
TEMPORAL DYNAMICS IN INFORMATION TABLES

D. CIUCCI

Abstract. An information table can change over time in several different
ways: objects enter/exit the system, new attributes are considered, etc. As a

consequence rough set instruments also change. At first, we recall a classifica-

tion of dynamic increase of information with respect to three different factors:
objects, attributes, values. Then, the corresponding changes in rough sets

are discussed. Results about approximations, positive region and generalized
decision are given and algorithms to update reducts and rules provided.

1. Introduction

The interest in dynamics analysis in rough sets naturally stems in the fact that
knowledge evolves in time and, thus, rough-set techniques are influenced by dynam-
ics. Indeed, since the very beginning, attempts to deal with this issue have been
carried out [Orl82].

Generally speaking, evolution in time can have different nuances: change in the
information already available, addition of new information or also elimination of
some information. In our classification [Ciu10a] we give particular attention to the
increase of information (and by duality decrease), and we suppose that the acquired
information cannot change at a following time. On the contrary, this problem is
tackled in [ZLCJ09, CLQR10, CLZ10a] where the update of approximations is
studied in the case of coarsening and refining of values.

When considering Information Tables, we can have an increase of information
with respect to objects, attributes and values. Increase of information with respect
to objects has been studied in [SZ95, Woj01], where an algorithm to incrementally
update the reducts has been proposed. Further, in [SPS05] objects observed at
different times are collected in a unique temporal information system, which is then
studied, for instance with regards to changes of functional dependencies between
attributes. Other ways to update reducts and rules without recompute them, are
given in [ZW04] using decision trees to represent the rules and in [FTCH09] using
an heuristic based on an index to evaluate the strength of a reduct. However,
both these works suppose that the Information Table is consistent. Finally, in
[LLRZ09, LLRZ11] the problem to update interesting knowledge (coverage and
accuracy above a given threshold) is studied and proper heuristics given.

The increase of information with respect to values is addressed in [DH07]. The
authors show how approximations and positive regions change when an unknown
value becomes known and an algorithm to update reducts is also proposed. Grzymala-
Busse [GBGB08] analyses in quantitative terms what happens when known values
are turned to unknown. The result is that imprecise tables (i.e., with more unknown
values) generate better rules.
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Attribute dynamics has been partially tackled in [CC04] and then later in [Ciu11]
where it is shown that to an increase of information corresponds a deeper knowledge
on the problem and algorithms to update reducts and rules are given. The problem
of new attributes has also been discussed in the case of Information Tables with
unknown and do-not-care values in [LRW+07] and in rough fuzzy sets in [Che11]. Of
course, attribute dynamics is strictly linked to the notion of reduct hence, ideas used
in this widely and deeply studied field can also be related to attribute dynamics.

Finally, one can suppose that at a single time step, different evolutions of the
systems occurs. Here, we suppose that if this happens, we are always able to split
the event is sub-events which cover only one kind of dynamics. A different approach
is given in [CLZ10b] where the problem of simultaneous increase of knowledge with
respect to attributes and objects is studied and a way to update approximations is
given.

In the current literature on dynamics in rough sets, some problems have not yet
been solved, for instance how positive regions change in presence of new objects
or how reducts based on generalized decision can be updated when some unknown
value become known. Here we make an overview of the existing results and give
the missing ones. Results on how approximations, positive regions and generalized
decisions change in presence of an increase of knowledge are given. Then, the
problem to update reducts and rules is tackled and proper algorithms provided.

2. Rough Sets Basis

Information Tables (or Information Systems) [Paw81, PS07b] are at the basis of
rough sets. They have been defined to represent knowledge about objects in terms
of observables (attributes).

Definition 2.1. An Information Table is a structure K(X) = 〈X, A, val, F 〉 where:
• the universe X is a non empty set of objects;
• A is a non empty set of condition attributes;
• val is the set of all possible values that can be observed for all attributes;
• F (called the information map) is a mapping F : X ×A→ val∪{∗} which

associates to any pair object–attribute, the value F (x, a) ∈ val assumed
by a for the object x. If F (x, a) = ∗ it means that this particular value is
unknown.

Let us note that we do not deal with different semantics of incomplete infor-
mation tables, but simply take into account that for some reason a value can be
missing, i.e., F (x, a) = ∗.
A decision table is an Information Table where the attributes are divided in two
groups A ∪D, with A condition attributes and D decision attributes which repre-
sent a set of decisions to be taken given the conditions represented by A. Usually,
|D| = 1, that is, only one decision is considered.

Given an information (or decision) table, the indiscernibility relation with respect
to a set of attributes B ⊆ A is defined as

xIBy iff ∀a ∈ B, F (x, a) = F (y, a)

This relation is an equivalence one, which partitions X in equivalence classes [x]B ,
our granules of information. Due to a lack of knowledge we are not able to distin-
guish objects inside the granules, thus, it can happen that not all subsets of X can
be precisely characterized in terms of the available attributes B. However, any set
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H ⊆ X can be approximated by a lower and an upper approximation, respectively
defined as:

LB(H) = {x : [x]B ⊆ H}(1a)

UB(H) = {x : [x]B ∩H 6= ∅}(1b)

The pair (LB(H), UB(H)) is called a rough set (let us remark that sometimes with
rough set it is meant a set H which cannot be described by means of the equivalence
classes, in contrast with an exact set K such that LB(K) = K = UB(K)).

