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Abstract. A tissue P system with cell division is a computing model which has two basic features: 
intercellular communication and the ability of cell division. The ability of cell division allows us to 
obtain an exponential amount of cells in linear time and to design cellular solutions to computation-ally 
hard problems in polynomial time. In this work we present an efficient solution to the tripartite 
matching problem by a family of such devices. This solution leads to an interesting open problem
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whether tissue P systems with cell division and communication rules of length 2 can solve NP-complete 
problems. An answer to this open problem will provide a borderline between efficiency and non-efficiency in 
terms of the lengths of communication rules.
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1. Introduction

Membrane computingis an emergent branch of natural computing, which is inspired by the structure
and the functioning of living cells [10], as well as the organization of cells in tissues, organs, and other
higher order structures. It provides distributed parallel and non-deterministic computing models called
P systems. Since being introduced by Gh. Păun in 1998, membrane computing has received impor-
tant attention from the scientific community. As computer scientists, biologists, formal linguists and
complexity theoreticians plug into this area, it has definitely become a rich and exciting realm of cross-
disciplinary research. Please refer to [11, 13] for an introduction of membrane computing, and refer to
[14] for further bibliography.

In last years, many different classes of P systems have been investigated. The most studied variants
are thecell-like P systems, where membranes are hierarchically arranged in a tree-like structure. Most of
them arecomputationally universal, i.e., able to compute whatever a Turing machine can do, as well as
computationally efficient, i.e., able to trade space for time and solve in this way presumably intractable
problems in a feasible time (e.g., [1, 2, 8]).

Another interesting class of P systems aretissue P systems, where instead of considering a hierarchi-
cal arrangement, membranes are placed in the nodes of a graph. Tissue P systems are an abstraction of
communicating and cooperating cells in tissues [7], where the membrane structure did not change along
the computation. However, alive tissues are not static network of cells, since new cells are generated by
membrane fission in a natural way. With this biological inspiration,tissue P systems with cell division
were introduced [12].

One of the main features of tissue P systems with cell division is related to their computational effi-
ciency. Specifically, tissue P systems with cell division can solveNP-complete problems in polynomial
time (even linear time), e.g., the subset sum problem [4], the partition problem [5], and the 3-coloring
problem [3]. The 3-coloring problem isNP-complete, andtripartite matching problem(TMP) also be-
longs to the class ofNP-complete problems, so tripartite matching problem can be reduced to 3-coloring
problem in polynomial time. But it still remains open how one can compute the reduction of anNP prob-
lem to anotherNP-complete problem by P systems. In this work, we give a direct solution to tripartite
matching problem in polynomial time by tissue P systems with cell division.

TheTMP can be described as following [9]:Given three setsB,G andH, each containingn elements,
and a setT of triples⊆ B×G×H. Decide whether there exists a subsetT ′ of T such that|T ′| = n and
no two of triples belong toT ′ have a component in common.In this work, for each sizen, a P system
with cell division is constructed for solving all instances ofTMP with sizen, where the computation time
is polynomial with respect ton.

For an instance ofTMP with setsB, G, H andT ⊆ B ×G×H, |B| = |G| = |H|, we can associate
a hypergraphG with the vertex setV (G) = B ∪G ∪H, the hyperedge setE(G) = T (that is, a triple in
T is a hyperedge inG). In this way,TMP can be restated to decide whether there exists a sub-hypergraph



G′ such thatV (G) = V (G′) and no two hyperedges ofE(G′) have a common vertex. In the hypergraph
version ofTMP, it is easy to see that the family of tissue P systems with cell division is independent of
the number of hyperedges. However, the family of P systems with cell division constructed in [3] for
the 3-coloring problem depends on the number of vertices and the number of edges. For instances of the
3-coloring problem with the same number of vertices, but with different number of edges, a family of
different P systems have to be constructed. The technique of constructing P systems given in this work
is an improvement of the construction in [3] in the sense that the family of P systems only depends on
the number of vertices.

