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RAINBOW INDUCED SUBGRAPHS IN PROPER VERTEX

COLORINGS

ANDRZEJ KISIELEWICZ AND MAREK SZYKU LA

Abstract. For a given graph H we define ρ(H) to be the minimum order
of a graph G such that every proper vertex coloring of G contains a rainbow

induced subgraph isomorphic to H. We give upper and lower bounds for ρ(H),
compute the exact value for some classes of graphs, and consider an interesting
combinatorial problem connected with computation of ρ(H) for paths. This
research is motivated by some ideas in on-line graph coloring algorithms.

Rainbow induced subgraphs have been considered in many papers in connection
with various problems of extremal graph theory. They have been considered both
for edge-colorings and vertex-colorings, and both in terms of existence or in terms
of avoiding (see [1, 2, 3, 4, 9, 10, 11]). Our special motivation comes from research
in on-line coloring (see [5, 8]), where the base for some algorithms is the existence
of rainbow anticliques to force a player to use a new color. In particular, in [8], a
problem has been formulated to estimate the minimal number of moves in the game
considered one needs to force the appearance of a rainbow copy of a fixed graph H
in a fixed class of graphs C.

In this paper we deal with proper vertex colorings of graphs, colorings, in short,
and rainbow induced subgraphs, by which we mean induced subgraphs whose all
vertices have different colors. We consider a problem of constructing a minimal
graph G such that for a given graph H every coloring of G contains a rainbow

induced subgraph isomorphic to H . We shall write simply G
r
→ H to denote such a

situation. We define ρ(H) to be the least number m such that there exist a graph

G with G
r
→ H .

A similar definitions are introduced in [3] in connection with anti-Ramsey num-
bers. There is no requirement for colorings to be proper. Instead, there is a restric-
tion on the number of colors used to be not smaller than the cardinality |H |. As a
consequence it may happen there are only finitely many graphs that in every such
coloring contain rainbow colored copies of H , and the authors concentrate on such
situations. Proper vertex colorings and a problem connected with the existence of
rainbow induced stars and paths have been considered in [10]. Interesting results
on proper coloring for edges are contained in [9] and [11].

1. The bounds

It is not difficult to see that for every graph H there exists a graph G satisfying

G
r
→ H . In our first result we establish a relatively tight bounds for ρ(H).
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Figure 1. Construction used in the proof of Theorem 1.1.

Theorem 1.1. Let m′ = m′(H) denotes the number of non-edges in a graph H,
χ = χ(H), and n = |H |. Then the following holds

(1)

⌈

n

χ

⌉(

n−
χ

2

⌈

n

χ
− 1

⌉)

≤ ρ(H) ≤ n+m′

Proof. In order to prove the second inequality we construct a suitable graph G with

G
r
→ H .
Let h1, h2, ..., hn denote the vertices of H in a fixed order. We define G as

consisting of n disjoint cliques KH1,KH2, ...,KHn corresponding to the vertices
of H and connected in a way reflecting the structure of H . The starting clique
KH1 has precisely one vertex. Let us suppose we have defined the subgraph Gi−1

of G consisting of the cliques KH1,KH2, ...,KHi−1, 1 < i ≤ n and some edges
among them, and let mi denotes the number of edges in H of the form (hj , hi) for
1 ≤ j < i. We define now Gi as the union of Gi−1 and the clique KHi consisting
of i−mi vertices, and some additional edges between Gi−1 and KHi according to
the following rule: if for some 1 ≤ j < i, there is an edge hjhi in H , then we add
all the possible edges between vertices of cliques KHj and KHi; otherwise, no edge
between the cliques KHj and KHi is added. (In Figure 1 an example is shown for
a graph on 5 vertices).

Consequently, if there are m′

i non-edges of the form hjhi in H , with j < i, then
the number of vertices in KHi is one more: i−mi = m′

i+1. Assume now that the
vertices of G are colored properly. We show now (inductively) that there exists a
rainbow induced subgraph H ′ of G isomorphic to H . To this end from each clique
KHi we choose one vertex h′

i. It is clear that the resulting induced subgraph is
isomorphic to H . We need to demonstrate that the vertices can be chosen so that
they have different colors.