Other forms of imprecision arise in decision tables, when considering the decision
attributes D. Indeed, it may happen that two objects with same conditions have
different decision. In this case the decision table is said non-deterministic, and it
is useful to introduce the generalized decision:

δB(x) = {i : F (y, d) = i and xIBy}

which for a given set of conditions collects all the possible decisions. Thus, in a
non-deterministic situation, only a subset of objects can be precisely classified: the
positive region of the decision table, defined as

POSB(K(X), d) = ∪LB([x]{d})

The most important tools available in rough set theory are reducts and rules.
A decision table can be simplified by searching for a reduct: the smallest set of
attributes which preserves the classification. More precisely, given a decision table,
a set of attributes B1 is a reduct of B2, with B1 ⊆ B2, if
(R1) B1 and B2 generate the same generalized decision: for all objects x ∈ X,

δB1(x) = δB2(x);
(R2) A minimality condition holds, that is B1 is the smallest set which satisfies

condition (R1): if there exist a set C such that δC = δB1 = δB2 , then B1 ⊆
C ⊆ B2.

Clearly, there can be more than one reduct for a given set B2.
Another way to define a reduct is to consider the smallest set of attributes which

preserves the positive region. Formally, a set of attributes B1 is a reduct of B2 if
(R1pos) B1 andB2 generate the same positive region: POSB1(K(X), d) = POSB2(K(X), d);
(R2pos) A minimality condition holds, that is B1 is the smallest set which satisfies

condition (R1pos): if there exist a set C such that POSC(K(X), d) =
POSB1(K(X), d) = POSB2(K(X), d), then B1 ⊆ C ⊆ B2.

If generalized decisions are preserved then also positive region is, but not the
other way round.

Finally, classification rules can be deduced by a reduct or directly computed by a
proper algorithm, for instance LEM (and its descendants). Here, we are not going
into details on how we can obtain rules, for an overview and references the reader
is referred to [PS07a]. We just denote a rule as r : a1 = v1, . . . , an = vn → d1 or
d2 . . . or dm, with the meaning that when conditions ai = vi are satisfied then an
object can belong to one of the decisions dj . Of course, in the deterministic case
we have m = 1, that is only one decision is possible. In the sequel, given a rule r,
the set of its conditions will be denoted as cond(r) = {(ai = vi) : i = 1 . . . n} and
the set of its decisions as dec(r) = {d1, . . . , dm}.

Information Tables are not the only starting point in rough set theory. Indeed,
from an Information Table we can define a binary relation on objects, traditionally
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an equivalence or tolerance one and more generally, any binary relation. This
relation is then used to cluster objects in granules and define approximations. A
different approach consists in taking for granted to have a relation and begin the
investigation from a so called Approximation Space.

Definition 2.2. An Approximation Space is a pair A = (X,R) with X a set of
objects and R a binary relation on X.

Moreover, we can go further and get rid of the relation, supposing to have avail-
able somehow a granulation of our objects under investgation. We thus arrive at a
covering of the universe of discourse.

Definition 2.3. Let X be a non empty set, a covering C(X) of X is a collection
of sets Ci ⊆ P(X) such that

⋃
Ci = X.

3. A Classification of Dynamics

In a broad sense, we can distinguish between two type of dynamics: synchronic
and diachronic (or asynchronous) [Pag04]. In synchronic dynamics time is fixed
and it is typical of a multi-source or multi-agent situation: two stockbrokers with
different predictions, different web-sites about weather forecasts, etc. Here, we
are dealing with asynchronous dynamics where knowledge is supposed to change
in time and in particular with an increase of information, that is, the knowledge
already acquired cannot change, only new pieces of information can be added.
These changes can regard different factors: new objects enter into the system under
investigation, new facts are taken into account or unknown facts become known.
Of course, several of these changes can appear simultaneously, for instance going
from time t to time t+ 1, it may happen that n new objects enter the system and
m new facts are considered. However, in this case, we suppose to be able to split
the two events in two separate steps: from time t to t+ 1

2 , n new objects enter the
system and from time t+ 1

2 to time t+ 1, m new facts happen.
We are now going to give a classification of these dynamics in Information Tables.

Moreover, we also touch the problem to define and treat dynamics in Approxima-
tion Spaces and coverings with the aim of reporting some results obtained in the
Information Table case to the other two environments.

3.1. Temporal Dynamics in Information Tables. If we consider an Informa-
tion Table evolving in time, it may change in terms of objects, attributes, values or
information map. Generally speaking, a change can be of any kind. For instance,
a value of an attribute for a given object can change from a time step to another.
However, here we want to investigate those situations characterized by a monotone
increase of knowledge from time t to time t+1. So, it is possible to add information
but not to alter the existing one. Three situations where the knowledge increases
in time are now formalized in the following way.

