU,c,an = w\ {0}; the latter can be shown via induction

n-times
on the degree of a term.

Let Ay be the Boolean algebra with atoni$1},w\ {1}}, and forn+ 1 let Ay, be the Boolean closure of
{aeb:a be Ay}.Furthermore, for each e w, let

b1 =aU.. . Ua,.

Claim. For 0< neachA, is finite with atomsag, . .., 81,001, 1.

First, we considen = 1. Computing{aeb: a,b € Ag}), we retainA, (since{1} € Ag) and, obtain additionally,
(w\{1})e(w)\ {1}) which is the set of all positive composite numbers. Thusatbencw\ {1} of A splits into
ay, the set of all prime numbers, abg, the set of all composite numbers (including 0). Sinee' %, the claim
is true forn = 1.

Suppose that the claim is true f8g, i.e. that the atoms oA, areag,ay,...,8n-1,bn-1,,. We need to show
that the closure ofaeb:a b € A,} under the Boolean operations givesAys 1. Sincee distributes ovetJ it is

13



sufficient to finda; ea; anda; ebnq fori,j < n. Now, ifi, j <n, thena; ea; = &, and thus, froms e a; we
obtain the disjoint sets

ag, a1,...,8n-1, Aon-141,...,8n-14pn-1 = Ay(n+1)-1-
Froma; e bon-1,; We obtain
b2n—1+1 2 b2n—1+2 2 b2n—1+1+2n—1 - bz(n+1)—1+1
The claim now follows fronby, \ b1 = am.

Clearly, {an : n € w} is the set of atoms ofmgN°®. Let f : €mgN*t — ¢€moN® be the mapping induced by
f({n}) =a,. Then,f is bijective, and

f({n} +{m}) = f({n+m}) = an m=aneam= f({n}) e f({m}).

Since+ ande are (completely) additivef is an isomorphism. O

It may be noted that that©3a, for all n € w. Thus,{0} is not definable from the constants, and

w= zmoN.{an ‘ne w)# zm Mlayine wl = w\ {0}

It follows that&€mgN*® as a Boolean algebra is not a regular Boolean subalgel#a afi* [for the definition see

[10.

Let us now consider the algebean; N°®, i.e. the subalgebra @fm N°® generated by its atom@}. We note
that {0} is a nonzero annihilator, and thus is a proper congruenceegie- indeed, the smallest nonzero con-
gruence element. Thereforém; N°® is subdirectly irreducible. By Theorein_3]14, no elemenvaf ¢m N*
with more than two elements has a nonzero annihilator. Tegewith ¢mgNt = ¢moN°® we obtain that
¢my1N°® ¢ Var €mgN°, and thereforeYar €mj N°® = Var €moN*®

Let 6 be the congruence generated{iBy, and2 be the complex algebra ¢fv\ {0},-,1). Then, clearlyabb <
au{0} =bu {0}, and¢m; N*/0 is isomorphic to the singleton algeb?g of 2; furthermore EmgN*® = 2.

Owing to the presence of the nonzero annihilaf®k we can still turn satisfiability (validity) of inequations
into satisfiability (validity) of equations even thougim,N® is not a discriminator algebra - it is subdirectly
irreducible, but not simple:

(3.11) EX)[1(X) # oX)] <= (I)[T(X) 4 0(X) # L] <= (F)[{0} ¢ (1(X) 2 (X)) = {0}],
(3.12) (WR)[1(X) # o(X)] == (VX)[T1(X) & 0(X) # L] <= (v¥)[{0} ¢ (T(X) 2 0(X)) = {O}].

We know already that the set of primes is definabléiiny N°. This can be generalized as follows: Fog w let
Po(n) be the set of all powers of.

Theorem 3.17.Let p, ..., pn be primes, and b= Po(pp) e ... e Po(pr). Then, for all aC w,
anbe miN®* <= anbe FC(b).