The solution toTMP given in this work shows that the lengths of communication rules have essential
role for the efficiency of tissue P systems with cell division. Specifically, it leads to an interesting open
problem whether tissue P systems with cell division and communication rules of length 2 can solve NP-
complete problems. An answer to this open problem will provide a borderline between efficiency and
non-efficiency in terms of the lengths of communication rules.

The paper is organized as follows: some preliminaries are recalled in section 2, including the def-
inition of recognizer tissue P systems with cell division; a polynomial-time solution to the tripartite
matching problem is presented in section 3, with a short overview of the computation, and the informal
verification of the solution; some discussion is presented in section 4.

2. Preliminaries

An alphabetΣ is a non-empty set, whose elements are calledsymbols. A string is an ordered sequence
of symbols. The number of symbols in a stringu is thelengthof the string, and it is denoted by|u|. For
a setT , the notation|T | denotes the cardinality ofT . As usual, the empty string (with length 0) will be
denoted byλ. The set of strings of lengthn built with symbols from the alphabetΣ is denoted byΣn

andΣ∗ = ∪n≥0Σ
n. A languageoverΣ is a subset fromΣ∗.

A multisetm over a setA is a pair(A, f) wheref is a map fromA to the set of natural numbersN.
If m = (A, f) is a multiset then itssupportis defined assupp(m) = {x ∈ A | f(x) > 0} and itssizeis
defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support is the empty set (resp. finite).

If m = (A, f) is a finite multiset overA, andsupp(m) = {a1, . . . , ak}, then it will be denoted

asm = {{a
f(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate the multiplicity of each element, and if

f(x) = 0 for anyx ∈ A, then this element is omitted. Ifm1 = (A, f) andm2 = (A, g) are multisets
overA, then the union ofm1 andm2 is defined asm1m2 = (A,h), whereh = f + g.

A recognizer tissue P system with cell division of degreeq ≥ 1 is a tuple of the form

Π = (Γ,Σ,Ω, w1, . . . , wq,R, iin, iout), where:

• q ≥ 1 (the initial degree of the system; the system containsq cells, labeled with1, 2, · · · , q; all
theseq cells are placed in the environment; the environment is labeled with 0);

• Γ is the working alphabet, which contains two distinguished objectsyes andno, at least one copy
of them occurring in some initial multisetsw1, . . . ,wq, but not occurring inΩ;

• Σ is an input alphabet strictly contained inΓ;

• Ω ⊆ Γ is the set of objects occurring in the environment, each one in arbitrarily many copies;



• w1, . . . , wq are strings overΓ, describing the multisets of objects located in the cells of the system
at the beginning of the computation;

• R is a finite set of rules of the following forms:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ∗ (|u| + |v| is
called the length of the communication rule(i, u/v, j)).

(b) Division rules: [a]i → [b]i[c]i, wherei ∈ {1, 2, . . . , q}, a ∈ Γ andb, c ∈ Γ ∪ {λ}.

• iin ∈ {1, . . . , q} is the input cell;

• iout ∈ {0, 1, . . . , q} indicates the output region, whereiout = 0 denotes that the output region is
the environment;

• All computations halt (that is, they always reach a configuration where no further rule can be
applied);

• During a computation ofΠ, either the objectyes or the objectno (but not both) must be released
into the environment, and only in the last step of the computation.

When a division rule[a]i → [b]i[c]i is applied, all the objects in the original cells are replicated and
copies of them are placed in each of the new cells, with the exception of the objecta, which is replaced
by b ∈ Γ ∪ {λ} in the first new cell and byc ∈ Γ ∪ {λ} in the second one.

When a rule(i, u/v, j) is applied, the objects of the multiset represented byu are sent from regioni
to regionj and simultaneously the objects of the multisetv are sent from regionj to regioni.For a cell
in the systemΠ, it is possible to have more than one applicable communication rules in a step. These
applicable communication rules are used in non-deterministic maximally parallel manner (the system
non-deterministically chooses and applies a multiset of communication rules that is maximal, no further
rule can be added).