Definition 3.1. [Ciu10a] Let K(t1)(X1) = 〈X1, A1, val1, F1〉 and K(t2)(X2) =
〈X2, A2, val2, F2〉, with t1, t2 ∈ N, t1 ≤ t2 be two Information Tables. We will
say that there is a monotonic increase of information from time t1 to time t2

• wrt values iff K(t1) and K(t2) are defined on the same set of objects, at-
tributes and values and F1(x, a) 6= ∗ implies F2(x, a) = F1(x, a).
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• wrt attributes iff X1 = X2, i.e., K(t1) and K(t2) are defined on the same set
of objects and A1 ⊆ A2, val1 ⊆ val2 and ∀a ∈ A1, ∀x ∈ X1, F2(x, a) =
F1(x, a).

• wrt objects iff K(t1) and K(t2) have the same set of attributes and values,
X1 ⊆ X2 and ∀x ∈ X1, F2(x, a) = F1(x, a).

In all the three cases we can also define a decrease of knowledge when the reverse
ordering holds.

Example 3.1. Let us consider a simple example of a medical decision table in
which patients are characterized according to some attributes and a decision on
their disease has to be taken. In tables 1 and 2 we can see a monotone increase of
information wrt attributes from time t0 to time t1. Indeed, the difference between
time t0 and time t1 is the new attribute ”Temperature” which is added while the
others do not change.

Table 1. Medical decision table, time t0.

Patient Pressure Headache Muscle Pain Disease
p1 2 yes yes A
p2 3 no yes B
p3 1 yes no NO
p4 2 yes yes NO

Table 2. Medical decision table, time t1.

Patient Temperature Pressure Headache Muscle Pain Disease
p1 * 2 yes yes A
p2 high 3 no yes B
p3 normal 1 yes no NO
p4 high 2 yes yes NO

On the other hand, from time t1 to time t2 we have a monotone increase of knowl-
edge with respect to values, since the only modification is the value F(p1,Temperature)
which from missing becomes defined.

Table 3. Medical decision table, time t2.

Patient Temperature Pressure Headache Muscle Pain Disease
p1 very high 2 yes yes A
p2 high 3 no yes B
p3 normal 1 yes no NO
p4 high 2 yes yes NO

Finally, at time t3 a new object p5 enters into the system, and from table 3 to
table 4 we have a monotone increase of information wrt objects.
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Table 4. Medical decision table, time t3.

Patient Temperature Pressure Headache Muscle Pain Disease
p1 very high 2 yes yes A
p2 high 3 no yes B
p3 normal 1 yes no NO
p4 high 2 yes yes NO
p5 high 3 yes yes NO

3.2. Temporal Dynamics in Approximation Spaces and Coverings. In or-
der to reflect the increase of information from Information Tables to Approximation
Spaces and coverings, we need to define what the increase of information in these
two further settings is.

If we directly start our investigation from an Approximation Spaces there are
two sources of information which can vary: the set of objects X and the relation R.
Thus, we can derive two notions of increase of knowledge in Approximation Spaces.

Definition 3.2. [Ciu10a] Given two Approximation SpacesA(t1) = (X1, R1),A(t2) =
(X2, R2) with t1, t2 ∈ N, t1 ≤ t2, we have an increase of knowledge in Approxima-
tion Spaces

• wrt relations if R1 ⊆ R2 and the objects are the same, i.e., X1 = X2;
• wrt objects if X1 ⊆ X2 and the relations are defined in the same way on

all common objects, i.e., let Y =
⋂
Xi, then for all x, y ∈ Y , R1(x, y) iff

R2(x, y).
That is, either we add new objects and new relations involving them without af-
fecting the existing ones or we add new relations among the existing objects.

Example 3.2. Let us consider an Approximation Space at time t0 represented by
X0 = {a, b, c, d}, R0 = {(i, i), (b, c), (a, d)}, where i stands for any object, i.e., the
relation is reflexive. Then, at time t1 we have an increase of knowledge with re-
spect to objects if the approximation space is updated as X1 = {a, b, c, d, e}, R1 =
{(i, i), (b, c), (a, d), (d, e)}. That is, we added object e and the relations involv-
ing it. At time t2 we have a monotone increase of knowledge with respect to
relations if, for instance, the approximation space is X2 = {a, b, c, d, e}, R2 =
{(i, i), (b, c), (a, d), (d, e), (b, d), (c, e)}. That is, objects are the same but new re-
lations between b and d and between c and e are added.

As a further step of abstraction we can consider to have directly available the
granules of our universe. In this case, in order to deal with increase of knowledge an
ordering among coverings is required. This is not so trivial, since different equivalent
definitions of partition orderings differ when generalized to coverings (see [BC09]
for an overview). So, we assume to have a notion of ordering (or quasi-ordering)
available, let us call it �, and define monotonicity with respect to this order as
follows.

Definition 3.3. [Ciu10b] Given two coverings C(t1)(X1),C(t2)(X2) with t1, t2 ∈ R,
t1 ≤ t2, we have an increase of knowledge in coverings

• wrt objects of type 1 if X1 ⊆ X2, C(t1)(X1) ⊆ C(t2)(X2) and all γ ∈
C(t2)(X2)\C(t1)(X1) contain at least one element x ∈ X2\X1;
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• wrt objects of type 2 ifX1 ⊆ X2 and the new objects are added to an existing
class or form a new class. That is, for all the granules γ2 ∈ C(t2)(X2) either
γ2 = γ1 with γ1 ∈ C(t1)(X1) or γ2 = γ1 ∪ {x1, . . . , xn|xi ∈ X2\X1} (and in
this case γ1 6∈ C(t2)(X2)) or γ2 = {x1, . . . , xm|xi ∈ X2\X1};
• wrt granules if X1 = X2 and C(t1)(X) ≤ C(t2)(X).

