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Abstract

Consider a Markovian Petri net with race policy. The marking pro-
cess has a “product form” stationary distribution if the probability of
viewing a given marking can be decomposed as the product over places
of terms depending only on the local marking. First we observe that
the Deficiency Zero Theorem of Feinberg, developed for chemical reac-
tion networks, provides a structural and simple sufficient condition for
the existence of a product form. In view of this, we study the classical
subclass of free-choice nets. Roughly, we show that the only Petri nets
of this class which have a product form are the state machines, which
can alternatively be viewed as Jackson networks.

Introduction

Queueing networks, Petri nets, and chemical reaction networks, are three
mathematical models of “networks”, each of them with an identified com-
munity of researchers.

In queueing theory, the existence of “product form” Markovian networks
is one of the cornerstones and jewels of the theory. Monographies are ded-
icated to the subsect, e.g. Kelly [17] or Van Dijk [9]. Roughly, the interest
lies in the equilibrium behavior of a Markovian queueing network. The
existence of such an equilibrium is equivalent to the existence of a station-
ary distribution π for the queue-length process. In some remarkable cases,
π not only exists but has an explicit decomposable shape called “product
form”. The interest is two-fold. First, from a quantitative point of view,
it makes the explicit computation of π possible, even for large systems.
Second, the product form has important qualitative implications, like the
“Poisson-Input Poisson-Output” Theorems. Consequently, important and
lasting efforts have been devoted to the quest for product form queueing
networks.

It is attractive and natural to try to develop an analog theory for Marko-
vian Petri nets, with the marking process replacing the queue-length pro-
cess. There is indeed a continuous string of research on this topic since
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the nineties, e.g. [5, 6, 10, 12, 14, 15, 19]. Tools have been developped in
the process which build on classical objects of Petri net theory (e.g. closed
support T-invariants). The most accomplished results are the ones in [14].

In chemistry and biology, models of chemical reaction networks have also
emerged. Such a network is specified by a finite set of reactions between
species of the type “2A + B → C”, meaning that two molecules of A can
interact with one molecule of B to create one molecule of C. The dynamics
of such models is either deterministic or stochastic, see [18].

Deterministic models are the most studied ones; they correspond to cou-
pled sets of ordinary differential equations. The most significant result is
arguably the Deficiency Zero Theorem of Feinberg [11]. Deficiency Zero is
a structural property which can be very easily checked knowing the shape
of the reactions in a chemical network. It does not refer to any assump-
tion on the associated dynamics. Feinberg Theorem states that if a network
satisfies the Deficiency Zero condition, then the associated deterministic dy-
namic model has remarkable stability properties. An intermediate result is
to prove that a set of non-linear equations (NLE) have a strictly positive
solution.

Stochastic models of chemical reaction networks correspond to continuous-
time Markov processes of a specific shape. Such models were considered in
Chapter 8 of the seminal book by Kelly [17]. There it is proved that if a
set of non-linear “traffic equations” (NLTE) have a strictly positive solution
then the Markov process has a product form.

How does Feinberg result connect with product form Markovian Petri
nets ?

A first observation is that chemical reaction networks and Petri nets are
two different descriptions of the same object. This has been identified by
different authors in the biochemical community: see for instance [3] and the
references therein. Conversely, Petri nets were originally introduced by Carl
Adam Petri to model chemical processes, see [22].

A second observation was made recently by Anderson, Craciun, and
Kurtz [2]. They observe that the NLE of Feinberg and the NLTE of Kelly
are the same. It implies that if a chemical network has deficiency zero, then
the stochastic dynamic model has a product form.

In the present paper, we combine the two observations. The Deficiency
Zero condition provides a sufficient condition for a Markovian Petri net
to have a product form. The Deficiency Zero condition is equivalent to
another criterion known in the Petri net literature [14]. The advantage is
that deficiency is easy to compute and handle.

The class of Petri nets whose Markovian version have a product form is
an interesting one. It is therefore natural to study how this class intersects
with the classical families of Petri nets: state machines and free-choice Petri
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nets. We use the simplicity of the Deficiency Zero condition to carry out
this study.

The central result that we prove is, in a sense, a negative result. We show
that within the class of free-choice Petri nets, the only ones which have a
product form are closely related to state machines. We also show that
the Markovian state machines are “equivalent” to Jackson networks. The
latter form the most basic and classical example of product form queueing
networks.

A conference version of the present paper appeared in [20]. Compared
with [20], additional results have been proved: the equivalence between
deficiency 0 and the condition of Haddad & al [14] (Prop. 2.3), and the
results in Section 2.5.

1 Model

We use the notation R∗ = R − {0}. The coordinate-wise ordering of Rk is
denoted by the symbol 6. We say that x ∈ Rk is strictly positive if xi > 0
for all i. We denote by 1S the indicator function of S, that is the mapping
taking value 1 inside S and 0 outside.

1.1 Petri nets

Our definition of Petri net is standard, with weights on the arcs.

Definition 1.1 (Petri net). A Petri net is a 6-tuple (P,T ,F , I, O,M0)
where:

• (P,T ,F) is a directed bipartite graph, that is, P and T are non-empty
and finite disjoint sets, and F is a subset of (P × T ) ∪ (T × P) ;

• I : T → NP , O : T → NP are such that [I(t)p > 0 ⇔ (p, t) ∈ F ] and
[O(t)p > 0 ⇔ (t, p) ∈ F ] ;

• M0 belongs to NP .

The elements of P are called places, those of T are called transitions.
The 5-tuple (P,T ,F , I, O) is called the Petri graph. The vectors I(t) and
O(t), t ∈ T , are called the input bag and the output bag of the transition t.
The weight of the arc (p, t) ∈ F (resp. (t, p)) is I(t)p (resp. O(t)p).

An element of NP is called a marking, and M0 is called the initial mark-
ing.

Petri nets inherit the usual terminology of graph theory. Graphically,
a Petri net is represented by a directed graph in which places are repre-
sented by circles and transitions by rectangles. The initial marking is also
materialized: if M0(p) = k, then k tokens are drawn inside the circle p. By
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convention, the weights different from 1 are represented on the arcs. See
Figures 1 or 2 for examples.

A Petri net is a dynamic object. The Petri graph always remains un-
changed, but the marking evolves according to the firing rule. A transition
t is enabled in the marking M if M ≥ I(t), then t may fire which transforms
the marking from M into

M ′ = M − I(t) +O(t) .