Here, FQb) is the set of all finite or cofinite subsets of b.

14



Proof. “<": We first show thatPo(p) € €mj N* for every primep. Consider the following sequence:

we{p} All multiples of p

we{p} All n not divisible byp

we{p}n{1} All n= 1 not divisible byp, i.e. coprime top, sincep is prime
we (we{prn{1}) All nwith a factors 1 coprime top

we (we{ptn{1}) All nwith (n# 1= nom coprime top dividesn),

which defines the set of all powers pf It follows thatb € €m; N°®. Since all singletons are &im; N°®, each
finite or cofinite subset db is in ¢m; N°.

“=": Consider the condition

(3.13) xNb¢ FC(b).

Suppose there are a term of minimal lengtko, . ..,X«) anday, ...,a C w such thata:= 1(ay, ..., a) satisfies
(3.13). Ifa=suUt, thensort satisfy [3.18), contradicting the minimality of similarly, a is not of the forms.
Finally, leta = set. By the minimality oft, bothsnb andt Nb are inFC(b), and by our assumption one must
be cofinite inb, say,s. The cofinality implies there am, ... ,q, € w such that such that for abhy, ..., m, € w,

(3.14) Mo > CoA...AMy>0n=p™o-...-pMes

Letg=pL....plr tnb. Then,{q} esis cofinite ins by (313), and thus, cofinite in. It follows thata = set
is cofinite inb, contradicting our assumption. O

Theoreni-3.1]7 does not hold #émgN: If a:= ({3} e w) + {1}, thenPo(2) Nais the set of all powers of 4. This
also shows thatm; N* C ¢m N.

Theorem 3.18. (i) Foreach n>0, €m; N* contains an idempotent subsemigroup with n generatorandl
elements.

(i) Suppose that G is a subsemigroupgef; N® and a group. ThenG| = 1.

Proof. (i) Let P = {pi,...,pn} be a set oh primes, and for each nonempy = {pi,,... pi,} CPletay :=
Popj, e...ePop;,. Then,S= {ay : 0 # M C P} is the desired semigroup generated{laypi} :1<i<n}; the
identity element isp.

(i) Let e be the neutral element @&. If e=0, thena=aee=ae0 =0 for all ac G, and thus |G| = 1.
Similarly, if e= {0} we havelG| = 1. Thus, suppose thetZ {0}; it is easy to see that thenZ {0} for allac G.
Letn=min(e\ {0}). Sinceeee= e, there ar&k, m € e with n= k- m. Minimality of nandn # 0 imply n =k
andm=1orn=mandk= 1. In any casen =1, and thus, E e.

Suppose that € G. Sinceaesa ! = eand 1c e, we have Ic ana !t and hencea=ae {1} Caeal=e

Converselye=ee {1} C eea = a, so that altogethez = e. O
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4 Decidability of theories

Recall that for a BAO%, we denote by%, the smallest subalgebra @, i.e. the subalgebra 66 generated
by the constants. In this section we consider the proble@$3, Eq 9, andEqSat B for the algebra®m N,
CmoN, ¢m N*, ¢mpN*, ¢m N°, and¢mgN®. If B is one of these algebras, we denote®y the algebra
enhanced by an additional operatbwhich represents a discriminator function®n A conjunctive grammais

a context—free grammar with an explicit intersection o'p'»e]. This section largely draws together work by
Okhotin [14], J& and Okhotin![7], and Pinus and Vazheninl [15].

We have the following undecidability results. If T is a TgiMachine, we can define the language VAOGQ

of computationf T, over the alphabet = {0,... ,k— 1}, for somek > 0. It does not really matter how these
computations are encoded: the important point here is tRRCYT) = 0 if and only if the language accepted by
T is empty. We may assume without loss of generality that rnoggtrin VALC(T) begin with the letter 0. Any
strings € Z* which does not begin with 0 may be regarded as a kaspresentation of a positive integgs).
Thus, we obtain a 1-1 mappirfg: VALC (T) — {a}* given by f(s) = a*®. Thus, fx(VALC(T)) is a language
over the 1-element alphabgd}.