First, the only vertex of KH1 belongs to H ′, and suppose that from each KHj,
j < i, we have chosen a vertex h′

j as one belonging to H ′ so that all h′

1, ..., h
′

i−1 are
of different colors. We show that we can choose h′

i ∈ KHi to keep this property.
Indeed, if for some 1 ≤ j < i, (hj , hi) is an edge in H , then each vertex in KHi

has a different color than h′

j (since all these vertices are neighbors of h′

j in G).
There are m′

1 vertices left among h′

1, ..., h
′

i−1, of different colors, to compare with
the possible color of h′

i. Yet there are m
′

i+1 vertices in KHi, so we can choose one
among them with the color different from all the colors chosen so far, as required.
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In order to prove the first inequality we show that if G is a required graph, such
that in each coloring of G there exists a rainbow induced subgraph H , it needs

to have at least
⌈

n
χ

⌉(

n− χ
2

⌈

n
χ
− 1

⌉)

vertices. To this end we color G step by

step and count the number of colored vertices until n colors is used. If χ = n the
inequality is clear, so we may assume that χ < n.

First let us choose any induced subgraph H1 of G isomorphic to H , and color the
vertices of H1 into χ colors. This may be considered as a part of certain coloring
of G. Hence it follows that there exist an induced subgraph H2 of G isomorphic to
H having in common with H1 at most χ differently colored vertices. We color the
remaining vertices of H2 with (at most) χ new different colors. We proceed in such
a way until n color is used. At the i − th step of this procedure we have used not
more than i ·χ colors. If this number is still less than n, than we choose a subgraph
Hi+1 of G isomorphic to H having in common with the set of vertices colored so far
at most i · χ differently colored vertices. So, again, we color the remaining vertices
of Hi+1 with at most χ new different colors.

There are at least k =
⌈

n
χ

⌉

steps until n colors are used. The numbers of vertices

colored at each step are at least, respectively, n, n− χ, n− 2χ, . . . , n− (k − 1)χ. It
follows that the order of G

|G| ≥ kn− χ
k(k − 1)

2
= k

(

n− χ
k − 1

2

)

,

as required. �

Note, that since the right hand side in the latter inequality, for k < n
χ
+ 1, is an

increasing function of k, we have

|G| ≥
n

χ

(

n− χ

n
χ
− 1

2

)

=
n

2

(

n

χ
+ 1

)

.

This estimation shows clearly the order of the magnitude of the bound, but is
generally weaker than the bound given in the theorem. It may be proven to be the
same in cases when n is a multiplicity of χ.

We note that for cliques H = Kn and anticliques H = An the bounds in the
theorem are equal and thus give formulas ρ(Kn) = n and ρ(An) = n(n+ 1)/2.

For a double clique H = 2Kn, the disjoint union of two cliques Kn, we have
3n ≤ ρ(2Kn) ≤ 2n+n2. In this case, it is not difficult to see, that the lower bound
is attained. Indeed, the graph G = Kn ∪K2n, the disjoint union of Kn and K2n,
has a rainbow induced subgraph 2Kn in each coloring.

An example, when only the upper bound gives the exact formula, is the star Sn

(that is the complete bipartite graph K1,n−1). Our bounds yield

⌈n/2⌉ ⌊n/2 + 1⌋ ≤ ρ(Sn) ≤ n(n− 1)/2 + 1.

One can prove directly (but it requires already some work) that

(2) ρ(Sn) = n(n− 1)/2 + 1.

It follows also from a more general result we prove in the next section.
Computing the exact value ρ(H) is generally a hard problem. It involves com-

puting both the clique number and the chromatic number. There is however one
case when the value ρ(H) has been already computed: these are the graphs H for
which the upper and lower bounds in Theorem 1.1 coincide, thus giving the exact
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formula. We have observed already that this is a case when H is a clique or anti-
clique. It turns out that these are special cases of a larger class, namely, the Turán
graphs T (n, r), that is, the complete r-partite graph with n vertices and as equal
classes as possible (cf. [9]).

Indeed, for such a graph and n = kχ+s, with 0 < s ≤ χ, we have ⌈n/χ⌉ = k+1,
and χ = r. The left hand side of (1) equals (k + 1)(s+ kr/2), while the left hand
side equals (r− s)k(k+1)/2+ s(k+1)(k+2)/2, which is the same. Hence we have
the formula ρ(T (n, r)) = ⌈n/χ⌉ (n + s)/2, where s is the number of larger classes
in T (n, r). Which is more interesting, the equality of our bounds implies that H
must be a Turán graph. In fact we have the following.

