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Abstract
The spatio-temporal landscape of the plasma membrane regulates activation and signal
transduction of membrane bound receptors by restricting their two-dimensional mobility and by
inducing receptor clustering. This regulation also extends to complex formation between receptors
and adaptor proteins, which are the intermediate signaling molecules involved in cellular signaling
that relay the received cues from cell surface to cytoplasm and eventually to the nucleus. Although
their investigation poses challenging technical difficulties, there is a crucial need to understand the
impact of the receptor diffusivity, clustering, and spatial heterogeneity, and of receptor-adaptor
protein complex formation on the cellular signal transduction patterns. Building upon our earlier
studies, we have developed an adaptive coarse-grained Monte Carlo method that can be used to
investigate the role of diffusion, clustering and membrane corralling on receptor association and
receptor-adaptor protein complex formation dynamics in three dimensions. The new Monte Carlo
lattice based approach allowed us to introduce spatial resolution on the 2-D plasma membrane and
to model the cytoplasm in three-dimensions. Being a multi-resolution approach, our new method
makes it possible to represent various parts of the cellular system at different levels of detail and
enabled us to utilize the locally homogeneous assumption when justified (e.g., cytoplasmic region
away from the cell membrane) and avoid its use when high spatial resolution is needed (e.g., cell
membrane and cytoplasmic region near the membrane) while keeping the required computational
complexity manageable. Our results have shown that diffusion has a significant impact on
receptor-receptor dimerization and receptor-adaptor protein complex formation kinetics. We have
observed an “adaptor protein hopping” mechanism where the receptor binding proteins may hop
between receptors to form short-lived transient complexes. This increased residence time of the
adaptor proteins near cell membrane and their ability to frequently change signaling partners may
explain the increase in signaling efficiency when receptors are clustered. We also hypothesize that
the adaptor protein hopping mechanism can cause concurrent or sequential activation of multiple
signaling pathways, thus leading to crosstalk between diverse biological functions.
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1. Introduction
To respond to the complexities of their external environment, living cells have evolved
complex signal transduction pathways, most of which surpass the complexity of modern
processing units. The cellular signaling machinery represents a robust multiscale system
with a large range of time (from sub-seconds for biomolecular complex formation to hours
and days for transcription and translation (Kholodenko, Demin et al. 1999; Bonneau, Reiss
et al. 2006)) and length (nanometers to tens of micrometers) scales. It is understood that the
effects of signal transduction go far beyond the signaling pathway itself, leading to cell-fate
decisions such as cell migration, tissue reorganization, inflammation, cell growth, and
apoptosis. Due to this fundamental role, understanding the mechanisms and modulations that
regulate cell signaling is of utmost importance and an intrinsically multiscale problem.

The Toll-like receptor (TLR) signal transduction system deciphers pathogen patterns and
responds with the appropriate cellular response thus initiating the transition from innate to
adaptive immunity (Janssens and Beyaert 2003; McCoy and O’Neill 2008; Tanaka, Oh-
Hashi et al. 2008). The physiological consequences of TLR activation have the potential to
devastate the host cell with activation of apoptotic pathways; therefore the TLRs are tightly
regulated and expressed at very low levels (Regueiro, Moranta et al. 2009). In addition to
the regulation by changes in expression levels, dynamics and signaling properties of TLRs
(and other similar receptor systems) are also regulated physically by the structure and
organization of the cell membrane since these receptors are membrane bound. The spatial
landscape of the plasma membrane has been shown to determine signaling efficiency (Tian,
Harding et al. 2007), orchestrate receptor co-localization and clustering, and serve as a
mechanism for receptor spatio-temporal regulation. Compounding this complexity is how
the membrane proteins such as TLR interact with cytosolic species which, through
sequential protein-protein interactions convey the external cues received by the membrane
proteins to the interior of the cell. How and which adaptor proteins interact with each other
defines the intracellular signaling patterns. Efficiency of the interactions between cytosolic
proteins and receptors are inadvertently affected by the membrane structure. Because of
such effects on molecular properties, it is of critical importance to understand how receptor
diffusion, spatial organization of cell signaling and receptor-adaptor protein interactions are
affected by the organization of the cell membrane.