We write M
t−→ M ′. A marking M ′ is reachable from a marking M if there

exists a (possibly empty) sequence of transitions t1, ..., tk and sequence of
markings M1, ...,Mk−1, such that

M
t1−→ M1

t2−→ · · · tk−1−−−→ Mk−1
tk−→ M ′ .

We denote by R(M) the set of markings which are reachable from M .

Definition 1.2 (Marking graph). The marking graph of a Petri net with
initial marking M0 is the directed graph with

• nodes: R(M0) , arcs: M → M ′ if ∃t ∈ T , M
t−→ M ′.

The marking graph defines the state space on which the marking may
evolve. Observe that the marking graph may be finite or infinite. In Section
1.3, we will define a Markovian Petri net as a continuous-time Markovian
process evolving on the marking graph.

The analysis of Petri nets relies heavily on linear algebra techniques, the
central object being the incidence matrix.

The incidence matrix N of the Petri net (P,T ,F , I, O,M0) is the (P ×
T )-matrix N defined by:

Ns,t = O(t)s − I(t)s . (1)

Example 1. Figure 1 represents a Petri net with places {p1, p2, p3, p4} and
transitions {t1, t2, t3, t4, t5, t6}. The initial marking is M0 = (2, 0, 0, 1). Here
all the weights of the arcs are equal to 1.

p2 p4

p1 p3

t5

t6

t2t1 t3 t4

Figure 1: Petri net.
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1.2 Deficiency and weak reversibility

Consider a Petri net (P,T ,F , I, O,M0). From now on, we assume that
no two transitions have the same pair input bag - output bag. So we can
identify each t with the ordered pair (I(t), O(t)).

In the context of Markovian Petri nets with race policy (see §1.3), this
assumpion is made without loss of generality. Indeed, several transitions
with the same pair of bags can be replaced by a single transition whose
transition rate is the sum of the original rates. Also this transformation
does not modify the deficiency or weak reversibility (to be defined below).

Under this assumption, the Petri net can be viewed as a triple (P,T ⊂
NP × NP ,M0 ∈ NP). (In particular, the flow relation F is encoded in T .)

Petri nets have appeared with this presentation in different contexts and
under different names: vector addition systems (see for instance [23]), or
chemical reaction networks (see for instance [11, 2]).

In the chemical context, the elements of P are species. The marking
is the number of molecules of the different species. The elements of T are
reactions. A reaction (c, d) ∈ NP ×NP is represented as follows:

∑

p∈P

cpp −→
∑

p∈P

dpp.

Example 2. The “chemical” form of the Petri net in Figure 1 is:

p1 ⇄ p2 p3 ⇄ p4 p1 + p3 ⇄ p2 + p4 . (2)

Let us now introduce two notions, deficiency and weak reversibility,
which are borrowed from the chemical literature.

Definition 1.3 (Reaction graph). Let (P,T ⊂ NP ×NP ,M) be a Petri net.
A complex is a vector u in NP such that: ∃v ∈ NP , (u, v) ∈ T or (v, u) ∈ T .
The set of all complexes is denoted by C. The reaction graph associated to
the Petri net is the directed graph with nodes: C, arcs: u → v if (u, v) ∈ T .

Let A be the node-arc incidence matrix of the reaction graph, that is the
(C × T )-matrix defined by

Au,t = −1{I(t)=u} + 1{O(t)=u} . (3)

Lemma 1.1. Consider a Petri net with set of complexes C. Let ℓ be the
number of connected components of the reaction graph. The rank of the
node-arc incidence matrix satisfies:

rank(A) = |C| − ℓ . (4)
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Proof. Assume that ℓ = 1. Consider x ∈ RC − {(0, . . . , 0)} such that xA =
(0, . . . , 0). Let C be such that xC 6= 0. Consider D ∈ C. Since ℓ = 1,
there exists an undirected path (C = C0) −−C1 −− · · · −−(Ck = D) in the
reaction graph. Assume wlog that Ci → Ci+1 and let ti ∈ T be such that
I(ti) = Ci, O(ti) = Ci+1. By definition of A, we have (xA)ti = xCi+1

− xCi
.

So we have xCi
= xCi+1

for all i, and xC = xD. We have proved that
xA = (0, . . . , 0) =⇒ x ∈ R(1, . . . , 1). Conversely, by definition of A, we
have (1, . . . , 1)A = (0, . . . , 0). Hence dim ker(A) = 1, and by the rank
theorem, rank(A) = |C| − 1. For a general value of ℓ, we get similarly that
rank(A) = |C| − ℓ.

A central notion in what follows is the deficiency of a Petri net.

Definition 1.4 (Deficiency). With the above notations, the deficiency of the
Petri net is

δ = |C| − ℓ− rank(N) = rank(A)− rank(N) .

Of particular importance are the Petri nets with deficiency 0. This
class will be central in the study of Markovian Petri nets having a product
form, see Section 2. Such Petri nets are “extremal”, in a sense made precise
by the next proposition.

Proposition 1.1. For all x ∈ RT :

[
Ax = 0

]
=⇒

[
Nx = 0

]
. (5)

In particular it implies that: rank(A) ≥ rank(N). Equivalently, the defi-
ciency of a Petri net is always greater or equal to 0.

The non-negativity of the deficiency appears in Feinberg [11], using a
different argument.

Proof. Using the definition of the matrix A, we can rewrite the condition
Ax = 0 as:

∀c ∈ C,
∑

t:O(t)=c

xt −
∑

t:I(t)=c

xt = 0 , (6)

Now for each place s, we have:
∑

t∈T

Ns,txt =
∑

t∈T

[O(t)s − I(t)s]xt

=
∑

c∈C

( ∑

t:O(t)=c

csxt −
∑

t:I(t)=c

csxt
)

=
∑

c∈C

cs
( ∑

t:O(t)=c

xt −
∑

t:I(t)=c

xt
)
.

Using (6), this last sum is equal to 0.
The inequality rank(A) ≥ rank(N) is equivalent to dim ker(A) ≤ dim ker(N),

which follows immediately from (5).
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The second central notion is weak reversibility.

Definition 1.5 (Weak reversibility). A Petri net is weakly reversible (WR)
if every connected component of the reaction graph is strongly connected.