Theorem 1.2. The equality of bounds (1) in Theorem 1 holds if and only if H is
a Turán graph.

Proof. The ”if” part is proved above. It remains to prove the ”only if” part. Assume
that T = T (n, χ) is the Turán graph with χ = χ(H) classes. Then χ(T ) = χ. From
the Turán’s theorem [6] we obtain that T has a maximal possible number of edges
and it is unique for a fixed n and χ. By assumption and the properties of the Turán
graph established so far, we have

m′(H) =

⌈

n

χ

⌉(

n−
χ

2

⌈

n

χ
− 1

⌉)

− n = m′(T ).

It follows that the sizes of T and H are the same, and therefore by the maximality
property mentioned above, H = T . �

2. The second lower bound

We will consider possibilities of improving our general bounds for special classes
of graphs. This can be done when we have additional information on the structure
of the graph. First we make use of partitions of the set of vertices into anticliques.
Note that for each graphH there are usually many such partitions, if the anticliques
of size one are admitted. For graphs with both large anticliques and large chromatic
numbers our second lower bound below is much better.

Theorem 2.1. If the set of vertices of a graph H can be partitioned into anticliques
of sizes x1, x2, . . . , xk, then

(3) ρ(H) ≥

k
∑

i=1

xi(xi + 1)

2
.

Proof. The idea of the proof is the same as before. Yet, now we apply a different
more efficient coloring using the structure of anticliques. By assumption H is a
union of disjoint anticliques Ax1

, Ax2
, . . . , Axk

and, possibly, some additional edges
between anticliques. We may assume that the sizes satisfy x1 ≥ x2 ≥ . . . ≥ xk.

Let G be a graph with G
r
→ H . As before, G has to contain an induced copy H1

of H . We color only the vertices in the largest anticlique of H1 using one color and

treat this as a part of a certain coloring of G. Since G
r
→ H , it follows that there

exist an induced subgraph H2 of G isomorphic to H having in common with the
colored part at most one vertex v. With a new color we color now all the vertices
in the largest anticlique of G− v. Again, it follows that there exist a subgraph H3

of G isomorphic to H having in common with the colored part at most 2 vertices
u,w, and we color with the third color all the vertices in the largest anticlique of
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G − {u,w}. We continue this process until we have used n = |H | different colors.

We claim that we have colored in such a way at least
∑k

i=1
xi(xi + 1)/2 vertices.

Indeed, suppose that there are ki ≥ 0 anticliques of size i amongAx1
, Ax2

, . . . , Axk
,

where 1 ≤ i ≤ m, and m = x1 is the size of the largest anticlique. In particular,
∑

i ki = n. Then, in each of the first km steps an uncolored anticlique of size
m = x1 appears, and hence the number of colored vertices is precisely m. In each
of the next km + km−1 steps, an uncolored anticlique of size at least m− 1 has to
appear, and thus the number of colored vertices is at least m−1. Similarly, in each
of the next km+km−1+km−2 steps the number of colored vertices is at least m−2,
and so on. It follows that G has at least

∑m
j=1

j(km + km−1 + . . . + kj) vertices.
We have

m
∑

j=1

j(km + km−1 + . . .+ kj) =

m
∑

j=1

kj(1 + 2 + . . .+ j).

The latter contains km sums (1 + 2 + . . . + m). Since, by definition of km,
m = x1 = x2 = . . . = xkm

, these sums can be presented as

(1 + 2 + . . .+ x1) + (1 + 2 + . . .+ x2) + . . .+ (1 + 2 + . . .+ xkm
).

Next, if s < m is the largest index such that ks 6= 0, then the next non-zero
summands of the considered sum are ks sums

(1 + 2 + . . .+ xkm+1) + (1 + 2 + . . .+ xkm+2) + . . .+ (1 + 2 + . . .+ xkm+ks
).

Continuing in such a way we see that

m
∑

j=1

kj(1 + 2 + . . .+ j) =
k
∑

i=1

(1 + 2 + . . .+ xi) =
k

∑

i=1

xi(xi + 1)

2
,

as required. �

Let us observe that the bound above may be presented as n+
∑k

i=1
xi(xi−1)/2.