Since the paradigm shift in the concept of the plasma membrane from a two-dimensional
continuum fluid model as described in the seminal work of Singer-Nicolson (Singer and
Nicolson 1972) to the understanding that the plasma membrane is an inhomogeneous
surface with possible functional domains (Kusumi, Nakada et al. 2005), scientists are just
beginning to realize the profound ways that inhomogeneities of the plasma membrane may
impact receptor dynamics and that protein diffusivity may have on downstream signal
transduction. For example, the underlying actin cytoskeleton constrains lipid and protein
diffusivity in a picket-fence manner where proteins are immobilized in pickets on the
extracellular surface (Kusumi, Suzuki et al. 1999; Ritchie and Kusumi 2004). The actin
cytoskeleton can thus enhance receptor encounters by corralling receptors into
microdomains where the probability of receptor dimerization is higher, and such an increase
in the signal transduction capacity was observed when receptors were clustered (Costa,
Radhakrishnan et al. 2009). Similarly, self-organizing lipids rafts can restrict receptor
diffusivity and act as hubs of signal transduction (Dietrich, Yang et al. 2002; Chen, Yang et
al. 2004). In addition, endocytotic structures clathrin and caveolae can impact complex
formation patterns by co-localizing the receptors or affect receptor mobility and degradation
patterns through trafficking (Resat, Ewald et al. 2003; Shankaran, Wiley et al. 2007).
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Many mathematical models have been developed to understand the dynamic behavior of
signal transduction pathways (Kholodenko, Demin et al. 1999; Sasagawa, Ozaki et al. 2005;
Shankaran, Wiley et al. 2006). Unfortunately, most models neglect the significance of
receptor spatial organization by assuming the well-mixed condition which is inherent to
ordinary differential equation (ODE) models or their stochastic versions (Resat, Costa et al.
2011). Here we have taken a different approach and developed a multiscale stochastic
platform to study spatio-temporal properties of signal transduction networks in pseudo three
dimensions. This study extends our coupled spatial non-spatial algorithm CSNSA, which
combined a spatially resolved Monte Carlo lattice approach for receptor interactions and the
Gillespie algorithm for the dynamics of cytoplasmic proteins (Costa, Radhakrishnan et al.
2009), where the intracellular environment is now treated as a spatially organized, non-
homogeneous system. Since spatial-temporal models are computationally intensive, it is not
be feasible to model spatial temporal interactions of all proteins. Therefore, our new
approach employs a computationally less intensive hybrid approach instead, and it extends
the adaptively coarse-grained Monte Carlo (ACGMC) method (Chatterjee, Snyder et al.
2004; Chatterjee, Katsoulakis et al. 2005; Chatterjee, Vlachos et al. 2005; Collins, Chatterjee
et al. 2008; Collins, Stamatakis et al. 2010) to three dimensions. This extension made it
possible to obtain spatial-temporal resolution of proteins spanning multiple time and length
scales by appropriately partitioning the system according to desired resolutions. We have
applied the new approach to study cellular signaling in three dimensions. Our results imply
that adaptor protein hopping, i.e., sequential binding of the adaptor proteins to multiple
receptors, may be a plausible mechanism exploited by pathogens to alter the signaling
patterns of their hosts.

2. Adaptively coarse-grained Monte Carlo algorithm
2.1. Simulation System Setup

Multiresolution coarse graining offer solutions to some of the computational bottlenecks
encountered in multiscale systems. Arguably the most direct way to implement coarse
graining is to use multiple lattices where different sections of the system have different
resolutions that are assigned according to the intrinsic properties of the studied biological
problem. In this report, as an application of our new method, we address how receptor co-
localization and complex formation with adaptor proteins may impact downstream signal
transduction. We therefore were mostly interested in receptor-receptor interactions on the
plasma membrane and in receptor-cytosolic species reactions at the plasma membrane/
cytoplasm interface. Reactions that occur in the cytoplasm further away from the membrane
can be expected to occur homogeneously, and therefore, do not need to be tracked
individually. To accommodate these requirements into the simulation set-up, we apply
coarse-graining along the z-axis to define three regions with different levels of resolution
(Figure 1):

1. High resolution region. Lattice layers i=1–7 represent the plasma membrane and
the adjacent cytosol region. These layers have a z-lattice spacing of 10 nm. The
first layer represents the plasma membrane and it is the only layer that is accessible
to the receptors. Layers #2–#7 form the 60 nm thick cytosol region that is modeled
at a high (10 nm) spatial resolution.