Weak reversibility is a restrictive property, see Section 3.3. It is im-
portant to observe that a connected and weakly reversible Petri net is not
necessarily strongly connected. An example is given below.

p ∅ p

Elementary circuits of the reaction graph can be identified with the so-
called “minimal closed support T-invariants” of the Petri net literature (see
[5]). In particular, a Petri net is weakly reversible if and only if it is covered
by minimal closed support T-invariants. Such Petri nets are called Π-nets
in [14].

Weak reversibility and deficiency 0. Weak reversibility and deficiency
0 are two independent properties, see Figure 2. The upper-left Petri net is
an instance of the famous “dining philosopher” model. The Petri nets in
Fig. 2 are live and bounded except for the upper-right one.

WR, δ = 0 Not WR, δ = 0

WR, δ > 0 Not WR, δ > 0

Figure 2: Deficiency zero and weak reversibility are independent.

Algorithmic complexity. Weak reversibility and deficiency 0 are algo-
rithmically simple to check. Let us determine the time complexity of the
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algorithms with respect to the size of the Petri net (number of places and
transitions).

Observe first that the number of complexes is bounded by 2T . Building
the reaction graph from the Petri graph can be done in time O(PT 2). A
depth-first-search algorithm on the reaction graph enables to check the weak
reversibility and to compute the number of connected components (ℓ). The
DFS algorithm runs in time O(PT ). Computing the rank of the incidence
matrix can be done in time O(PT 2) using a Gaussian elimination.

Globally the complexity is O(PT 2) for computing the deficiency as well
as for checking weak-reversibility.

1.3 Markovian Petri nets with race policy

A Petri net is a logical object with no physical time involved. There exist
several alternative ways to define timed models of Petri nets, see for instance
[1, 4]. We consider the model of Markovian Petri nets with race policy. The
rough description is as follows.

With each enabled transition is associated a “countdown clock” whose
positive initial value is set at random. When a clock reaches 0, the corre-
sponding transition fires. This changes the set of enabled transitions and
all the clocks get reinitialized. The initial values of the clocks are chosen
independently, according to an exponential distribution whose rate depends
on the transition and on the current marking. With probability 1, no two
clocks reach zero at the same time so the model is unambiguously defined.
Enabled transitions are involved in a “race”: the transition to fire is the one
whose clock will reach zero first.

We now proceed to a formal definition of the model.
When I(t) = O(t), the firing of transition t does not modify the marking,

nor the distribution of the value of the clocks (memoryless property of the
exponential). Without loss of generality, we assume from now on that I(t) 6=
O(t) for all t.

Definition 1.6 (Markovian Petri net with race policy). A Markovian Petri
net (with race policy) is formed by a Petri net (P,T ,F , I, O,M0) and a set
of rate functions (µt)t∈T , µt : R(M0) → R∗

+, satisfying

µt(M) =

{
κtΨ(M − I(t))Φ(M) if M > I(t)

0 otherwise
, (7)

for some constants κt ∈ R∗
+, t ∈ T , and some functions Ψ and Φ valued in

R∗
+. The marking evolves as a continuous-time jump Markov process with
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state space R(M0) and infinitesimal generator Q = (qM,M ′)M,M ′, given by:

∀M, ∀M ′ 6= M, qM,M ′ =
∑

t:M
t−→M ′

µt(M), ∀M, qM,M = −
∑

M ′ 6=M

qM,M ′ .

(8)

The shape (8) for the infinitesimal generator is the transcription of the
informal description given at the beginning of the section.

The condition (7) for the rate functions (µt)t∈T is the same as the one in
[15] and [14, Section 2]. (In [14, Section 3], an even more general shape for
the rate function is considered.) Condition (7) is specifically cooked up in
order for the product form result of Theorem 2.1 to hold, which explains its
artificial shape. This general condition englobes two classical types of rate
functions: the constant rates and the mass-action rates.

Constant rates. In the Petri net literature, the standard assumption
is that the firing rates are constant:

∃κt ∈ R∗
+, ∀M ∈ R(M0), I(t) 6 M, µt(M) = κt . (9)

Mass-action rates. In the chemical literature, the rate is often pro-
portional to the number of different subsets of tokens (i.e. molecules) that
can be involved in the firing (i.e. reaction). More precisely:

∀M ∈ R(M0), I(t) 6 M, µt(M) = κt
∏

p:I(t)p 6=0

Mp!

(Mp − I(t)p)!
. (10)

Such rates are said to be of mass-action form and the corresponding stochas-
tic process has mass-action kinetics. To obtain (10) from (7), set Φ,Ψ−1 :
NP → R∗

+, x 7→ ∏
p xp!.

2 Product form results

We are interested in the equilibrium behavior of Markovian Petri nets. This
section presents the product form results which exist in the literature. We
gather results which were spread out, obtained independently either in the
Petri net community, or in the chemical one.

Let Q be the infinitesimal generator of the marking process. An invariant
measure π of the process is characterized by the balance equations πQ = 0,
that is: ∀x ∈ R(M0),

π(x)
∑

t:x>I(t)

µt(x) =
∑

t:x>O(t)

π(x+ I(t)−O(t))µt(x+ I(t)−O(t)) . (11)
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A stationary distribution is an invariant probability measure. It is char-
acterized by πQ = 0,

∑
x π(x) = 1. If π is an invariant measure and

K =
∑

x∈R(M0)
π(x) < +∞, then π/K = (π(x)/K)x is a stationary dis-

tribution.

When the marking graph is strongly connected, the marking process is
irreducible. It follows from the basic Markovian theory that the stationary
distribution is unique when it exists (the ergodic case). When the state
space is finite, irreducibility implies ergodicity.

2.1 Non-linear traffic equations and Kelly’s Theorem

Definition 2.1 (Non-linear traffic equations). Consider a Markovian Petri
net with general rates. Let C be the set of complexes. We call non-linear
traffic equations (NLTE) the equations over the unknowns (xp)p∈P defined
by: ∀C ∈ C,

∏

p:Cp 6=0

x
Cp
p

∑

t:I(t)=C

κt =
∑

t:O(t)=C

κt
∏

p:I(t)p 6=0

x
I(t)p
p . (12)

(With the usual convention that the empty product is 1.)

The NLTE can be viewed as a kind of balance equations (what goes in
equals what goes out) at the level of complexes. Their central role appears
in the next theorem which is essentially due to Kelly [17, Theorem 8.1] (see
also [2, Theorem 4.1]). In Kelly’s book, the setting is more restrictive, but
the proof carries over basically unchanged.