Lemma 4.1. [|Z|])

(i) Forevery Turing Machine T, we can effectively construcjaoctive grammars G and’@ver the alphabet
{a} such that ILG) = fx(VALC(T)).

(i) IfaC wisrecursive, there exists a finite system of equations dbtime 7 (Y, X1, ...,Xn) = Gi (Y, X1,...,Xn)
in the language withJ, N, + such that its unique solution issya and x = b; for some(by, ..., by) € (2¢)".

First, we compare the theories of these algebras.
Theorem 4.2. (i) Eq (N*)=Eq (2%,+,{0}).

(i) Eq ¢mogNt =Eq ¢m N*.

(i) EgSat ¢mgN™T # EgSat ¢m N*.

(iv) Eq €moN*t9£Eq ¢m N+,

(V) Eq €mpN #£Eq ¢m N.
Proof. (i) The mappingf : w — {a C w: ais finite} which mapsn to {n} is an embedding of monoids, and

thus,Eq (2“,+,{0}) C Eq (NT). The reverse inclusion follows from the fact thét is the free monoid on a
single generator.

(i) Since€moN*t < &m N, it follows that¢moN* € Var(¢m NT). Conversely, eactB, is in Var (€moNT)
by Corollary(3.7, and thugm N* € Var (€moNt).

(iii) The equation
(4.2) X+{1} =X

has a unique solution iim N*, namely, the set of even numbers, which is natim N*.
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(iv) This is a slight generalization of Theorém 3.15(2). Bagation[(4.11) has no solution FC(w), i.e. (VX)[x+
{1} #X] holds in€mgN. This is equivalent to the equatiati(x+ {1}) A X) = w which is not valid in¢m N*,

(v) Letae ¢m N\ €moN be recursive. Such set exists, since every every set dedibgldn arithmetic circuit
is in the bounded hierarchy BI-HlG], and the bounded hiesarstknown to be contained within the zeroth
Grzegorczyk classs?. By Lemmd4.l there is a first order senterigg) (x) such tham N = ¢(x/s) if and
only if s=a. It follows that€mgN k= (Ix)¢(X), i.e. €mgN = (VX)—-¢(x). Since€mgN is a discriminator
algebra, there is an equatiaiix) = o(x), such tha€mgN |= (Vx)—¢(x) if and only if €moN = 7(x) = o(X).
Since€m N |= (IX)¢ (), T(X) = o(x) cannot hold inCm N. O

Given any conjunctive grammds with non-terminalsX,..., X, over the alphabe{a}, we may effectively
construct a system of language equatiéhs variablesVy,...,V,, with the property tha&’ has a unique least
(under componentwise-inclusion) solutiSﬁ ..., and, moreover, for all(1 <i < n), § is the set of strings of
{a}* to which G assigns the categops;. Let us assume thag; is the start-symbol o6; i.e., L(G) is the set of
strings to whichG assigns categor¥.

Theorem 4.3. Let O be any collection of isotone operators§mwith + € O. ThenEgSat ¢m(N,O) is co—r.e.-
complete.

Proof. For the lower bound, it suffices to establish the result indhge¢m(N,{+}) = ¢mN*. We use the
fact that the emptiness of the languages accepted by a TorawineT is equivalent to the validity of the
language equations, as outlined above. We must translate the language eqaatighin the logical signature
{e,{a},u,n,-}, (where- denotes concatenation) into integer-set equations, bsaieg € by {0}, {a} by {1},
and- by +. Let the result of this translation b&". If g: {a}* — N is the isomorphism given bg — k, then
Si,...,S is a solution of” if and only if g(S;),...,9(S) is a solution of£™*.