2. Intermediate resolution region. Lattice layers i=8 and 9 represent the intermediate
cytosol region that act as a two-tiered buffer region between the near membrane
and the bulk cytoplasm regions. These lattices have a z-lattice spacing of 50nm,
which the medium resolution level in the simulated system.

3. Low resolution region. Last layer i=10 has a 100 nm z-lattice spacing and it
represents the deeper parts of the cytosol away from the membrane.
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The x-y dimensions were described using a 50×50 lattice mesh with 10 nm spacing and
periodic boundary conditions. We note that this spacing and the highest resolution along the
z-direction was chosen according to the typical size of membrane-bound receptors, which is
~10 nm (Carpenter and O’Neill 2009; Lin, Lo et al. 2010). With this choice, a single lattice
site of layer #1 can only contain one receptor, i.e., the lattice site is considered fully
occupied when it contains a receptor. Similarly, receptor dimerization results in the
occupancy of two adjacent sites. Being smaller in size, it was assumed that the adaptor
proteins occupy the same lattice site of the receptors that they are bound to. With these
assumptions, in our set-up receptors and receptor dimers reside on layer #1. Adaptor
proteins bound to a membrane receptor also reside on layer #1 and they diffuse as part of a
receptor complex on the plasma membrane. Upon dissociation from the receptors, adaptor
proteins are placed at layer #2.

2.2. Dynamics in the high resolution region
Diffusion at the plasma membrane layer—In the top layer of the high resolution
region (layer #1), which represents the plasma membrane, the diffusional translational
motion of proteins were modeled as hopping between adjacent lattice sites with a

microscopic diffusion rate of  where σi is the occupancy factor of the
site i. Factor m is equal to the 2 × dimensionality of the system, i.e., m=4 for 2-D and 6 for
3-D motion. Since each lattice site can hold at most one receptor or one receptor-adaptor
protein complex in this high resolution layer (Section 2.1), σi is either one or zero for this
layer. Thus, the σi (1−σj) factor in the formula ascertains that receptor hopping can only

occur from an occupied lattice site to an unoccupied one. With the choice , where
Dc is the molecular diffusion coefficient and a is the grid spacing (=10 nm), hopping motion
on a rectangular grid represents the diffusive motion (Berg 1993).

Diffusion near the cell surface—Diffusion of the proteins in the other parts of the high
resolution region (layers #2–#7, part of the cytosol adjacent to the plasma membrane) are
modeled in the same way as the diffusion in layer #1 by choosing the dimensionality factor
as m=6 because the proteins can jump in between different layers as well in that region.

Biochemical reactions—The association-dissociation and chemical reactions between
receptors, cytosolic proteins, and receptor-cytosolic species were dependent on the state of
the neighboring lattice sites, and they were modeled using the stochastic simulation
algorithm (SSA) (Gillespie 1977; Resat, Wiley et al. 2001) in the high resolution region. In
SSA, every reaction is associated with a probability that specifies the rate at which that
reaction may occur. For our system, the rates of the involved reactions and molecular
transitions were computed as follows: The transition rate for the receptor dimerization

between receptors in adjacent lattice sites Ri+Rj→Cij was . Similarly, the

transition rate for biomolecular reactions Ai+Bj→C was . Unimolecular
reactions A→C, which only takes place when ligand binds to its receptor on the plasma
membrane and the dissociation reactions (Cij →Ri+Rj or C→ Ai+Bj) were described with a

transition rate of . In these expressions k is the is the ordinary rate constant of the
reaction.

2.3. Dynamics in the coarse-grained lattices
The coarse-grained region occupies the volume formed by layers #8–#10. In these layers,
each coarse grained site Ck is characterized with the number of microscopic sites qk that it

contains. The number of microscopic sites in Ck is given as , where  is the
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microscopic partitioning along the lth axis (l=x,y, or z, and  is the size ratio of the
resolutions of the coarse grained unit and the highest resolution region along axis l). In other
words, qk corresponds to the number of microscopic sites of the highest resolution lattice
that fits into a site of the coarse-grained lattice. With this notation, the occupancy of a
coarse-grained lattice site Ck would be ηk = Σp∈Ck σp, corresponding to a fractional coverage
of . In our set-up, the resolution along the x-y plane was 10 nm in all the layers, so

.