The latter term counts exactly the number of the non-edges in the anticliques. This
suggests the following more transparent formulation of the result (combined with
the upper bound in (1))

Corollary 2.2. Let the vertex set of a graph H be partitioned into anticliques and
let m′

A denotes the number of the non-edges in these anticliques. If m′ is the number
of all the non-edges in H, and n = |H |, then the following holds

n+m′

A ≤ ρ(H) ≤ n+m′

Note that from this formulation it is immediate that both the bounds are equal
if and only if H is a complete r-partite graph. Hence we have

Corollary 2.3. For the complete r-partite graph ρ(Kx1,x2,...,xk
) we have

ρ(Kx1,x2,...,xk
) =

r
∑

i=1

xi(xi + 1)

2

In particular, for the star Sn we have the result announced in (2). Also Turán
graphs appear in this corollary as a special case. In fact, Theorem 2.1 improves
generally the lower bound (1), yet the argument is not straight and depends on the
choosing a suitable anticlique partition.
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3. The second upper bound

It is also possible to improve the upper bound of (1) for some types of graphs
using a special decomposition into cliques. Given a graph H we define a relation
∼ on the set of vertices by x ∼ y if and only xy ∈ H and x and y have exactly
the same neighbors in H −{x, y}. We note that this is an equivalence relation and
the equivalence classes form cliques in H . These cliques are called the replication
cliques of H .

This name is justified by the fact that, if the relation ∼ is non-trivial, the graph
may be viewed as one obtained from a smaller graph M by replication of vertices.
More precisely, a graph H is obtained from a graph M by replication of a vertex
x ∈ M if H is obtained from M by replacing vertex x by a clique K of vertices,
and replacing each edge xy incident with x by the edges joining y with all vertices
of K. A graph H obtained from a graph M by successive replication of vertices is
called a replication graph of M (this definition is a little bit more general than that
given in [7]).

We note that the construction of the graph G used in the proof of the up-
per bound in Theorem 1.1 is the replication graph of H consisting of the cliques
KH1,KH2, . . . ,KHn. The size of KHi is precisely 1 + ni, where ni denotes the
number of non-edges between the vertex of hi and the vertices {h1, h2, . . . , hi−1}.
We generalize this construction as follows.

Theorem 3.1. If KH1,KH2 . . . ,KHs are the replication cliques of a graph H of
sizes y1, y2, . . . ys ≥ 1, respectively, then

(4) ρ(H) ≤ n+

s
∑

i=1

ni,

where ni denotes the number of non-edges between a vertex of KHi and the vertices
of KH1 ∪KH2 ∪ . . . ∪KHi−1. The bound is the best when the sizes of the cliques
satisfy y1 ≤ y2 ≤ . . . ≤ ys.

Proof. To find a graph G of the required size with G
r
→ H , we consider again

a replication graph of H with the cliques of suitable sizes. Each clique KHi is
replicated (replaced) by a clique KGi of size yi + ni. (Note that since n1 = 0
by definition, the cliques KG1 and KH1 are the same). Consider any coloring of
the graph G resulted in such a way. We describe by induction a rainbow induced
subgraph H ′ isomorphic to H . As the first part of H ′ we take KH1 = KG1.
Since KH1 is a clique all the vertices in it have different colors. Suppose we have
constructed a rainbow partH ′

i−1 isomorphic to KH1∪KH2∪. . .∪KHi−1 contained
in G′

i−1 = KG1 ∪KG2 ∪ . . . ∪KGi−1. To obtain a part H ′

i isomorphic to KH1 ∪
KH2∪ . . .∪KHi it is enough to adjoin to H ′

i−1 any subgraph of KGi of cardinality
yi = |KHi|. We have only to make sure that the vertices have different colors from
those in H ′

i−1.
By assumptions, there are ni non-edges between a vertex ofKGi and the vertices

of H ′

i−1. Moreover, for each vertex in KGi the non-edges lead to the same vertices
in H ′

i−1. It follows that there are at most ni vertices in KGi they have a color
of a vertex in H ′

i−1. Consequently, there are at least yi vertices in KGi that have
a color different from the vertices in H ′

i−1. Hence, the clique they form is just as
required.
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KH1 KH2
. . . KHs−1 KHs

AH1
. . .