In general, the rules of a system as above are used in the non-deterministic maximally parallel man-
ner. In each step, all cells which can evolve must evolve in a maximally parallel way. This way of
applying rules has only one restriction: when a cell is divided, the division rule is the only one which is
applied for that cell in that step; the objects inside that cell do not evolve by means of communication
rules. Their labels precisely identify the rules which can be applied to them.

A configuration ofΠ at an instantt is described by the multisets of objects overΓ associated with
all the cells present in the system at that moment, and the multiset overΓ − Ω associated with the
environment at the instantt. All computations start from the initial configuration and proceed as defined
above. A computationC is called an accepting computation (respectively, rejecting computation) if
the objectyes (respectively,no) appears in the environment associated to the corresponding halting
configuration ofC, and only in the last step of the computation.

Definition 2.1. Let X = (IX , θX) be a decision problem, whereIX is a language over a finite alphabet
(whose elements are called instances) andθX is a total boolean function overIX (that is, a predicate).
The decision problemX is solvable in polynomial time by a familyΠ = {Π(n) | n ∈ N} of recognizer
tissue P systems with cell division if the following holds:



• The familyΠ is polynomially uniformby Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the systemΠ(n) from n ∈ N.

• There exists a pair(cod, s) of polynomial-time computable functions overIX such that:

− for each instanceu ∈ IX , s(u) is a natural number andcod(u) is an input multiset of the
systemΠ(s(u));

− the familyΠ is polynomially boundedwith regard to(X, cod, s), that is, there exists a poly-
nomial functionp, such that for eachu ∈ IX every computation ofΠ(s(u)) with input
cod(u) halts and, moreover, it performs at mostp(s(u)) steps;

− the familyΠ is soundwith regard to(X, cod, s), that is, for eachu ∈ IX , if there exists an
accepting computation ofΠ(s(u)) with input cod(u), thenθX(u) = 1;

− the familyΠ is completewith regard to(X, cod, s), that is, for eachu ∈ IX , if θX(u) = 1,
then every computation ofΠ(s(u)) with input cod(u) is an accepting one.

We denote byPMCTDC (respectively,PMCTDC(k)) the set of all decision problems which can be
solved by means of recognizer tissue P systems with cell division in polynomial time (respectively, by
using communication rules whose length is at mostk).

3. A Uniform Solution to TMP

3.1. A Uniform Family of Tissue P Systems with Cell Division for SolvingTMP

Let us consider an instance ofTMP with three setsB = {b1, · · · , bn}, G = {g1, · · · , gn}, H =
{h1, · · · , hn}, and a setT of triples⊆ B × G × H = {(bi, gj , hk) | 1 ≤ i, j, k ≤ n}. We address
the solution ofTMP via a brute force algorithm in the framework of recognizer tissue P systems with cell
division. Our strategy consists of the following phases:

• Generation Stage: Cell division is applied to generate an exponential number of cells such that
each possible subset of the setB ×G×H is encoded by exactly one cell.

• Checking Stage: The system checks whether or not there exists a subsetT ′ of T such that|T ′| = n
and no two triples belonging toT ′ have a component in common.

• Output Stage: The system sends to the environment the right answer according to the results of the
previous stage.

We shall construct a familyΠ = {Π(n) | n ∈ N} such that each systemΠ(n) will solve all instances
of TMP with the sizen of each of the finite setsB, G andH, provided that the appropriate input – the
ternary relationT ⊆ B ×G×H – is given.

For eachn ∈ N, the system

Π(n) = (Γ(n),Σ(n),Ω(n), w1, w2,R(n), iin, iout)

is constructed with the following components:



• Γ(n) = Σ(n) ∪ {ai,j,k, Ri,j,k, R̄i,j,k, R̃i,j,k, R
′
i,j,k | 1 ≤ i, j, k ≤ n}

∪ {bi | 1 ≤ i ≤ n3 + 4n+ 1} ∪ {ci | 1 ≤ i ≤ n3 + 4n+ 3}

∪ {f, g, yes, no}.