In the case of monotonicity of type 1 all the granules at time t1 remains at time
t2 and new ones are added which contains at least a new element. This evolution
is more ”faithful” to Approximation Spaces dynamics in case the coverings are
obtained from an Approximation Space [Yao98, Ciu10a].
In the monotonicity of type 2, the new elements either constitute a new class or
are added to an existing one. As shown in [Ciu10b] this evolution gives a sufficient
condition to obtain the conservation of covering reduction.

Example 3.3. Consider the universe X = {a, b, c, d} and the covering {{a, d},
{b, c}}. At a following time a new object e can enter the system. Then, we have
an increase of knowledge in coverings wrt objects of type 1 if the covering be-
comes, for instance, {{a, d}, {b, c}, {d, e}, {e}}. On the other hand, we have an
increase of knowledge in coverings wrt objects of type 2 if the new covering is
{{a, d}, {b, c, e}, {e}}. Then, if this last system is updated such that the new cov-
ering is {{a, d}, {b, c, e}, {c, e}, {e}} we have an increase of knowledge with respect
to granules if the following quasi ordering is considered:

C1(X) ≤ C2(X) iff ∀Ci ∈ C1(X) ∃Dj ∈ C2(X) such that Ci ⊆ Dj .

4. Dynamics and Rough Sets Instruments

According to the above presented classification, we now discuss how rough set
instruments change in presence of an increase of information. At first, we give
results on approximations, positive regions and generalized decisions. Then, in
the case of reducts and rules, after on overview of existing literature, algorithms to
update them are proposed. Finally, the influence of these results on Approximation
Spaces and coverings is discussed.

4.1. Approximations.

Proposition 4.1. [Ciu11] Let K(t0)(X) and K(t1)(X) be two Information Tables
characterized by a monotone increase of knowledge with respect to attributes from
time t0 to time t1. If we denote the attributes at time t0 as A0 and at time t1 as
A1, then

LA0(H) ⊆ LA1(H) ⊆ H ⊆ UA1(H) ⊆ UA0(H) .

Proposition 4.2. [DH07] Let K(t0)(X) and K(t1)(X) be two Information Tables
characterized by a monotone increase of knowledge with respect to values from time
t0 to time t1 and A a set of attributes. Then

Lt0
A (H) ⊆ Lt1

A (H) ⊆ H ⊆ U t1
A (H) ⊆ U t0

A (H) .

Proposition 4.3. Let K(t0)(X) and K(t1)(X) be two Information Tables charac-
terized by a monotone increase of knowledge with respect to objects from time t0
to time t1and A a set of attributes. Then

Lt1
A (H) ⊆ Lt0

A (H) ⊆ H ⊆ U t0
A (H) ⊆ U t1

A (H) .
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Proof. Having more objects available, granules can become bigger. Thus, as an
easily consequence we get that lower approximations can become smaller and upper
approximations bigger. �

Let us note that propositions 4.2 and 4.3 apply to more general rough-set models,
for instance tolerance rough sets. On the contrary, proposition 4.1 is more problem-
atic. Indeed, in general and contrary to what we said in [CC04], it does not hold in
the case of similarity rough sets. As an example just consider the relation ”x and y
are similar if they have at least one half of the attributes in common”. Then, if we
take the Information Table 3, we see that with respect to the set of all condition
attributes Lt1({p1, p2}) = ∅ whereas not considering the attribute Temperature
Lt0({p1, p2}) = {p2} and so Lt0({p1, p2}) 6⊆ Lt1({p1, p2}). Further conditions has
to be added to the similarity relation to have also the monotonicity on the ap-
proximations (see for instance [SS96]) or the approximations should be defined in a
different way. For instance, in [LRW+07], approximations with “unknown” and “do
not care” values are obtained using the characteristic relation approach. In this last
case a proposition analogous to 4.1 and a way to update approximations in presence
of incoming attributes are given. Similarly, for rough fuzzy sets, it is possible to
define approximations in a way to guarantee monotonicity of approximations while
adding attributes [Che11].

4.2. Positive Regions and Generalized Decision. The propositions of the pre-
vious section have a direct consequence on the number of objects that can be cor-
rectly classified, that is on the size of the positive region.