Theorem 2.1 (Kelly). Consider a Markovian Petri net. Assume that the
NLTE (12) admit a strictly positive solution (up)p∈P . Then the marking
process of the Petri net has an invariant measure π defined by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

u
xp
p . (13)

We then say that π has a product form: π(x) decomposes as a product
over the places p of terms depending only on the local marking xp.

Observe that π(x) > 0 for all x in (13). In particular it implies that the
marking process is irreducible. On the other hand, the measure defined in
(13) may have a finite or infinite mass. When it has a finite mass, the mark-
ing process is ergodic, and the normalization of π is the unique stationary
distribution.

In the case of mass-action rates (10), we get

∑

x∈R(M0)

π(x) =
∑

x∈R(M0)

∏

p∈P

u
xp
p

xp!
6

∑

x∈NP

∏

p∈P

u
xp
p

xp!
= exp(

∑

p

up) < +∞ .
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So we are always in the ergodic case. For constant rates (9), if the state space
R(M0) is infinite, the ergodicity depends on the values of the constants κt.

Theorem 2.1 is the core result. Below, all the developments consist in
determining conditions under which Theorem 2.1 applies. More precisely,
we want conditions on the model ensuring the existence of a strictly positive
solution to the NLTE and the finiteness of the measure π. The ideal situation
is as follows:

• structural properties of the Petri net (i.e. independent of the firing
rates) ensure the existence of a strictly positive solution to the NLTE;

• conditions on the firing rates ensure the finiteness of the measure π.

2.2 Linear traffic equations and Haddad & al’s Theorem

Solving the non-linear traffic equations is still a challenging task. We may
avoid a direct attack to these equations by considering a simpler system of
equations called the linear traffic equations.

Definition 2.2 (Linear traffic equations). We call linear traffic equations
(LTE) the equations over the unknowns (yC)C∈C defined by: ∀C ∈ C,

yC
∑

t:I(t)=C

κt =
∑

t:O(t)=C

κtyI(t) . (14)

Furthermore, if ∅ ∈ C, then y∅ = 1.

The NLTE and the LTE are clearly linked.

Lemma 2.1. If the NLTE (12) have a strictly positive solution u = (up)p∈P ,
then v = (vC)C∈C ,

vC =
∏

p:Cp 6=0

u
Cp
p , (15)

is a strictly positive solution to the LTE (14).

For a partial converse statement, see Lemma 2.2. The following proposi-
tion provides a simple and structural criterium for the existence of a strictly
positive solution to the LTE.

Proposition 2.1. The following statements are equivalent:

• ∃(κt)t∈T such that the equations (14) have a strictly positive solution.

• ∀(κt)t∈T , the equations (14) have a strictly positive solution.

• The Petri net is weakly reversible.
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Proofs can be found in [5, Theorem 3.5] or [11, Corollary 4.2]. We recall
the argument from [5] which is simple and illuminating.

Proof. The reaction process is a continuous-time Markov process, analog to
the marking process, except that it is built on the reaction graph instead of
the marking graph. More precisely, the state space is the set of complexes
C and the infinitesimal generator Q̃ = (q̃u,v)u,v is defined by:

∀u 6= v, q̃u,v =
∑

t:I(t)=u,O(t)=v

κt .

(The discrete-time version of this process was introduced in [15] under the
name “routing process”.) The key observation is that the LTE (14) are
precisely the balance equations yQ̃ = 0 of the reaction process. The result
now follows using standard Perron-Frobenius theory.

So weak reversibility is a necessary condition to have a strictly positive
solution to the NLTE, and to be able to apply Theorem 2.1. Unfortunately,
it is not a sufficient condition as shown by the following example.

Example 3. Let us consider a Markovian Petri net whose underlying Petri
net is shown in Figure 1, and is equivalently defined by the chemical reactions
(2). This is a weakly reversible Petri net, thus its LTE always have a strictly
positive solution regardless of the choice of the constants κt. The NLTE are:

κ1x1 = κ2x2 κ3x3 = κ4x4 κ5x1x3 = κ6x2x4 . (16)

The system (16) does not always have a strictly positive solution. For ex-
ample, set κ1 = κ2 = κ3 = κ4 = κ5 = 1, and κ6 = 2. Any solution to (16)
must satisfy either x1 = x2 = 0 or x3 = x4 = 0.

Depending on the values of the constants (κt)t, the Markovian Petri net
may or may not have a product form invariant measure. Anticipating on
Theorem 2.3, the deficiency of the Petri net has to be different from 0 for
this property to hold. And, indeed, we have rank(A) = 3 and rank(N) = 2
so the deficiency is equal to 1.

So now the goal is to find additional conditions on top of weak reversibil-
ity to ensure the existence of a product form.

An early result in this direction appears in Coleman, Henderson and
Taylor [6, Theorem 3.1]. The condition is not structural (i.e. rate depen-
dent) and not very tractable. The next result, due to Haddad, Moreaux,
Sereno, and Silva [14, Theorem 9], provides a structural sufficient condition.

Proposition 2.2. Consider a Markovian Petri net (set of complexes C).
Assume that the Petri net is weakly reversible. Let N be the incidence matrix
of the Petri net, see (1). Let A be the node-arc incidence matrix of the
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reaction graph, see (3). Assume that there exists a Q-valued (C ×P)-matrix
B such that BN = A. Then the marking process has an invariant measure
π given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

(∏

C∈C

v
BC,p

C

)xp ,

where v is a strictly positive solution to the LTE.

2.3 Deficiency zero and product form

Independently of the efforts in the Petri net community ([6, 14]), the fol-
lowing result was proved on the chemical side by Feinberg [11, Theorem
5.1].

Theorem 2.2 (Feinberg). Consider a Markovian Petri net. Assume that
the Petri net has deficiency 0. Then the NLTE have a strictly positive solu-
tion if and only if the network is weakly reversible.

By combining Theorems 2.1 and 2.2, we obtain the following result whose
formulation is original.

Theorem 2.3. Consider a Petri net which is weakly reversible and has
deficiency 0. Consider any associated Markovian Petri net. The NLTE
have a strictly positive solution (up)p and the marking process has a product
form invariant measure:

π(x) = Φ(x)−1
∏

p∈P

u
xp
p . (17)

If we assume furthermore that the rates are of mass-action type (10), then
the marking process is ergodic and its stationary distribution is:

π(x) = C
∏

p∈P

u
xp
p

xp!
,

where C =
(∑

x u
xp
p /xp!

)−1
.