AH2
. . .

...
...

...

AHr−2

AHr−1

AHr

Figure 2. Partitioning the union of cliques into anticliques.

In order to see that the bound is the best when the sizes of the cliques are in
an increasing order, suppose we have two cliques KGi−1 and KGi in G of sizes
yi−1 + ni−1 and yi + ni, respectively, such that yi−1 > yi. If we change the order
of the cliques KGi−1 and KGi in G then the only part of the sum of (4) that may
change is that given by ni−1 + ni. Let n

′

i−1 and n′

i denote the respective numbers
of non-edges after the change of the order of the cliques KGi−1 and KGi. Now,
there are two cases: (1) either there is no edge between KGi−1 and KGi, or (2)
there is an edge between any two vertices of KGi−1 and KGi. In the first case, the
change of the order of the cliques does not change the sum ni−1 +ni. In the second
case ni = mi + yi−1, where mi counts the non-edges between a vertex in KHi and
the vertices in KH1 ∪KH2 ∪ . . . ∪KHi−2. After the change of the order we have
n′

i−1 = mi and n′

i = ni−1 + yi. Whence

n′

i−1 + n′

i = ni−1 +mi + yi < ni−1 +mi + yi−1 = ni−1 + ni,

yielding a better bound. Now the claim easily follows. �

Combining the results of Theorems 2.1 and 3.1 we obtain also the exact formula
for the complements of complete r-partite graphs, that is, disjoint unions of cliques.

Corollary 3.2. Let H be the union of disjoint cliques KH1 ∪KH2 ∪ · · · ∪KHs of
sizes y1 ≥ y2 ≥ . . . ≥ ys, respectively. Then

ρ(H) =

s
∑

i=1

iyi.

Proof. First we apply the lower bound of Theorem 2.1. Note that H can be par-
titioned naturally into r = y1 anticliques AH1 ∪ AH2 ∪ · · · ∪ AHr of the sizes
x1 ≥ x2 ≥ . . . ≥ xr, respectively (see Figure 2). The size of the largest anticlique
AH1 is x1 = s, and there are exactly ys anticliques of this size. Then, the size of
the next anticlique AHys+1 is s− 1 or less (in case when ys = ys−1). It follows that
the right hand side of (3) is

k
∑

i=1

xi(xi + 1)

2
=

(s+ 1)s

2
ys +

s(s− 1)

2
(ys−1 − ys) + . . .+

2 · 1

2
(y1 − y2) =
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1 2 3 4 5

Figure 3. Graph G = P5(1, 2, 2, 2, 3).

=

s
∑

i=1

(i+ 1)i

2
(yi − yi+1) =

where ys+1 = 0, and further calculation yields

=

s
∑

i=1

(i+ 1)i

2
(yi − yi+1) =

s
∑

i=1

(
(i+ 1)i

2
−

i(i− 1)

2
)yi =

s
∑

i=1

iyi,

as required.
Now we apply the upper bound of Theorem 3.1. According to the second state-

ment of Theorem 3.1 we consider our cliques in the reverse order. We note that
n2 = ys, n3 = ys+ ys−1,. . . , ns = ys+ ys−1 + . . .+ y2, and n = ys+ ys−1 + . . .+ y1.
Summing everything up yields the desired result. �

4. Paths and replication graphs

While we are able to compute exact values ρ(H) for some classes of graphs, we
do not know such a value for the simplest kind of graphs—paths. Let Pn denotes
the path of length n− 1. Using (1) we obtain for odd n:

(n+ 1)2/4 ≤ ρ(Pn) ≤ 1 + n(n− 1)/2,

and for even n:

n(n+ 2)/4 ≤ ρ(Pn) ≤ 1 + n(n− 1)/2.

(For paths, (3) and (4) yield no improvements.) This gives the exact value ρ(P3) =
4, and the following bounds for small n: 6 ≤ ρ(P4) ≤ 7, 9 ≤ ρ(P5) ≤ 11, 12 ≤
ρ(P6) ≤ 16, 16 ≤ ρ(P7) ≤ 22. Applying a suitable computer program generating
all vertex colorings for small graphs, we have obtained the following: ρ(P4) =
7, ρ(P5) = 10, ρ(P6) ≤ 14, ρ(P7) ≤ 19. In particular, by computer search we have
found the graph G in Figure 3, containing in every coloring a rainbow P5.