Diffusional hopping and biochemical reactions in the coarse-grained lattices can be defined
in a similar way to the expressions for the highest resolution lattice (Chatterjee, Vlachos et
al. 2004; Chatterjee, Katsoulakis et al. 2005; Chatterjee, Vlachos et al. 2005; Chatterjee and
Vlachos 2007): The diffusion rate from a high resolution lattice site to a coarse cell or
coarse-cell to another coarse-cell qi → qj in terms of the underlying microscopic diffusion

rate is . In the limit of the diffusion from the coarse grained lattice

#8 to high resolution lattice #7, this expression becomes .

As in the case of the high-resolution lattice (Section 2.2), the rates of the biochemical
reactions occurring in the coarse-grained lattices can be defined analogously to the
diffusional hopping expressions. In this case,  in the rate expressions represents the

fractional occupancy of the encountered reactant B, . Further details of these rate
expressions and their derivation for the adaptive coarse graining can be found in (Chatterjee,
Vlachos et al. 2004; Chatterjee, Katsoulakis et al. 2005; Chatterjee, Vlachos et al. 2005;
Chatterjee and Vlachos 2007). The diffusion and reaction rates are computed a priori for
each lattice and are updated throughout the simulation as required by the occupancy of
neighboring lattice sites and the state of species at these sites.

3. Algorithm implementation and simulation details
3.1. Stochastic Monte Carlo simulation

The Monte Carlo simulation requires the selection of the location (which lattice site) and the
type of the reaction that may occur next. To do this, first the total transition rate of all the
diffusion and biochemical reaction transitions Γ tot,lat,i that may take place on layer i was
computed (cf., Section 2; i=#1–#10). Then the total transition rate of the reactions that may
occur in the whole system Γ tot is the sum Γ tot,lat,i over the constituent lattice layers. The
probability for selecting a reaction occurring in a given layer is then the ratio of the total
transition rate for that lattice layer divided by the total transition rate, Plat,i = Γtot,lat,i/Γtot. A
random Monte Carlo selection was used to select the lattice layer for the next reaction
according to the computed lattice layer probabilities. Once a lattice layer has been selected,
a lattice site from that two-dimensional layer was chosen using a uniform random selection.
Picked site is the location of the next potential reaction in the system. Occupancy
information and protein species states were indexed for all neighboring lattice units of the
selected reaction site. A Monte Carlo null based approach is used to determine the event
(diffusion, reaction, or null) to implement (Costa, Radhakrishnan et al. 2009). When a
diffusion or biochemical reaction event was selected, whether it actually occurred was
decided by comparing the ratio of the propensity of the event Γ i→j to the “local maximum
propensity” Γ max with a uniform random number r1 in the [0:1] range, i.e., the event was
accepted to occur if r1< Γi→j/Γmax. Otherwise a null event was chosen. Choosing

 ensured that the selection probability was less or
equal to 1 in this scheme. First sum in the definition of Γmax corresponds to the propensities
of diffusion (hopping) out of the selected lattice site, and the second term is the propensity
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of the biochemical reaction (dimerization, association, etc.) with the largest propensity that
could occur in the chosen unit. Thus, Γmax is the maximum propensity that any of the
reactions that could possibly occur in the chosen lattice site i, and therefore, Γi→j ≤ Γmax
condition is always satisfied.

Execution of the algorithm detailed above superposes the kinetics in all lattices into a single
Monte Carlo trajectory. Correspondingly, time is updated in a combined manner from the
total transition rate for all events in the system as Δt = log (r2)/Γtot where r2 is a uniformly
selected random number. This selection ensures that the reaction times are exponentially
distributed (Gillespie 1977; Resat, Wiley et al. 2001). The algorithm was validated by
comparing the results with the ODE solution when the diffusion coefficient was large.
Allowing the biomolecules to move with large diffusion coefficients made it possible to
mimic the “well-mixed” system conditions of the ODE simulations in control and validation
studies. Obtained results (not shown) showed agreement between the ACGMC and the ODE
solutions.