Proposition 4.4. [Ciu11] Let K(t0)(X) and K(t1)(X) be two Information Tables
characterized by a monotone increase of knowledge with respect to attributes from
time t0 to time t1. If we denote the attributes at time t0 as A0 and at time t1 as
A1, then

POSA0(K(t0)(X), d) ⊆ POSA1(K(t1)(X), d)

Proposition 4.5. [DH07] Let K(t0)(X) and K(t1)(X) be two Information Tables
characterized by a monotone increase of knowledge with respect to values from time
t0 to time t1. Then,

POSB(K(t0)(X), d) ⊆ POSB(K(t1)(X), d)

Proposition 4.6. Let K(t0)(X) and K(t1)(X) be two Information Tables charac-
terized by a monotone increase of knowledge with respect to objects from time t0
to time t1. Then,

POSB(K(t1)(X), d) ⊆ POSB(K(t0)(X), d)

Proof. An easy corollary of proposition 4.3. �

As expected, generalized decisions have the opposite behaviour: for a given
object, its generalized decision becomes smaller in attributes and values increase of
knowledge, and bigger in the case of more objects.
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Proposition 4.7. [Ciu11] Let K(t0)(X) and K(t1)(X) be two Information Tables
characterized by a monotone increase of knowledge with respect to attributes from
time t0 to time t1. Then, for all x ∈ X:

δAt1
(x) ⊆ δAt0

(x).

Proposition 4.8. Let K(t0)(X) and K(t1)(X) be two Information Tables charac-
terized by a monotone increase of knowledge with respect to values from time t0 to
time t1. Then, for all x ∈ X:

δAt1
(x) ⊆ δAt0

(x).

Proof. With more available values there is a finer granulation, thus an object x at
time t1 can be indiscernible with fewer objects with respect to time t0. �

Proposition 4.9. Let K(t0)(X) and K(t1)(X) be two Information Tables charac-
terized by a monotone increase of knowledge with respect to objects from time t0
to time t1. Then, for all x ∈ X0:

δAt0
(x) ⊆ δAt1

(x).

Proof. At time t1, an object x can be indiscernible from more objects than at time
t0 (the ones that entered the system at time t1), thus the generalized decision can
become wider. �

4.3. Reducts Update. Now, let us consider the reducts. The problem to update
them and test the performances of the associated rules has been tackled in the
following works

(1) Increase of knowledge wrt attibutes in [Ciu11], reducts based on the gener-
alized decision;

(2) Increase of knowledge wrt values in [DH07, GBGB08], reducts based on the
positive region;

(3) Increase of knowledge wrt objects in [SZ95, Woj01], reducts based on the
positive region;

As can be seen, only one kind of reduct has been considered in each type of increase
of knowledge. Here, we review these methods and give the ones concerning the other
kind of reduct.

Table 4.3 summarizes where each algorithm is introduced and the complexity
of each of them. The information about the rules update is also report and it
will be discussed in the following section. We note that in [Ciu11] the cost of the
algorithms has not been explicitly computed but it can be simply recovered from
the algorithm.
Increase in attributes. Supposing that At0 ⊆ At1 , it can happen that Redt0 , the
reduct of At0 , is a reduct of At1 . In this case the reduct at time t1 does not change.
On the contrary, if Redt0 is not a reduct of At1 , we have that RedAt0

⊆ RedAt1

and the rules obtained at time t1 are more precise, in the sense that they contain
more conditions. If we desire to compute the reducts at time t1 we can start from
an existing one and update it, instead of re-calculating them all. The way in which
we do this depends on the kind of reducts we are using: based on the generalized
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Increase What Where Complexity
Reduct - positive region Alg. 1 O(|X|2|A|)

Attribute Reduct - gen. decision [Ciu11] O(|X||A|)
Rules [Ciu11] O(|X|+ |V ala|)

Reduct - positive region [DH07] O(|A|2|X| log |X|)
Values Reduct - gen. decision Alg. 2 O(|X|2|A|2)

Rules Section 4.4 - Increase in values O(|R| ·max{|R|, |V ala|})
Reduct - positive region Alg. 3 O(|X|2p2p)

Objects Reduct - gen. decision Alg. 4 O(|X|2p2p)
Rules Alg. 5 O(|R|)

Table 5. In the last column, X is the number of objects, A is the
number of attributes, |V ala| is the number of values that attribute
a can assume, |R| the number of rules and p = |A| − |Red|, with
Red the reduct to be updated.

decision or on the positive region. The former has been discussed in [Ciu11] whereas
a way to update a positive-region reduct is presented in algorithm 1.

Algorithm 1 Update reducts (positive region) in case of a new attribute

Require: A set of objects X = {x1, x2, . . . xn}, a reduct Redt0 , a new attribute a
Ensure: An updated reduct

1: if POSA(K(X), d) 6= POS(A∪{a})(K(X), d) then
2: add a to the reduct: Redt1 = Redt0 ∪ {a}
3: end if

That is, we add a to the reduct Redt0 if it enables to discern objects belonging
to different decision classes which were equivalent with respect to attributes in
Redt0 . The cost of the algorithm is the cost of computing the Positive Region,
which depends both on the number of objects and attributes and can be estimated
(without any particular heuristics) as O(|X|2|A|).

Clearly, if we add more than one attribute we can proceed by applying the above
algorithm for each attribute. In this case, the order of considering the attributes
will influence the result (heuristics can be found in literature [PS07a]) and we may
also loose some reduct respect to computing them from scratch. Another approach
could be to ask if there exists a reduct at time t1 which contains the reduct at
time t0. This can be solved in polynomial time similarly to the covering problem
discussed in [MSS08].