This is a replication graph of P5. We denote it G = P5(1, 2, 2, 2, 3) meaning that
the vertices of P5 are replaced by the cliquesK1,K2,K2,K2,K3 in the natural order.
Our computer search shows that there are other replication graphs of P5 of order

14 containing rainbow P5 in every coloring; for example, G = P5(3, 1, 1, 2, 3)
r
→ P5.

In turn, the replication graph G = P6(2, 2, 3, 3, 2, 2) satisfies G
r
→ P6. A natural

question arise whether ρ(Pn) can be obtained always by means of replication graphs.
More precisely: is it true that for each n ≥ 2 there exists a replication graph G of

Pn of order ρ(Pn) with G
r
→ Pn?

We observe that it is generally not the case for other graphs. In Figure 4 a graph

H is depicted and a graph G beside with G
r
→ H , which shows that ρ(H) ≤ 7. Yet,
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1 2 3 4

H G

Figure 4. An example of H with ρ(H) < ρR(H).

as it can be easily checked, no replication graph of H of order 7 or less has this
property.

Let us define the number ρR(H) to be the minimal order of a replication graph
G of H such that in each coloring of G there exists a rainbow induced copy of H
having exactly one vertex in each of the cliques Ki corresponding to a vertex hi in

H . We will write G
R
→ H in such a situation. This condition is stronger but fairly

natural and leads to the following nice properties.

Theorem 4.1. For any graph H the following conditions hold:

(i) ρ(H) ≤ ρR(H).
(ii) If H ′ is a subgraph of H obtained from H by removing some edges, then

ρR(H
′) ≥ ρR(H).

(iii) If H is the union of two disjoint graphs H1 and H2, and possibly some
additional edges between H1 and H2, and m(H1, H2) is the number of non-
edges between H1 and H2, then

ρR(H1) + ρR(H2) ≤ ρR(H) ≤ ρR(H1) + ρR(H2) +m(H1, H2).

Proof. The first inequality (i) is immediate from the definition. For (ii), suppose

that G′
R
→ H ′. Then G with G

R
→ H can be obtained from G′ just by adding

suitable edges. Since adding edges creates no new proper coloring, G has the
required property and thus proves (ii).

For (iii), let G be a replication graph of order ρR(G) with G
R
→ H . It contains

disjoint induced replication graphsG1 ofH1 and G2 ofH2 with propertiesG1
R
→ H1

and G2
R
→ H2. This proves the first inequality.

For the second, let G1 and G2 be replication graphs of H1 and H2 of orders

ρR(H1) and ρR(H2), respectively, with properties G1
R
→ H1 and G2

R
→ H2. We

compose them into the replication graph of H adding suitable edges between H1

and H2. To make sure that there are enough vertices of different colors (similarly
as in the proof of Theorem 1.1) we enlarge replication cliques in H2: each clique is
enlarged with the number of vertices equal to the number of non-edges between a
vertex of the clique and the vertices in H1. This yields altogether m(H1, H2) new
vertices, proving the second inequality. �

For graphs H with non-trivial replication cliques it is possible to formulate a
version of this result being the counterpart of Theorem 3.1. This requires however
to redefine the number ρR(H) suitably. We leave it to the reader.
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H H ′

u

H ′′

u

Figure 5. Counterexamples: ρ(H) = 9, ρ(H ′) = 9, ρ(H ′′) = 10.

We observe that the results in (ii) and (iii) does not hold for ρ(H). Indeed,
graph H ′ in Figure 5 is obtained from H ′′ by removing one edge, while the number
ρ(H ′) < ρ(H ′′) (the values of ρ for graphs in Figure 5 have been obtained with a
help of computer program). On the other hand, H ′ is obtained from H and vertex
u, and some additional edges between H and u, and the number ρ(H) + ρ(K1) =
10 > ρ(H ′) (disproving the first inequality in (iii) for ρ). Finally, let H = P4, H1

be K1 consisting of a single vertex u, and H2 be the disjoint union of K2 and K1.
Then P4 is the union of disjoint H1 and H2, and two additional edges joining u
with H2, and we have

ρ(H1) + ρ(H2) +m(H1, H2) = 1 + 4 + 1 = 6 < 7 = ρ(H),

disproving the second inequality in (iii) for ρ.