3.2. Simulation flowchart
Steps of the ACGMC algorithm are summarized in Figure 2:

1. Randomly populate the lattice grid units according to the initial concentrations of
the proteins, and compute the transition rates and probabilities for each event.

2. Compute the total transition rate and probabilities for each of the ten lattice layers.

3. Randomly select a lattice layer based on the total transition probability distributions
of the layers.

4. Randomly select an occupied grid unit among the sites on the chosen two-
dimensional lattice layer.

5. Obtain information regarding the occupancy and protein species state for the
neighboring lattice sites.

6. Calculate the probabilities for each event (diffusion, reaction, or null) based on the
state of the lattice units; randomly select the event type.

7. If the selected event was not a null event, execute the event and update species
concentration and/or the state of the lattice units; otherwise repeat from step 4.

8. Compute transition rates in adjacent lattice layers both before and after the event.

9. Update the transition rates for all lattice sites and dependent neighboring lattice site
positions.

10. Compute the total transition rate and update time.

11. Check if time has met or exceeded the maximum time. If so terminate, otherwise
repeat from Step 3.

The simulation software is written in Fortran 90, compiles under Microsoft Visual Studio,
and is available upon request.

3.3. Model parameters
We have previously shown that decreased diffusion within the lipid raft could lead to
receptor clustering (Hsieh, Yang et al. 2010). To further simulate this process with our
improved method, we have pursued simulations for homogeneous and inhomogeneous
receptor distributions caused by lipid rafts where overcrowding may lead to slower diffusion
of biomolecules. Receptor diffusion kinetics and their aggregation in lipid rafts was modeled
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by assigning a 200 nm size patch to be the raft in which receptor diffusion constant was
reduced (Pralle, Keller et al. 2000; Kusumi, Ike et al. 2005). Receptor diffusion constant
within the lipid raft was assumed to be Dc=10−4 μm2/s while it was 10−2 μm2/s outside the
raft, i.e., a slow down by a factor of 100 (Pralle, Keller et al. 2000; Kusumi, Ike et al. 2005).
We assumed diffusivity of the cytosolic proteins, which are typically smaller than the
transmembrane receptors, to be 10 times greater than the receptor diffusivity, i.e. Dc was
10−1 μm2/s (Kholodenko 2006; Kholodenko and Kolch 2008; Kholodenko, Hancock et al.
2010). Although the diffusion constant depends on the size and shape of the molecules, such
details are not directly relevant to the purpose of our study and were ignored to keep the
number of model parameters to a minimum.

Although our major interest is the TLR pathway, the lack of quantitative experimental data
and reaction parameters makes it difficult to develop a valid model for the TLR system.
Therefore, we employ a hypothetical receptor signaling system to demonstrate the
conditions that can give rise to regulation by diffusivities of receptors and cytosolic species.
We are not interested in predictions which can arise from parameter variability but rather the
role of diffusion on signal transduction properties. For this reason, we chose the initial
concentrations and kinetic parameters to be in the ranges for the growth factor receptor
signaling pathway, arguably the most studied receptor signaling system(Schlessinger 2000).
Biochemical reactions forming the signaling pathway model that were included in our study
and their kinetic rates were taken directly from Table II in (Kholodenko, Demin et al. 1999)
without any modifications. Therefore, the model parameters are not repeated here and can be
found in (Kholodenko, Demin et al. 1999). Even though the rates could somewhat differ
between the signaling pathways, involved time scales would be comparable and this choice
would not significantly alter the derived conclusions about the role of spatial
inhomogeneities on diffusion and of the trends in receptor dynamics.

4. Results
We tested the effects of receptor clustering on signaling by comparing the results for the
homogeneous diffusion condition with the results of the inhomogeneous diffusion
conditions that were imposed by lipid rafts. We initially distributed the receptors on the
plasma membrane randomly at a density of 204 receptors/μm2 (~2.5×105 receptors/cell), and
allowed receptors to equilibrate. In the simulations employing the lipid raft domains,
receptors clustered within 10 ms as detected by the Hopkins statistics test (Jain, Hamper et
al. 1988); a statistical measurement of the significance of spatial organization. After this
equilibration step, ligand was added to stimulate the signaling pathway. The dynamics of the
system, i.e., how the activated receptors form dimers and associate with cytosolic species
were then followed in time.