Example 4.1. Let us consider the monotone increase with respect to attributes
existing from table 1 to table 3. At time t0 a possible reduct is made of only one
attribute: Redt0 ={Pressure}. At time t1 we add the attribute Temperature and we
recompute the positive region. We have that POSA(K(X), d) = {x2, x3} 6= X =
POS(A∪{Temp})(K(X), d). Hence, we add the attribute Temperature and obtain
Redt1 ={Pressure, Temperature}.

Increase in values. In case of a monotone increase of knowledge with respect to
values, Deng and Huang [DH07] defined an algorithm to generate an updated reduct
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based on the positive region without recomputing it from scratch. The idea is that,
at a given time step, those attributes with missing values in the negative region,
useful for classification or not, are put in the reduct. Indeed, when those values will
become known they could be useful to give a better classification by eliminating
some objects from the negative region. Then, the reduct at time t+ 1 is computed
starting from the reduct at time t and not from the whole set of attributes.

A similar procedure can also be used when computing reducts based on the
generalized decision, instead of on the positive region. That is, a reduct must
contain all the attributes a ⊂ A such that there exist an object x, F (x, a) = ∗ and
|δA(x)| > 1, i.e. there is no certain decision on x. This is due to the fact that at
a certain point in the future the value F (x, a) could become known and contribute
to decide on x.

Example 4.2. Let us consider the Information Table 2 at time t0 with one missing
value which evolves at time t1 according to table 3.

The relation between objects is the usual one when dealing with missing values
[Kry98]:

∀x, y ∈ X : xRDy iff ∀ai ∈ D ⊆ A,
either F (x, ai) = F (y, ai) or F (x, ai) = ∗ or F (y, ai) = ∗

Starting to examine the attribute in the order from left to right, we see that
temperature cannot be eliminated since the missing attribute is relative to the
object p1 about which we have not a certain decision. Then, Pressure can be
deleted, whereas Muscle Pain and Headache cannot. So the reduct at this stage is
Red0={Temperature, Headache, Muscle Pain}.

At time t1 we start from Red0 and see that Muscle Pain can now be deleted with
the result that Red1= {Temperature, Headache}.

We note that without the criterion to maintain the attributes with objects with
missing values, Temperature would have been deleted.

The above procedure to update a reduct can be schematized as in algorithm 2.

Algorithm 2 Update reducts (generalized decision) in case of an increase of values

Require: A decision table at time t1, a reduct Redt0

Ensure: An updated reduct

1: Redt1 = Redt0

2: for a ∈ Redt0 do
3: if δRedt1\a = δRedt1

then
4: if ∀x ∈ X, |δRedt1

| = 1 or F (x, a) 6= ∗ then
5: Redt1 = Redt1\a
6: end if
7: end if
8: end for

The cost of the algorithm depends of the size of the reduct. Assuming the worst
case, R = |Redt0 | = |A|, we have that R should be multiplied by the cost of comput-
ing the generalized decisions of line 3 (and 4) which is |X|(|X||A|). Summarizing,
we have a complexity of O(|X|2|A|2).
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Increase in objects. In the case of objects Shan and Ziarko [SZ95] propose an al-
gorithm to update all the reducts when one (and only one) new object becomes
known. The idea is to maintain a decision matrix for each decision class, where
rows contain objects belonging to the lower approximation of the class and columns
not belonging. The decision rules are computed for each class. When a new object
enters into the system, it is added as a row to the decision matrix corresponding
to its decision class, say d, and as a column to all the others. In the first case,
new rules are added to the set of rules deciding d, if the new object is consistent
with already existing ones. In the second case, all rules corresponding to the other
classes are updated and if the new object is inconsistent with some other, the old
rules are deleted.

This result has been modified and improved with respect to complexity issues
by Wojna [Woj01]. The basic idea is to maintain only the rules/reduct satisfying
a given constraint, instead of computing all rules and reducts. In particular, some
experiments are conducted using as a constraint the coverage greater than a given
threshold. As a result ”the application of stronger constraints brought a significant
reduction of used memory and time and very small deterioration of accuracy or
even improvement”.

Further, in [LLRZ09], authors study how accuracy and coverage of rules vary
when new objects enter/exit the system. They also propose an algorithm to up-
date so called interesting knowledge, i.e., rules with coverage and accuracy above a
given threshold, when simultaneously some objects enter or exit the system. The
performance of this approach are then improved in [LLRZ11].

However, if we wonder how to update a given reduct or rule when a new object
enter the system, none of the above works answer the question. Indeed, [SZ95]
(and also [Woj01]) only deals with consistent rules and reducts and rules are not
updated but computed from reducts. On the contrary [LLRZ09] consider also
inconsistent rules but only ”interesting knowledge” is updated. Now, we present a
simple solution on how to update reducts (both based on generalized decision and
positive regions) in presence of a new object while rules are treated in the next
section.