Altogether, we have:

Acc(T)=0 < VALC(T)=0
< f(VALC(T))=0
& Lg=0
& S=0
& EU{X1 =0} has a solution
< &7U{X; =0} has a solution.

This establishes th&qgSat ¢m(N, O) is co-r.e.-hard, as required.

To show thatEqSat ¢m(N,O) is co-r.e., it suffices to prove that, for anytuple of variables< and any term

1(,
(4.2) T(X) = 0 has a solution if2*)™

if and only if, for all n,

(4.3) 17(X) N [0,n] = 0 has a solution if21%")™,

since the conditior(413) is evidently decidable for fixedn the sequel, i= (s;,...,sn) andt = (ty,...,ty) are

mrtuples of sets, we writer1]0, n] for them-tuple (s; N[0, n],...,s,N [0, n]), SUt for them-tuple (s Uty, ..., s U
tm) ands C t for the conditions; Cty A -+~ A sy C t,.
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The direction from[(4.2) td{4]3) is easy. For suppegs = 0. Then, for alln, T(s) N [0,n] = 0, whence, by the
monotonicity of the operators dd, 7(sN[0,n])N = 0. To show the converse, Mg denote, for any, the set of
pairs (S,n) wheresTs a solution oft(X) N [0,n] = @ in (2°")™. Thus,V, is finite, and, assuming(4.3) for ail
non-empty. Define the directed graph E) by settingvV = JV, and

E={((sn),({t,n+1)):(Sn) €Vp, ({t,n+1) € VyygandsCt}.

Thus,(V, E) is a finitely branching, infinite tree, and so has an infinittgey, 0), (S1,1),..., wheresg C 5 C - - -.
Lettings= sy, we have, for alh, 7(S)N[0,n] = 7($,) N [0,n] = 0. Hencet (S) = 0, whencel(4]2) holds. O

It immediately follows from Theoreiin 4.3 that

Corollary 4.4. EqSat ¢m N is co-r.e.-hard.

In Corollary[3.10 we showed th&q ¢moN™ is co—re. On the other hand, it is not obvious that we can find a
(computable) bound for the smallest witnessemefjuations in these languages.

While the membership problem famgN is a word problem, the satisfaction probleim {1.6) is relatethe
equational theory:

Theorem 4.5. The equational theory ofm;N* is decidable if and only if the satisfaction problefh8) is
decidable.

Proof. “=": Let n € wand1(X) be a term with variables. Then,
ARt NT(R) # 0] <= ~((VR)[{n} N1(X) = 0)).
“<". Suppose that(X), o(X) are terms with variables amoigw.l.0.g. we may suppose tha{X) = 0. Then,
(VX)[1(X) = 0] <= (VX)[0 ¢ {0} @ T(X)] <= —=((IX)[0 € {O} 0 T(X)]).
]

As for equational theories, results are known as long as we tiee wherewithal to convert equations into
inequations. Determining whether an equation belongs gcetjuational theory of a languagg€ over some
interpretation?( is the co-problem of determining whether imequation i is satisfiable irR(. If we have a
discriminator at our disposal, then (.2), (2.3) and Thexde3 imply

Theorem 4.6. The seEq ¢m N+ is re.-hard. HenceEq ¢m N is r.e.-hard.

If (So) is a semigroup, then itsower structureis the semigroup of complexes 8f The following result is
quoted by Pinus and Vazhenin [15, Theorem 2.3.2]:

Theorem 4.7. [E|] For a variety V of semigroups the class of power structures of elemenyshafs a decidable
elementary theory if and only f C Var ({Xxoyoz = xoz}).

Neither(w, +,0) nor (w, -, 1) satisfyxoyoz= xoz Since the power structure &b, +,0) is a reduct ofm N,
this is another way to show thBD ¢m Nt is undecidable. It also applies tw,-, 1):

Corollary 4.8. FO ¢m N°* is undecidable.

18



References

[1] Baker, K. A. (1977). Finite equational bases for finitgeliras in a congruence—distributive equational class.
Advances in Mathematic4(3):207—-243.