We have previously shown that receptor clustering increases downstream signaling (Costa,
Radhakrishnan et al. 2009). The current study concentrated on determining what mechanism
might be leading to signal enhancement. For this, we analyzed the number of receptor
dimerization and adaptor protein-receptor association events. As shown in Fig. 3, there is
only a slight increase in the number of dimerization events per second for receptors which
cluster in rafts while there is a large increase in the number of associations with the adaptor
proteins when receptors are clustered.

After observing a substantial increase in the number of receptor-adaptor protein association
for roughly the same number of receptor dimerization occurrence, we hypothesized that
receptor clustering enhances signal transduction through sequential binding of cytosolic
species to neighboring receptors. This ‘adaptor protein hopping’ mechanism is schematically
illustrated in Figure 4A: When it encounters a cluster of ligand-bound receptors, a cytosolic
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adaptor protein may associate with one of the receptors (R1) in cluster. Upon disassociation
from R1, close proximity of neighboring receptors increases the probability of the adaptor
protein forming a new complex with another receptor (R2) instead of diffusing into the
cytosol. This frequent rebinding of the adaptor protein to the receptors could enhance the
signaling potential by allowing a limited number of adaptor proteins to retrieve and convey
the signal from a large number of membrane receptors to the downstream signaling
elements. Hence, the adaptor protein hopping could be an efficient sampling mechanism of
the receptor activation states by the cell using only a limited number of relay proteins.

Binding events were classified as either adaptor-hopping or non-adaptor-hopping events by
monitoring the rebinding times. Figures 4B&C report the trajectory of cytosolic adaptor
proteins (CS) during a simulation run. The location is marked green when CS was freely
diffusing in the cytosol and in red (R1) or blue (R2) when bound to receptors. Figure 4B
illustrates a typical trajectory when hopping is rare; the CS disassociates from R1 and enters
the cytoplasm where it diffuses for ~30 s in a well mixed pool before rebinding R2. In
contrast Figure 4C shows rebinding via the adaptor protein-hopping mechanism; the CS
disassociates from R1 and rapidly (~80 ms) binds to R2.

Adaptor protein hopping is a random event which depends on the factors that affect
detainment of the protein near the receptors, such as receptor density and diffusion rate of
the protein. As shown above, adaptor protein hopping is more dominant in rafts where the
receptor concentration is much denser. It is also expected that adaptor protein hopping
decreases with increasing cytosolic diffusivity because it allows the protein to move away
from the receptors before re-binding occurs. Figure 4D compares the statistical distribution
of the rebinding times in seconds for adaptor protein hopping events under different
conditions. It was computed by counting the number of times a protein dissociated from a
receptor complex and then re-attached to the same complex and the time it took to rebind.
When receptors were clustered (i.e., in rafts) and adaptor protein diffusion constant Dc=10−1

μm2/s (green line), the number of quick (< 500 ms) rebinding events were the most
common. In contrast, the distribution of the rebinding times were more uniformly distributed
when a) receptors were randomly distributed and Dc was still 10−1 μm2/s (red line) or b)
receptors were clustered and cytosolic diffusivity was higher Dc=102 μm2/s (purple line).
We also note that the rebinding time distribution difference is statistically significant, p-
values are 0.001, 0.01 and 0.002 at the first three time points, respectively, as evaluated by t-
test between the results for clustered vs. uniformly distributed receptor cases (i.e., green vs.
red curves in Fig. 4D). These results confirm the expected conditions for frequent adaptor
protein-receptor rebinding.

5. Discussion and Conclusion
Using our spatially-resolved ACGMC algorithm, we observed that adaptor protein hopping
mechanism can increase signal transduction efficiency through sequential binding of adaptor
proteins to clustered receptors. The adaptor protein hopping mechanism may help to explain
previous experimental findings about spatially regulated cellular signaling (Kempiak, Yip et
al. 2003; Reynolds, Tischer et al. 2003; Xavier, Rabizadeh et al. 2004; Tian, Harding et al.
2007). Reynolds et al., describe a bistable state in the EGFR receptor tyrosine kinase (RTK)/
protein tyrosine phosphatase (PTP) model that shows a high proportion of phosphorylated
receptors are maintained in plasma membrane regions that are not exposed to ligand
(Reynolds, Tischer et al. 2003). In a study investigating Ras nanoclusters, Tian et al.,
concluded that signal transduction is dependent on the spatial-organization of Ras and
abrogated if nanoclustering is disrupted (Tian, Harding et al. 2007). Xavier et al., showed
that Dlg1 is recruited upon activation to cortical actin and forms complexes with adaptors
and this process is necessary for T cell activation (Xavier, Rabizadeh et al. 2004).