The above result is interesting. Indeed, the “deficiency 0” condition
is structural and very simple to handle. We now prove that the result in
Theorem 2.3 is equivalent to the one in Proposition 2.2.

Proposition 2.3. Consider a Petri net. There exists a (C × P)-matrix B
such that BN = A (with the notations of Prop. 2.2) if and only if the Petri
net has deficiency 0.
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Proof. The deficiency of the Petri net is 0 iff rank(N) = rank(A).
Assume first that there exists a matrix B such that BN = A. Since

BN = A, we have rank(A) 6 rank(N). By Proposition 1.1, we also have
rank(A) > rank(N). Therefore the Petri net has deficiency 0.

We now prove the converse result. Assume that the Petri net has de-
ficiency 0. Set r = |C| − ℓ. We have rank(A) = rank(N) = r. Since
rank(A) = r, we know that there exists an invertible and Q-valued (T ×T )-
matrix Q such that the first r column vectors of AQ are linearly independant
and the last (|T | − r) column vectors are (0, . . . , 0)T . According to (5), the
last (|T | − r) column vectors of NQ are (0, . . . , 0)T . But rank(N) = r, so
the first r column vectors of NQ must be linearly independant. Denote by
AQ1, . . . , AQr, resp. NQ1, . . . , NQr, the first r column vectors of AQ, resp.
NQ. Since the two families are independent, we know that there exists a
Q-valued (C × P)-matrix B such that BNQi = AQi, for all i = 1, . . . , r. In
other words,

BNQ = AQ . (18)

Finally, right-multiplying both sides of (18) by Q−1, we obtain BN = A.

Roadmaps. The main results are summarized in the diagram of Figure
3. In the diagram, (N)LTE is a shorthand for: “the (N)LTE have a strictly
positive solution”.

Figure 3: Roadmap of the results

The implications which do not appear on Figure 3 are false. The counter-
examples are summarized on Figure 4. (Using Lemma 2.1 and Prop. 2.1,

14



any Petri net of deficiency 0 and not WR is a counter-example to [“deficiency
0” =⇒ “NLTE for some rates”].)

Figure 4: Roadmap of the counter-examples

The product form property depends on the initial marking via the reach-
ability set, while the other properties appearing in Figure 3 do not depend
on it by definition. This provides a striking picture. In fact, for Petri nets
which are weakly reversible and have deficiency zero, when the initial mark-
ing varies, the product form remains the “same” but is defined on different
state spaces. We illustrate this point in §2.4, and we come back to it in §2.7.

2.4 A detailed example

Consider the Petri graph represented on the left of Figure 5. The corre-
sponding reaction graph is given on the right of the figure.

The reaction graph is strongly connected so the Petri graph is weakly
reversible. The incidence matrices N and A are given by (indices are ranked
as (p, q, r), (t1, t2, t3), and (2p, p + q + r, 2q)):

N =




−1 2 −1
1 −2 1
1 0 −1


 , A =




−1 1 0
1 0 −1
0 −1 1


 .

We check that rank(A) = rank(N) = 2, so the deficiency is 0. We are in
the scope of application of the results of Section 2.3.

Denote a marking M by the triple (Mp,Mq,Mr). Consider the two
Petri nets corresponding to the above Petri graph with two different initial
markings: (2, 0, 0) and (3, 0, 0).
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pq

r

t2

t3

t1

2 2

2

2

2p p+ q + r

2q

t1

t2 t3

Figure 5: A Petri graph and its reaction graph.

The two Petri nets have a drastically different behaviour. The first one
is live and bounded, while the second one if live and unbounded. The sets
of reachable markings are, respectively,

R(2, 0, 0) =
{
(2, 0, 0), (1, 1, 1), (0, 2, 0)

}

R(3, 0, 0) =
{
(1, 2, 0), (0, 3, 1)

}
∪
{
(i, 3 − i, 2n + 1− i), 0 ≤ i ≤ 3, n ≥ 1

}

For the initial marking (2, 0, 0), the marking graph is the elementary
circuit (2, 0, 0) −→ (1, 1, 1) −→ (0, 2, 0) −→ (2, 0, 0). For the initial marking
(3, 0, 0), the marking graph is represented in Figure 6. The dashed arrows
correspond to transition t1, the dash-and-dotted ones to t2, and the plain
ones to t3.

(0, 3, 1)

(1, 2, 0)

(0, 3, 3)

(1, 2, 2)

(2, 1, 1)

(3, 0, 0)

(0, 3, 2n − 1)

(1, 2, 2n − 2)

. . .

(0, 3, 2n + 1)

(1, 2, 2n)

(2, 1, 2n − 1)

(3, 0, 2n − 2)

. . .

(1, 2, 2n + 2)

(2, 1, 2n + 1)

(3, 0, 2n)

. . . . . .

Figure 6: Marking graph with the initial marking (3, 0, 0).

Consider the Markovian Petri nets associated with the above Petri nets
and constant firing rates (κ1, κ2, κ3) for (t1, t2, t3). The NLTE over the
unknowns (xp, xq, xr) are given by

κ1x
2
p = κ2x

2
q, κ3xpxqxr = κ1x

2
p, κ2x

2
q = κ3xpxqxr .

A strictly positive solution to the NLTE is (
√
κ2/

√
κ1, 1 ,

√
κ1κ2/κ3).

Let R denote the set of reachable markings. According to Theorem 2.3, the
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invariant measure π is given by

∀m = (mp,mq,mr) ∈ R, π(m) = κ
(mr−mp)/2
1 κ

(mp+mr)/2
2 κ−mr

3 . (19)

The invariant measure is expressed in exactly the same way for the two Petri
nets. But it corresponds to two very different situations.

For the initial marking (2, 0, 0), we have |R| = 3, the model is ergodic
and the unique stationary distribution p, obtained by normalization of (19),
is given by

p(2, 0, 0) = C−1κ2κ3, p(1, 1, 1) = C−1κ1κ2, p(0, 2, 0) = C−1κ1κ3 ,

with C = κ1κ2 + κ2κ3 + κ1κ3.

For the initial marking (3, 0, 0), we have |R| = ∞, and the model is
ergodic if and only if the following stability condition is satisfied

κ1κ2 < κ23 .

It is interesting to observe that we get a non-linear stability condition.

2.5 Additional results

The statements of Proposition 2.2 and Theorem 2.3 differ in that they rely
respectively on the LTE and the NLTE. In particular, it seems at first glance
that Prop. 2.2 manages to bypass the NLTE. But it is not the case: the
NLTE are hidden in the matrix B, see below.