Algorithm 3 Update reducts (positive region) in presence of a new object

Require: A set of attributes A, a reduct Redt0 ⊆ A, a new object x
Ensure: A collection of reducts RED which updates Redt0

1: D = {y : F (y, d) = F (x, d)}
2: if LRedt0

(D) = LA(D) then
3: RED = {Redt0}
4: else
5: Search for the smallest subsets Redt0 ⊂ Bi ⊆ A such that LBi(D) = LA(D)
6: RED = ∪{Bi}
7: end if

As shown in algorithms 4 and 3, given Redt0 a reduct at time t0 and a new
object, we first check if Red0 is still a reduct of the new system. If not, we search
for the smallest subsets Bi of attributes containing Redt0 such that Bi is a reduct
with respect to the positive region condition or the generalized decision one.
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Algorithm 4 Update reducts (generalized decision) in presence of a new object

Require: A set of attributes A, a reduct Redt0 ⊆ A, a new object x
Ensure: A collection of reducts RED which updates Redt0

1: if δRedt0
(x) = δA(x) then

2: RED = {Redt0}
3: else
4: Search for the smallest subsets Redt0 ⊂ Bi ⊆ A such that δB(x) = δA(x)
5: RED = ∪{Bi}
6: end if

Example 4.3. Let us consider table 3 and its reduct Redt0={Temperature, Pres-
sure}. At a following time, object p5 is added as in table 4 and Redt0 is no more
a reduct of the Information Table. Indeed, at time t1 patients p2 and p5 do not
belong to the positive region and the generalized decision of the same objects is
different if computed on the set Redt0 of attributes or on all the attributes. Thus,
to Redt0 we have to add some new attribute to get a reduct, and the only solution
is to add Headache: RED={{Temperature,Pressure,Headache}}. We note that
RED is not the set of all reducts (for instance, another could be {Temperature,
Headache, Muscle Pain}), but only of the ones obtained from Redt0 .

The complexity of both algorithms in the worst case is given by the else branch
which requires to search a new reduct. Let p = |A|− |Redt0 |, then we have that the
cost of line 4 in algorithm 4 and line 5 in algorithm 3 is |X|2

∑p
i=1

(
p
i

)
(|Redt0 |+ i)

where |Redt0 |+ i is the cardinality of |Bi|. The solution of this sum is |X|2((2p −
1) + (p2p−1)) and so we have a complexity in the worst case of O(|X|2p2p).

4.4. Rules Update. Similar methods to the ones described for updating reducts
can be applied directly to rules updating.
Increase in attributes. The case of increase of attributes has been considered in
[Ciu11]. The deterministic rules are not changed, since the new attribute will not
affect the classification. Imprecise rules can be improved if the new attribute is able
to discern similar objects with different decisions. That is, we add a new rule if the
set of objects satisfying the conditions of the actual rule is not contained in one of
the equivalence classes with respect to the new attribute. Let us note that the new
rules are better than the hold ones in the sense that they have less elements in the
right (decision) part.

From a theoretical standpoint, we expect that the rules computed with more
attributes are more accurate. We can however wonder if, as in the case of values
increase of knowledge, the less accurate rules have better performances. In order to
verify this, we made some test in [Ciu11]. We took into account the data sets Iris,
Pima Diabetes and Breast Cancer from the UCI repository6. As a result, we can
observe that on average accuracy decreases as attributes diminish. That is, to a
monotone decrease of knowledge wrt attributes corresponds a decrease of accuracy.
More interesting, we can also get some (indirect) indication on the dependence of
the decision from the conditions and, further, in some cases, the accuracy of some
subset of attributes is better than the whole set of attributes. This could be useful
in a pre-processing phase, to understand which are the most important attributes.

6http://archive.ics.uci.edu/ml/
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Of course, proper studies are needed to develop methods able to single out in an
efficient way those particular attributes.
Increase in values. In case of increase of values we can distinguish four cases. Let
us suppose to have a rule r : a1 = v1, . . . an = vn → d1 or d2 . . . or dm and that the
value F (x, a) becomes known. Then, the scenarios are:

(1) a 6∈ {a1, . . . , an} and the rule matches x conditions. Check if the rules r′

with conditions {a, a1, . . . , an} are better than r, that is if the decision set
dec(r′) is smaller than r. If this is the case then substitute r with the rules
r′ otherwise do nothing.

(2) a 6∈ {a1, . . . , an} and the rule does not match x conditions. In this case
there is nothing to do.

(3) a ∈ {a1, . . . , an} and the rule matches x conditions. If also F (x, d) ∈ dec(r)
then the rule is unchanged, otherwise the decision of x, i.e. F (x, d), is
added to dec(r).

(4) a ∈ {a1, . . . , an} and the rule does not match x conditions. The rule is
unchanged but we have to check if there exists a rule which covers x and
contains a, otherwise a new rule obtained by x can be added.

Example 4.4. Let us consider again the increase wrt values going from table 2 to
table 3. With respect to the rule

r : Pressure = 3 and Muscle-Pain = yes→ B

we are in case 2, so there is nothing to do. On the contrary, we have to apply case
1 to the rule

r : Pressure = 2 and Muscle-Pain = yes→ A orNO

So, we add the attribute Temperature to the rule and obtain two better (i.e., more
certain) rules:

r1 : Temperature=very high and Pressure = 2 and Muscle-Pain = yes→ A

r2 : Temperature=high and Pressure = 2 and Muscle-Pain = yes→ NO

and substitute r with r1 and r2.