Archuleta et al. Page 8

Fundam Inform. Author manuscript; available in PMC 2013 December 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Suggesting that differing spatial scales of signaling are supportive of models of chemotaxis;
Kempiak et al., showed that EGF-induced actin polymerization remains localized following
receptor overexpression. Finally, Suenaga et al., showed though Molecular Dynamics (MD)
simulations that the binding affinities of EGFR-phospho peptides bind with significantly
more strength to unphosphorylated Shc compared with phosphorylated Shc (Suenaga,
Hatakeyama et al. 2009). These studies emphasize the importance of spatial regulation of
receptors and the spatial scales of scaffolding adaptor proteins.

The in silico prediction of this new regulatory mechanism was made possible by the use of
our new approach that provided multiscale spatio-temporal resolution. The ability to capture
receptor-cytosolic signaling partnering dynamics and reactions in three-dimensions is a
significant advancement to understand signal transduction. The more popular modeling
methods such as ordinary differential equations (ODEs) cannot provide the required spatio-
temporally resolved description of signal transduction within the cell. Multiscale models
such as the one presented in this study can be powerful tools to aid systems biology efforts
by providing a mechanistic understanding of cellular events which are not easily feasible
experimentally. Our study shows the power of model development to identify novel
mechanisms that have not been considered previously with an example. In addition, our
hypothesis about the possible regulatory role of adaptor protein hopping can in principle be
validated in optical microscopy experiments that can track single molecules (Andrews,
Lidke et al. 2008; Kelly, Kober et al. 2009).

Although our study provides evidence for adaptor protein hopping mechanism, it should be
noted that it was observed only when adaptor protein diffusion constant is low ~10−1 μm2/s,
which is 2–3 orders of magnitude lower than the experimentally measured protein diffusion
in the cytoplasm (Phillips 2009). The probability of cytoplasmic protein rebinding to a
nearby receptor decreases steeply as diffusion becomes faster. This is due to the fact that
proteins that disassociate from receptors enter the 3D cytoplasmic volume and easily diffuse
away from the membrane surface thus drastically reducing their probability of re-association
with the receptors. However, the diffusion rates at the membrane-cytoplasm interface are
likely to be significantly lower due to the slowing effects of the membrane layer and the
underlying membrane cytoskeleton structure (Konopka, Shkel et al. 2006). These are
challenging experiments, but our multiscale simulations have pointed to this as a critical
phenomenon for developing a deeper understanding of signal transduction and it regulation.
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Figure 1.
Schematic layout of the coarse grained simulation framework representing the fine spatial
resolution near the plasma membrane and coarse-graining in the cytoplasm where the
resolution of the regions decreases in successive steps as moved away from the cell surface.
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Figure 2.
Workflow of the presented adaptive coarse-grained Monte Carlo method.
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Figure 3.
Cumulative counts of (A) receptor dimerization and (B) adaptor protein-receptor association
events when receptors are clustered (cyan) and uniformly distributed (magenta) in the
plasma membrane. The x-axis indicates elapsed time of the simulation and the y-axis shows
number of occurred events (dimerization or association).
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Figure 4.
3D single particle tracking of cytosolic species (CS1) in the simulations, diffusing in the
cytoplasm (green), diffusing on the plasma membrane while bound to receptor 1, R1-CS1
(red) or bound to receptor 2, R2-CS1 (blue). (A) Schematic illustration of the adaptor
protein hopping mechanism. (B) Simulation of a rebinding event which is not an adaptor
hopping event. (C) Simulation of an adaptor-hopping rebinding event. Inset shows the
event’s projection onto the x-z plane. (D) Statistical distribution of the adaptor protein-
receptor rebinding event counts as a function of the time (in second units) between rebinding
events.

Archuleta et al. Page 15

Fundam Inform. Author manuscript; available in PMC 2013 December 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