• Σ(n) = {Ai,j,k | 1 ≤ i, j, k ≤ n}.

• w1 = {{b1, c1, g, yes, no}}.

• w2 = {{ai,j,k | 1 ≤ i, j, k ≤ n}} ∪ {{f}}.

• R(n) is the set of rules:

(1) Division rule:
r1,i,j,k ≡ [ai,j,k]2 → [Ri,j,k]2[λ]2, for 1 ≤ i, j, k ≤ n.

(2) Communication rules:
r2,i ≡ (1, bi/b

2
i+1, 0), for 1 ≤ i ≤ n3;

r3,i ≡ (1, ci/ci+1, 0), for 1 ≤ i ≤ n3 + 4n+ 2;
r4 ≡ (1, bn3+1/f, 2);
r5,i,j,k ≡ (2, bn3+iRi,j,k/bn3+i+1R̄i,j,k, 0), for 1 ≤ i, j, k ≤ n;
r6,i,j,k ≡ (2, bn3+n+jR̄i,j,k/bn3+n+j+1R̃i,j,k, 0), for 1 ≤ i, j, k ≤ n;
r7,i,j,k ≡ (2, bn3+2n+kR̃i,j,k/bn3+2n+k+1R

′
i,j,k, 0), for 1 ≤ i, j, k ≤ n;

r8,i,j,k ≡ (2, bn3+3n+iR
′
i,j,kAi,j,k/bn3+3n+i+1, 0), for 1 ≤ i, j, k ≤ n;

r9 ≡ (2, bn3+4n+1/g yes, 1);
r10 ≡ (2, yes/λ, 0);
r11 ≡ (1, cn3+4n+3g no/λ, 2);
r12 ≡ (2, no/λ, 0).

• Ω(n) = Γ(n)− {yes, no}.

• iin = 2 is the input cell.

• iout = 0 is the output region (i.e., the environment).

3.2. An Overview of a Computation

First of all we define a polynomial encoding for the tripartitematching problem inΠ. Letu = (B,G,H,
T ) an instance of theTMP. Let the size mapping bes(u) = n and the encoding of instance becod(u) =
{Ai,j,k | (bi, gj , hk) ∈ T}, for a given instance of tripartite matching problemu = (B,G,H, T ),
B = {b1, · · · , bn}, G = {g1, · · · , gn}, H = {h1, · · · , hn} andT ⊆ B × G ×H. Next we informally
describe how the systemΠ(s(u)) with input cod(u) works.

Let us start with the generation stage. In cells with label 2, the division rules are applied. Cells with
label 2 is repeatedly divided, each time expanding one objectai,j,k, 1 ≤ i, j, k ≤ n into Ri,j,k andλ,
corresponding to the existence or absence of(bi, gj , hk) in certain subset. In this way, aftern3 steps,2n

3

cells with label 2 are generated, which represent all subsetsof B ×G ×H. The objectf is duplicated,
hence a copy of it will appear in each cell. In parallel with the above operation of dividing cells with



label 2, the countersbi, ci from cell with label 1 grow their subscripts. Also, in each step, the number of
copies of objectbi is doubled, hence aftern3 steps we get2n

3

copies ofbn3+1 in cell 1. Objectsbi are
used to check whether there exists aperfect matchingT ′ ⊆ T such that|T ′| = n, and every element of
B, G andH occurs exactly once in any triple ofT ′. The objectci will be used to produce the objectno,
if this will not be the case, in the end of the computation.

Thechecking stagestarts when the generation stage is finished aftern3 steps. Note that cells with
label 2 cannot divide any more, because the objectsai,j,k were exhausted. At this moment, the content

of the cell with label 1 is{{b2
n
3

n3+1, cn3+1, g, yes, no}}. In stepn3 + 1, a copy of the counterbn3+1 is

brought into each cell with label 2, in exchange off by applying ruler4. Since we have2n
3

copies of
bn3+1 and2n

3

cells with label 2, each one containing exactly one copy off , and due to the maximality
of the parallelism of using the rules, each cell with label 2 gets precisely one copy ofbn3+1.