Lemma 2.2. Consider a weakly reversible Markovian Petri net. Assume
that there exists a Q-valued matrix B such that BN = A (notations of
Prop. 2.2). Let v = (vC)C∈C be a strictly positive solution to the LTE. Then

u = (up)p∈P , up =
∏

C∈C v
BC,p

C is a strictly positive solution to the NLTE.

Proof. For each transition t, we have:
∏

p

u
I(t)p−O(t)p
p =

∏

p

u
−Np,t
p =

∏

p

(∏

C

v
BC,p

C

)−Np,t

=
∏

C

v
−

∑
p BC,pNp,t

C =
∏

C

v
−AC,t

C =
vI(t)

vO(t)
.

Then we have
[
u strictly positive sol. NLTE

]
⇐⇒ ∀C,

∑

I(t)=C

κt =
∑

O(t)=C

κt
∏

p

u
I(t)p−O(t)p
p

⇐⇒ ∀C,
∑

I(t)=C

κt =
∑

O(t)=C

κt
vI(t)

vO(t)

⇐⇒
[
v strictly positive sol. LTE

]
.
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Let us comment on a specific point. Consider Theorem 2.3. The in-
variant measure is defined in fonction of a specific strictly positive solution
to the NLTE. However, it is easily seen that the NLTE may have several
strictly positive solutions. Is this contradictory with the uniqueness of the
stationary measure in the ergodic case ? In the non-ergodic case, do we get
several invariant measures ? The next result answers these questions.

Lemma 2.3. Assume that the Petri net is weakly reversible and has defi-
ciency 0. Let u, ũ be solutions to the NLTE and π, π̃ be the corresponding
invariant measures (given by (17)). Then there exists a constant K such
that for all reachable marking x, π̃(x) = Kπ(x).

Proof. It suffices to show that

π(x− I(t) +O(t))

π(x)
=

π̃(x− I(t) +O(t))

π̃(x)
, (20)

for all reachable marking x and for all enabled transition t of x. Define
v = (vC)C∈C , and ṽ = (ṽC)C∈C by

vC =
∏

p

u
Cp
p , ṽC =

∏

p

ũ
Cp
p .

According to Lemma 2.1, v and ṽ are solutions to the LTE. Equality (20)
holds if and only if

∏

p

u
O(t)p−I(t)p
p =

∏

p

ũ
O(t)p−I(t)p
p ⇐⇒

vO(t)

vI(t)
=

ṽO(t)

ṽI(t)
⇐⇒

ṽO(t)

vO(t)
=

ṽI(t)

vI(t)
.

The last equality is proved by Feinberg in [11, Proposition 4.1].

2.6 Algorithmic complexity

Let us compare Proposition 2.2 and Theorem 2.3 from an algorithmic point
of view.

In both cases, one needs to check weak reversibility. Using Proposition
2.1, weak reversibility is equivalent to the existence of a strictly positive
solution to the LTE. This last point can be checked in time O(C3). Then
the procedures diverge.

• Proposition 2.2. We need to compute the matrix B satisfying BN = A.
This requires to solve C linear systems of dimension P × T . So the
time-complexity is O(CPT 2) using Gaussian elimination.

• Theorem 2.3. We have seen in Section 1.2 that the deficiency 0 con-
dition can be checked in time O(PT 2). Then one needs to compute
a strictly positive solution to the NLTE. This can be done as follows.
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Consider (15), apply the logarithm operation on both sides and solve
the linear system. The corresponding time-complexity is O(PC2) (=
O(PT 2) since |C| ≤ 2|T |).

We conclude that it is more efficient asymptotically to determine the
product form by using the characterization in Theorem 2.3.

2.7 A product form Petri net with no solution to the NLTE

We have seen above that the existence of a strictly positive solution to the
NLTE is a sufficient condition for the existence of a product form. However,
it is not a necessary condition, and we now provide a counter-example.

p2

p3

p1 p4

t1

t2

t3

(1, 0, 1, 0) (1, 1, 0, 0)

(0, 2, 0, 1)(0, 0, 2, 1) (0, 1, 1, 1)

t2

t2 t2

t3 t3t1 t1

Figure 7: A product form Petri net which is not weakly reversible and has
deficiency 1.

Consider the Petri graph of Figure 7. It is not weakly reversible, so in
particular there is no strictly positive solution to the NLTE. Furthermore,
the deficiency is 1.

Consider the initial marking M0 = (1, 1, 0, 0). The marking graph is
given on the right of Figure 7. By solving directly the balance equations of
the Marking process, we get:

π(1010) =
C

µ1µ3
, π(1100) =

C

µ1µ2
, π(0111) =

C

µ2µ3
, π(0201) =

C

µ2
2

, π(0021) =
C

µ2
3

.

We have π(x, y, z, t) = C(1/µ1)
x(1/µ2)

y(1/µ3)
z. So the Petri net has a

product form.
Consider now the same Petri graph with a new initial marking M ′

0 =
(1, 1, 1, 1). The marking graph is still finite (9 states), strongly connected but
we no longer have a product form stationary distribution. Indeed, suppose
that π(x, y, z, t) = Caxbyczdt where a, b, c, d are strictly positive constants.
The balance equations for M1 = (2, 1, 0, 0) and M2 = (1, 2, 0, 1) are:

µ3
cd

a
= µ1 + µ2 , µ1

a

bd
+ µ3

cd

a
= µ1 + µ2 .
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These equations cannot be simultaneously satisfied, so the stationary distri-
bution is not of product form.

To summarize, as opposed to the case of “weakly reversible and deficiency
0” Petri nets, the existence of a product form depends on the initial marking.

3 Markovian free-choice nets and product form

The class of Petri nets whose Markovian versions have a product form is
an interesting one. It is therefore natural to study how this class intersects
with the classical families of Petri nets: state machines and free-choice Petri
nets.

The central result of this section is, in a sense, a negative result. We
show that within the class of free-choice Petri nets, the only ones which are
weakly reversible are closely related to state machines. We also show that
the Markovian state machines are “equivalent to” Jackson networks. The
latter form the most basic and classical examples of product form queueing
networks.

From now on, we consider only non-weighted Petri nets, that is Petri
nets with I,O : T → {0, 1}P . In this case, the input/output bags can be
retrieved from the flow relation F and we can define the Petri net as a
quadruple (P,T ,F ,M0). We also identify complexes with subsets of P.