5. Conclusions and open problems

Obviously, the inequalities in (iii) of Theorem 4.1 yields the best results, when
the number m(H1, H2) of non-edges is small. In particular, for join of graphs we
have the equality:

Corollary 5.1. For any graphs H1 and H2

ρR(H1 +H2) = ρR(H1) + ρR(H2).

We do not have any counterexample in case of ρ, and we conjecture that this
property may be true for ρ, as well. Nevertheless, ρR seems to be more convenient
tool for computations, and therefore any result showing that the difference between
ρ and ρR(H) cannot be large would be desirable.

Unfortunately, our results cannot be very helpful for paths, since paths have
many non-edges. Nevertheless, combining (iii) of Theorem 4.1 with the inequality
ρR(P7) ≤ 19 (obtained by computer search) we can infer inductively the following
improvement of the general upper bound for paths:

Corollary 5.2.

ρ(Pn) ≤ 1 + n(n− 1)/2− 3⌊n/7⌋.

This still can be improved by 2 or 1, when the remainder of n modulo 7 is
greater than 5 or 4, respectively (using other inequalities obtained by computer
search mentioned above).

The question what is the exact value ρ(Pn) remains open. Perhaps it can be ap-
proached by considering related problems for ρR(Pn): 1) what is the exact formula
for ρR(Pn), and 2) is it true that ρ(Pn) = ρR(Pn) for all n? These questions do not
seem easy, but we think they are very interesting from combinatorial point of view.



RAINBOW INDUCED SUBGRAPHS IN PROPER VERTEX COLORINGS 11

References

[1] Axenovich, M., Choi, J. On colorings avoiding a rainbow cycle and a fixed monochromatic

subgraph, Electron. J. Combinatorics, 17(1) (2010), 12 pp.
[2] Axenovich, M., Iverson, P. Edge-colorings avoiding rainbow and monochromatic subgraphs,

Discrete Math., 308 (20), (2008), 4710-4723.
[3] M. Axenovich, R. Martin, Avoiding rainbow induced subgraphs in vertex-colorings. Electron.

J. Combinatorics 15(1), (2008), 23 pp.
[4] Axenovich, M., Sackett, C., Avoiding rainbow induced subgraphs in edge-colorings, Aus-

tralaisian J. Combinatorics, 44, (2009), 287-296.
[5] H. Broersma, A. Capponi, G. Paulusma, A new algorithm for on-line coloring bipartite graphs.

SIAM J. Discrete Math. 22(1), (2008), 72–91.
[6] R. Diestel, ”Graph Theory”, Springer-Verlag Heidelberg, New York 2005.
[7] G. Chartrand, P. Zhang, ”Chromatic Graph Theory”, Discrete Mathematics and Its Applica-

tions, Boca Raton 2009.
[8] G. Matecki G., On-line graph coloring on a bounded board, PhD Thesis,Computer Science

Department, Faculty of Mathematics and Computer Science, Jagiellonian University (2006).
http://tcs.uj.edu.pl/docs.php?id=8

[9] P. Keevash, D. Mubayi, B. Sudakov, J. Verstrate, Rainbow Turán Problems, Combinatorics,
Probability, and Computing, 16 (1) (2007). pp. 109-126.

[10] H. A. Kierstead, W. T. Trotter, Colorful induced subgraphs, Discrete Math. 101 (1992), no.
1-3, 165169.

[11] Y. Kohayakawa, T. Luczak Sparse Anti-Ramsey Graphs, J. Combinatorial Theory, Series B
63(1995), 146-152.

University of Wroc law, Department of Mathematics and Computer Science, pl.

Grunwaldzki 2, 50-384 Wroc law, Poland

E-mail address: andrzej.kisielewicz@math.uni.wroc.pl, marek.szykula@ii.uni.wroc.pl

http://tcs.uj.edu.pl/docs.php?id=8

	1. The bounds
	2. The second lower bound
	3. The second upper bound
	4. Paths and replication graphs
	5. Conclusions and open problems
	References