In the presence of the objectbn3+1, the ruler5,i,j,k is used to check if there existn objectsRi,j,k

whose first subscriptsi run from 1 ton in each cell with label 2. If and only if it is positive, the subscript
of bi grows ton3 + n+ 1, and then objectsRi,j,k are replaced byn objectsR̄i,j,k. Then the ruler6,i,j,k
is used to check if the second subscriptsj of then objectsR̄i,j,k run from 1 ton in each cell with label 2.
If and only if it is positive, the subscript ofbi grows ton3 +2n+1, and then objectsR̄i,j,k are replaced
by objectsR̃i,j,k. When the objectbn3+2n+1 is present, ruler7,i,j,k is used to check if the third subscripts
k of n objectsR̃i,j,k run from 1 ton in each cell with label 2. If and only if it is positive, the subscript
of bi grows ton3 + 3n + 1, and then objectsR̃i,j,k are replaced by objectsR′

i,j,k. After that,n objects
R′

i,j,k in each cell with label 2 constitute a possible subsetT ′ of triples⊆ B×G×H such that|T ′| = n,
and every element ofB, G andH occurs exactly once in any triple ofT ′. At last, ruler8,i,j,k is used to
check if the given inputT include any above generated subsetT ′. If it is positive, the subscript ofbi in
the corresponding cell with label 2 grows ton3 + 4n + 1.

When the checking stage is done, the subscript of objectci in cell with label 1 grows ton3+4n+2.
The output stage starts from stepn3 + 4n+ 2.

– Affirmative answer: If there exists at least one subsetT ′ of setT such that|T ′| = n and every
element ofB, G andH occurs exactly once in a triple ofT ′, there is an objectbn3+4n+1 in the
corresponding cell with label 2 as described above. One of cells with label 2 containing object
bn3+4n+1 gets the objectsyes andg in exchange ofbn3+4n+1 at stepn3+4n+2. In the nest step,
the objectyes in cell 2 leaves the system by the ruler10, signaling the fact that there exists at least
one subsetT ′ of T such that|T ′| = n, and no two triples belonging toT ′ have a component in
common. At that step, the cell with label 1 contains the objectcn3+4n+3 but no the objectg. That
cell cannot evolve and the system halts at stepn3 + 4n+ 3

– Negative answer: In this case, the subscript of the counterci reachesn3 +4n+ 3 and the objectg
is still in the cell with label 1. The objectno can be moved to the environment by the rulesr11 and
r12, signaling that there does not exist any subsetT ′ of T such that|T ′| = n, and every element of
B, G andH occurs exactly once in a triple ofT ′. The computation finishes at stepn3 + 4n+ 4.

3.3. Informal Verification

In this subsection, we show that the family built above solvesthe tripartite matching problem in poly-
nomial time, according to Definition 2.1. First of all, this definition requires that the defined family is



consistent, in the sense that all systems of the family must be recognizer tissue P systems with cell divi-
sion. By construction (type of rules and working alphabet) it is clear that it is a family of tissue P systems
with cell division.

It is easy to check that the rules of a systemΠ(n) of the familyΠ = {Π(n) | n ∈ N} are defined
from the valuen. Furthermore, the necessary resources to build an element of the familyΠ are of a
polynomial order, as shown below:

• Size of the alphabet:8n3 + 8n+ 8 ∈ Θ(n3).

• Initial number of cells:2 ∈ Θ(1).

• Initial number of objects:n3 + 6 ∈ Θ(n3).

• Number of rules:7n3 + 4n+ 7 ∈ Θ(n3).

• Maximal length of a rule:4 ∈ Θ(1).

Therefore, a deterministic Turing machine can buildΠ(n) in a polynomial time with respect ton; that
is, the familyΠ is polynomially uniform by Turing machines.