For a node x ∈ T ∪ P, set •x = {y : (y, x) ∈ F} and x• = {y : (x, y) ∈
F}. For a set of nodes S ⊂ T ∪ P, set •S =

⋃
x∈S

•x and S• =
⋃

x∈S x
•.

3.1 State machines

Definition 3.1 (State machine and generalized state machine). A non-
weighted Petri net N = (P,T ,F ,M0) is a:

• State machine (SM) if for all transition t, |•t| = |t•| = 1;

• Generalized state machine (GSM) if for all transition t, |•t| ≤ 1, |t•| ≤
1.

Definition 3.2 (Associated state machine). Given a GSM N = (P,T ,F ,M0),
the associated state machine is N ′ = (P ′,T ,F ′,M ′

0) where:

• P ′ = P ∪ {p}, p /∈ P ,

• F ′ = F ∪ {(p, t), t ∈ T , |•t| = 0} ∪ {(t, p), t ∈ T , |t•| = 0} ,

• ∀x ∈ P, M ′
0(x) = M0(x), M ′

0(p) = 0 .
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The figure below shows, from left to right, a SM, a GSM and its associ-
ated SM.

p

Lemma 3.1. The reaction graph and the Petri graph of a state machine
are isomorphic. The reaction graph of a GSM and the Petri graph of its
associated SM are isomorphic.

Proof. In a SM, each complex is just one place. Starting from the Petri
graph and replacing [p → t → q], p, q ∈ P, t ∈ T , by [p → q], we get the
reaction graph. For GSM, the mapping is the same with the empty complex
corresponding to the “new” place in the associated SM.

Corollary 3.1. A SM is weakly reversible iff each connected component is
strongly connected. A GSM is weakly reversible iff in the associated SM,
each connected component is strongly connected.

In a SM, the complexes are the places. So the NLTE and the LTE
coincide exactly. For a GSM, the complexes are the places and the empty
set. With the convention y∅ = 1, we still have that the NLTE and the LTE
coincide. The next proposition follows.

Proposition 3.1. Consider a weakly reversible GSM. For every rates (κt)t,
the NLTE have a strictly positive solution.

Proof. In the weakly reversible case, the LTE have a strictly positive solution
for every choice of the rates, Proposition 2.1. Therefore the NLTE have a
strictly positive solution for every choice of the rates.

The above proof does not require Feinberg’s Theorem 2.2. However, it
turns out that the deficiency is 0, which provides a second proof of Prop.
3.1 using Theorem 2.2.

Proposition 3.2. Generalized state machines have deficiency 0.

Proof. Consider first a state machine. Let N be the incidence matrix, and
let A be the node-arc incidence matrix of the reaction graph, see (3). Using
Lemma 3.1, we get immediately that A = N . So, in particular, we have
rank(A) = rank(N) and the deficiency is 0.

Consider now a GSM N and its associated SM N ′. Call C (resp. C′), N
(resp. N ′) and ℓ (resp. ℓ′) the set of complexes, the incidence matrix and
the number of connected components of the reaction graph of N (resp. N ′).
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Since N and N ′ have the same reaction graph (Lemma 3.1), we have:

|C| = |C′| , ℓ = ℓ′ . (21)

By construction of N ′, N ′ is N augmented with a row (xt)t∈T defined
by xt = 1{t•=∅} − 1{•t=∅} (where t• and •t are defined in N ). We have
rank(N ′) ≥ rank(N). On the other hand, observe that ∀t ∈ T , xt =
−∑

s∈P Ns,t, so N ′ = BN , where B is the P×P identity matrix augmented
with the row (−1, . . . ,−1). Hence rank(N ′) = rank(BN) ≤ rank(N). So:

rank(N ′) = rank(N) . (22)

Together (21) and (22) imply that N and N ′ have the same deficiency.
Since N ′ is a SM, it has deficiency zero, so N also has deficiency zero.

By coupling Proposition 3.1 and Theorem 2.1, or alternatively Proposi-
tion 3.2 and Theorem 2.3, we get the result below.

Theorem 3.1. Consider a Markovian weakly reversible GSM. The defi-
ciency is 0. The NLTE have a strictly positive solution (up)p. The marking
process admits a product form invariant measure given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏

p∈P

u
xp
p .

If ∅ 6∈ C, the state space R(M0) is finite, the marking process is ergodic, and
π can be normalized to give a product form stationary distribution: ∀x ∈
R(M0),

π̃(x) = BΦ(x)−1
∏

p∈P

u
xp
p ,

where B =
(∑

x∈R(M0)
Φ(x)−1

∏
p∈P u

xp
p

)−1
.

Theorem 3.1 is far from a surprising or new result, as we now show.

3.2 Jackson networks

The product form result for Jackson networks is one of the cornerstones of
Markovian queueing theory. It was originally proved by Jackson [16] for
open networks and by Gordon & Newell [13] for closed networks.

Consider a Markovian weakly reversible SM with constant rates (κt)t∈T .
It can be transformed into a Jackson network as follows:

• A place s becomes a simple queue, that is a single server Markovian
queue with an infinite buffer. The service rate at queue s is µs =∑

t∈s• κt.
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• The routing matrix P of the Jackson network is the stochastic matrix
defined by:

∀u, v ∈ P, Pu,v =

{
µ−1
u

∑
t:•t=u,t•=v κt if ∃t ∈ T , u → t → v

0 otherwise
.

• A token in place s becomes a customer in queue s.

Consider now a Markovian weakly reversible GSM with constant rates
(κt)t∈T . On top of the above transformations, we do the following:

• A transition t with •t = ∅ becomes an external Poisson arrival flow of
rate κt in queue t•.

The routing matrix P is now substochastic. Indeed, if the transition t is
such that t• = ∅, then ∑

v P•t,v < 1.

In the SM case, the Jackson network is closed, that is without arrivals
from nor departures to the outside. In the GSM case with input and output
transitions, the Jackson network is open.

A Jackson network can be translated into a Markovian (G)SM using the
reverse construction.

The two models are identical in a strong sense. Precisely, the marking
process of the state machine and the queue-length process of the Jackson
network have the same infinitesimal generator.

κ2

κ1

κ3

κ1 + κ2 + κ3 p2

p1

p3

pi = κi/
∑

j κj

Figure 8: From (generalized) state machine (left) to Jackson network (right).