The cost of this procedure depends on the number of rules to update, which is at
most equal to the number of all rules |R|, and the worst case between 1 and 4.
Case 1 requires c1 · |V ala| operations and case 4 at most c2|R| (c1, c2 are constants),
which makes the total complexity O(|R| ·max{|R|, |V ala|}).
Increase in objects. In the case of objects increase of information, let us consider
that a new object x enters the system. Then, if a rule also correctly covers x there
is no need to change it. If a non-deterministic rule do not correctly covers x, that is
rule and object have same conditions but different decision, then x-decision can be
added to the rule’s decision. On the contrary, if a deterministic rule do not correctly
applies to x, we have two choices: delete the rule, if only deterministic rules are
desired, or add the x-decision to the rule’s decisions, making it an uncertain rule.
Finally, if there are no rules matching x-conditions, a new rule can be added. This
procedure is summarized in algorithm 5.

Example 4.5. Let us consider table 3 and the rule:

r : Temperature = high and Pressure = 3→ B
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Algorithm 5 Update rules - increase of objects

Require: a set of rules Rt0 , a new object x
Ensure: a new set of rules Rt1

1: boolean cons {cons=1 means that the new rules cannot add inconsistency}
2: Rt1 = ∅
3: if 6 ∃r ∈ Rt0 matching x conditions then
4: r = cond(x)→ F (x, d)
5: Rt1 = Rt1 ∪ {r}
6: else
7: for all r ∈ Rt0 matching x conditions do
8: if F (x, d) ∈ dec(r) OR cons = 0 then
9: r′ = cond(r)→ (dec(r) ∪ {F (x, d)})

10: Rt1 = Rt1 ∪ {r′}
11: end if
12: end for
13: end if

When patient p5 enters the system (table 4), the rule does not hold anymore. Thus,
we can change the rule as

r1 : Temperature = high and Pressure = 3→ B orNO

or delete it.

The most similar approach to algorithm 5 to update rules in case of new objects
is the one in [ZW04]. In this work the authors introduce a way to organize rules in
a decision tree and update them in presence of new objects. When a new object x
appears, the rule set is tested and three cases occur:

(1) If there is no rule covering x, a new rule is added;
(2) If there exists a consistent rule covering x, there is nothing to do;
(3) If there exist a rule covering x but which is not consistent with x, then

the inconsistent rules are updated adding attributes to the reduct used to
generate them.

So, the main difference with our approach is the hypothesis in [ZW04] that there
exists a set of attributes which makes the rule set consistent (which in reality is not
always the case). Further, in order to keep the system consistent, they try to add
new conditions to the rule, while we do keep the set of conditions fixed, in order to
not increase the complexity of the algorithm. A similar approach is also proposed
in [FTCH09] where rules are updated to accommodate incoming objects and the
whole system is supposed to be consistent. The peculiarity of this approach is that
it considers a subset of all possible rules, chosen according to a reduct strength index
and to the merging of reducts with same number of conditions and outcome.

4.5. Dependencies Among the Three Approaches. Of course, Information
Tables, Approximation Spaces and coverings are not independent tools and as out-
lined in section 2, it is possible to define the increase of knowledge also in these two
environments. So, we can ask, given an increase of knowledge in information ta-
bles, which is the relapse on the dynamics of approximation spaces and coverings.
Unfortunately, very few can be said. Indeed, we just have the following results
[Ciu10a, Ciu10b]:



16 D. CIUCCI

• an increase of information wrt objects in an Information Table induces an
increase of information in an Approximation Space;
• an increase of knowledge wrt objects of type 1 in Approximation Spaces

induces an increase of knowledge wrt objects in coverings.
Other dependencies generally do not hold. Indeed, there can be a monotone

increase of knowledge wrt to attributes or values in an Information Table which
does not reflect in a monotone relation in Approximation Spaces. Similarly, since
the increase of knowledge wrt to granules depends on a given ordering, it is not
so immediate to give a general result on the dependencies among Approximation
Spaces and coverings. However, looking at the covering in example 3.3, we can
see that it can be obtained by the Approximation Spaces in example 3.2 using the
successor neighborhood. Thus, in this case, an increase of knowledge wrt relations in
Approximation Spaces induces an increase of knowledge wrt granules in coverings.

Thus, considering the results of Section 4 we have that only proposition 4.3
can be applied to Approximation Spaces and coverings. Indeed other kinds of
monotonicity do not propagate from Information Tables to the other paradigms
or simply do not apply to them, for instance, attribute reduction has not sense in
absence of attributes.

5. Conclusion

The influence of dynamic evolution on rough sets has been studied. From a
theoretical standpoint (and as one could expect) we have better approximations
and classifications with attribute and value increase of information and worst in
case of objects increase. From an application standpoint, we gave a way to update
reducts and rules. In this direction, some tests should be done. First of all to
understand the consequence, both in efficiency and quality, of updating instead of
re-computing. Further, as outlined in [GBGB08, Ciu11] to a decrease of information
values and attributes can correspond better rules. It should be investigated this
issue in a deeper way, in order to understand, if possible, when this happens and
in which proportion.
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Bicocca, Via Bicocca degli Arcimboldi 8, I–20126 Milano (Italy)
E-mail address: ciucci@disco.unimib.it