From the overview of a computation in section 3.2, we can find that all computations halt in a poly-
nomial time with respect ton, and that either an objectyes or an objectno is sent out exactly in the last
step of the computation; that is, the familyΠ is polynomially bounded, sound and complete.

3.4. Main Results

From the discussion in the previous sections (noting that themaximum length of communication rules is
4) and according to the definition of solvability given in Section 2, we have the following result:

Theorem 3.1. TMP ∈ PMCTDC(4).

Corollary 3.1. NP ∪ co-NP ⊆ PMCTDC(4), whereco-NP is the class of complements ofNP

problems.

Proof:
It suffices to make the following observations: the Tripartite Matching Problem isNP-complete,TMP
∈ PMCTDC(4) and this complexity class is closed under polynomial-time reduction and under comple-
ment [9]. ⊓⊔

We can check that the length of rules of the system given in Section 3 is not more than 3 except for
the rulesr5,i,j,k, r6,i,j,k, r7,i,j,k, r8,i,j,k. Let us replacer5,i,j,k by the rules(2, bn3+iRi,j,k/b

∗
n3+i,j,k

, 0)

and (2, b∗
n3+i,j,k

/bn3+i+1R̄i,j,k, 0); replacer6,i,j,k by the rules(2, bn3+n+jR̄i,j,k/b
∗
n3+n+j,j,k

, 0) and

(2, b∗
n3+n+j,j,k

/bn3+n+j+1R̃i,j,k, 0); replacer7,i,j,k by the rules(2, bn3+2n+kR̃i,j,k/b
∗
n3+2n+k,j,k

, 0) and
(2, b∗

n3+2n+k,j,k
/bn3+2n+k+1R

′
i,j,k, 0); replacer8,i,j,k by the rules(2, R′

i,j,kAi,j,k/A
∗
i,j,k, 0) and the rules

(2, bn3+3n+i,j,kA
∗
i,j,k/bn3+3n+i+1, 0). Of course, the subscripts of related objects such as countersbi and

ci should be updated. In this way, a new system is obtained, wherethe length of all rules is not more than
3. It is not difficult to check that the new system can also solve theTMP in polynomial time. Therefore,
Theorem 3.1 and Corollary 3.1 can be improved as follows.



Theorem 3.2. TMP ∈ PMCTDC(3).

Corollary 3.2. NP ∪ co-NP ⊆ PMCTDC(3), whereco-NP is the class of complements ofNP

problems.

4. Conclusions and Future Work

In this work, we have proposed a solution to the tripartite matching problem by a family of recognizer
tissue P systems with cell division. The construction of tissue P systems with cell division is simple and
elegant in terms of the number of the groups of rules. The results show that tissue-like P systems are
suitable as a framework to address the efficient solution to intractable problems.

In the solution given in this work, the length of communication rules is at most 3. Let us consider
a tissue P system with cell division and communication rules of length 1. In this case, each rule of the
system can be activated by a single object. Hence, there exists, in some sense, adependencybetween the
object triggering the rule and the object or objects produced by its application. This dependency allows
to adopt the ideas developed in [6] for cell-like P systems with active membranes to tissue P systems
with cell division. In this way, it is not difficult to prove that tissue P systems with cell division and
communication rules of length 1 can only solve problems solvable in polynomial time by deterministic
Turing machines. It remains open whether tissue P systems with cell division and communication rules
of length at most 2 can solve NP-complete problems. This open problem is worth further investigation.
An answer to this open problem will provide a borderline between efficiency and non-efficiency in terms
of the lengths of the communication rules.
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[7] Martı́n Vide, C., Pazos, J., Păun, Gh., Rodrı́guez Patón, A. Tissue P systems.Theoretical Computer Science,
296(2003), 295–326.

[8] Pan, L., Martı́n Vide, C. Solving multidimensional 0-1 knapsack problem by P systems with input and active
membranes.Journal of Parallel and Distributed Computing, 65(2005), 1578–1584.

[9] Papadimitriou C.H.Computational Complexity. Addison-Wesley, Reading, Massachusetts (1994).
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