The classical product form results for Jackson networks (Jackson [16]
and Gordon & Newell [13]) are exactly the translation via the above trans-
formation of Theorem 3.1. In the open case, the weak-reversibility implies
the classical “without capture” condition of Jackson networks.

The above transformation from GSM to queueing network can also be
performed in the case of general rate functions of type (7). Queueing net-
works with those rate functions are called Whittle networks in the literature.
The existence of product form invariant measures for these networks is a
classical result, see for instance [24] and the references therein.
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3.3 Free-choice Petri nets

We study the family of live and bounded free-choice nets. This is an impor-
tant class of Petri nets realizing a nice compromise between modelling power
and tractability, see the dedicated monography of Desel & Esparza [8]. We
show that the only such Petri nets having a product form are, in a sense,
the GSM.

Definition 3.3 (Free-choice Petri net). A free-choice Petri net is a non-
weighted Petri net (P,T ,F ,M0) such that: for every two transitions t1 and
t2, either

•t1 =
•t2 or •t1 ∩ •t2 = ∅.

Some authors call the above an extended free-choice Petri net and have
a more restrictive definition for free-choice Petri nets.

In the figure below, the Petri net on the left is free-choice, while the one
on the right is not free-choice.

Figure 9: Free-choice (left) and non free-choice (right) Petri nets.

Definition 3.4 (Cluster). The cluster of a node x ∈ P ∪T , denoted by [x],
is the minimal set of nodes such that: (i) x ∈ [x] ; (ii) ∀t ∈ T : t ∈ [x] =⇒
•t ⊂ [x] ; (iii) ∀p ∈ P : p ∈ [x] =⇒ p• ⊂ [x] .

The clusters form a partition of the set of nodes, see [8, Proposition 4.5],
and therefore of the places. Moreover, we have the following.

Lemma 3.2. Consider a weakly reversible free-choice Petri net. The non-
empty complexes are disjoint subsets of P. The partition of P induced by
the non-empty complexes is the same as the partition of P induced by the
clusters.

Proof. In a weakly reversible free-choice Petri net, the non-empty complexes
are also non-empty input bags, which are disjoint according to the definition
of free-choiceness.

It follows from the definition of clusters that every non-empty input bag
is entirely contained in a cluster. This cluster is unique because the clusters
partition the set of places. Let I be a non-empty complex (which is also
a non-empty input bag). Denote by [I] the cluster containing I. We have
I• ⊂ [I], so I ∪ I• ⊂ [I]. Since the Petri net is free-choice, •t = I for all
t ∈ I•. The set I ∪ I• satisfies the three conditions of the definition of
clusters, so we have [I] ⊂ I ∪ I•. We conclude that [I] = I ∪ I• and I is the
set of places of the cluster [I].
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Conversely, let [x] be a cluster such that [x]∩P 6= ∅. Let I be a non-empty
input bag contained in [x]. We have, using the above, [I] = I ∪ I• ⊂ [x]. By
minimality, [I] = [x] and [x] ∩ P = I.

The above result is not true for a non-WR free-choice Petri net. Consider
for instance the Petri net represented in the upper-right part of Figure 2.

Under the assumptions of Lemma 3.2, the non-empty complexes are dis-
joint. Thus each non-empty complex behaves as if it was a “big place”.
Consider the operation which reduces each non-empty complex to a single
place. The resulting Petri net is a generalized state machine. And this gen-
eralized state machine is weakly reversible because the original free-choice
Petri net was weakly reversible. Let us define all this more formally.

Definition 3.5 (Reduced generalized state machine). Let N = (P,T ,F ,M0)
be a weakly reversible free-choice Petri net with set of complexes C. We
call the reduced generalized state machine (RGSM) of N the GSM RN =

(C \ {∅},T , F̃ , M̃0) where:

• F̃ = {(•t, t), (t, t•), t ∈ T };

• M̃0 is defined by: ∀C ∈ C \ {∅}, M̃0(C) = minp∈C M0(p).

The Petri graph of RN is the reaction graph of N reinterpreted as a
Petri graph (the nodes of the reaction graph are the places, and a transition
is added to each arc).

Lemma 3.3. Let N be a weakly reversible free-choice Petri net and RN its
RGSM. The marking graph of RN is isomorphic to the one of N . If N and
RN are Markovian with the same rates then the two marking processes are
“identical”, meaning that they have the same infinitesimal generator.

Proof. Consider two places p and q belonging to the same complex. Since the
complexes are disjoint, Lemma 3.2, each time p gains (resp. loses) a token,
so does q. So the difference Mp − Mq is invariant over all the reachable
markings M . It has the following consequence.

Consider f : R(M0) → NC\∅ defined by f(M)C = minp∈C M(p). If

M
t−→ M ′ in N then f(M)

t−→ f(M ′) in RN . So f(R(M0)) = R(M̃0) and
the marking graph of RN is the marking graph of N up to a renaming of
the nodes.

Since the marking graphs are the same, the infinitesimal generators are
also identical if the two Petri nets have the same rates.

One could introduce the RGSM associated with a non-WR free-choice
Petri net as in Definition 3.5, see Figure 10. But in this case Lemma 3.3
does not hold, and the two marking graphs may have nothing in common.
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Now let us compare the structural characteristics of the original free-
choice Petri net N and of the reduced generalized state machine RN .

p

q r

q

r

p q + r

Figure 10: A non-WR free-choice net and the associated RGSM.

Lemma 3.4. Let N be a weakly reversible free-choice Petri net. The RGSM
RN is weakly reversible and has the same deficiency as N .

Proof. The weak reversibility of RN follows directly from the definition of
reduced generalized state machines.

The Petri graph of RN is isomorphic to its reaction graph, Lemma
3.1. Now by construction, N and RN have the same reaction graph. So
the number of complexes and the number of connected components of the
reaction graph do not change. Call N and N ′ the incidence matrices of N
and RN respectively. Let C be an arbitrary complex, let p, p′ be two places
of C. For every transition t, we have Np,t = Np′,t = N ′

C,t, which implies that
rank(N) = rank(N ′). So the two Petri nets have the same deficiency.

Corollary 3.2. Weakly reversible free-choice Petri nets have deficiency 0.

Now all the results for weakly reversible GSM can be applied to weakly
reversible free-choice Petri nets. We get the following.

Theorem 3.2. Repeat the statement of Theorem 3.1 with “free-choice Petri
net” replacing “GSM”.
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