[2] Bayasgalan, B. (1988). Decidability of theories of &ed structures of semigroupélgebraic Systems and
their Varieties, Ural. Gos. Univ. Sverdloyskages 4-13. In Russian.

[3] Birkhoff, G. (1935). On the structure of abstract algebrProceedings of the Cambridge Philosophical
Society 31:433-454,

[4] Burris, S. and Sankappanavar, H. P. (1984 )Course in Universal AlgebraSpringer-Verlag, New York.

[5] GlaRer, C., Reitwiel3ner, C., Travers, S. D., and Waldhdr (2007). Satisfiability of algebraic circuits
over sets of natural numbers. In Arvind, V. and Prasad, $tgrsgFoundations of Software Technology and
Theoretical Computer Science, 27th International Confeee(FSTTCS 2007), New Delhi, India, December
12-14, Proceedings/olume 4855 of ecture Notes in Computer Scienpages 253—-264. Springetr.

[6] Goldblatt, R. (1989). Varieties of complex algebraéginals of Pure and Applied Logid4:173-242.

[7] Jez, A. and Okhotin, A. (2008). On the computational compleanof equations over sets of natural num-
bers. In Aceto, L., Damgard, 1., Halldérsson, L. G. M., Irfgdbttir, A., and Walukiewicz, I., editor§ro-
ceedings of ICALP 2008, Part, Volume 5126 oL NCS pages 63—74. Springer.

[8] Jipsen, P. (1992)Computer aided investigations of relation algebr&hD thesis, Vanderbilt University.

[9] Jbnsson, B. and Tarski, A. (1951). Boolean algebras wjitbrators |. American Journal of Mathematics
73:891-939.

[10] Koppelberg, S. (1989)General Theory of Boolean Algebraslume 1 ofHandbook on Boolean Algebras
North—Holland.

[11] McKenzie, P. and Wagner, K. W. (2003). The complexityneémbership problems for circuits over sets
of natural numbers. In Alt, H. and Habib, M., edito&TACS 2003, 20th Annual Symposium on Theoretical
Aspects of Computer Science, Berlin, Germany, FebruaryMdreh 1, 2003, Proceedingsolume 2607 of
Lecture Notes in Computer Scienpages 571-582. Springer—\Verlag.

[12] McKenzie, P. and Wagner, K. W. (2007). The complexitymaedmbership problems for circuits over sets of
natural numbersComputational Complexipyl6(3):211-244.

[13] Okhotin, A. (2001). Conjunctive grammardournal of Automata, Languages and Combinatqrie$19—
535.

[14] Okhotin, A. (2003). Decision problems for language &tipns with boolean operations. In Baeten, J. C. M.,
Lenstra, J. K., Parrow, J., and Woeginger, G. J., edil@aLP, volume 2719 ol_ecture Notes in Computer
Sciencepages 239-251. Springer.

[15] Pinus, A. G. and Vazhenin, Y. M. (2005). Elementary sification and decidability of theories of derived
structures Russian Math. Survey60:395-432.

[16] Pratt-Hartmann, |. and Dintsch, 1. (2009). Functioe$irdhble by arithmetic circuits. In Ambos-Spies,
K., Lowe, B., and Merkle, W., editordylathematical Theory and Computational Practice: 5th Coeriee
on Computability in Europe, CiE 20090olume 5635 of_ecture Notes in Computer Sciengages 409418,
Heidelberg. Springer Verlag.

19



[17] Reich, P. (1996)Complex algebras of semigroupBhD thesis, lowa State University, Ames.

20



	Introduction
	Notation and definitions
	Algebras
	Boolean algebras with operators
	Complex algebras
	Boolean monoids

	Complex algebras of N
	Complex algebras of "426830A , +, 0 "526930B 
	Complex algebras of "426830A , , 1 "526930B 

	Decidability of theories

