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Abstract
We provide a parameterized polynomial algorithm for the propositional model counting problem
#SAT, the runtime of which is single-exponential in the rank-width of a formula. Previously,
analogous algorithms have been known – e.g. [Fischer, Makowsky, and Ravve] – with a single-
exponential dependency on the clique-width of a formula. Our algorithm thus presents an expo-
nential runtime improvement (since clique-width reaches up to exponentially higher values than
rank-width), and can be of practical interest for small values of rank-width. We also provide an
algorithm for the Max-SAT problem along the same lines.
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1 Introduction

The satisfiability problem for Boolean formulas in conjunctive normal form (known as SAT)
has been of great practical and theoretical interest for decades. It is known to be NP-complete,
even though many instances are practically solvable using the various SAT-solvers. We focus
on two well-known generalizations of this problem, namely #SAT and Max-SAT. In #SAT–
otherwise known as the propositional model counting problem – the goal is to compute the
number of satisfying truth assignments for an input formula φ, whereas in Max-SAT we
ask for the maximum number of simultaneously satisfiable clauses of φ. It is known that
computing #SAT is #P-hard [21] and that Max-SAT is already NP-hard to approximate
within some constant [1].

In light of these hardness results, we may ask what happens if we restrict ourselves to
some subclass of inputs. The parameterized algorithmics approach is suitable in such a case.
Let k be some parameter associated with the input instance. Such a decision problem is
said to be fixed-parameter tractable (FPT) if it is solvable in time O(np · f(k)) for some
constant p and a computable function f . So the running time is polynomial in n, the size
of the input, but can be e.g. exponential in the parameter k. Obviously the specific form
of f plays an important role in practical applicability of any such algorithm – while FPT
algorithms with single-exponential f can be feasible for non-trivial values of the parameter,
a double-exponential f would make the algorithm impractical for almost all values of k.

But what are suitable parameters for satisfiability problems? In the particular case
of Max-SAT, one can consider the desired number of satisfied or unsatisfied clauses as a
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parameter of the input, such as in [4, 19], respectively. However such approach is not at all
suitable for #SAT which is our prime interest in this paper.

Another approach used for instance by Fischer, Makowsky and Ravve [7] represents the
formula φ as a formula graph Fφ (nodes of which are the clauses and variables of φ, see
Definition 6), and exploits the fact that for graphs there are many known (and intensively
studied) so-called width parameters. In [7] the authors presented FPT algorithms for the
#SAT problem in the case of two well known width parameters – tree-width and clique-width.
A similar idea was used by Georgiou and Papakonstantinou [10] also for the Max-SAT
problem and by Samer and Szeider [20] for #SAT.

The latter algorithms work by dynamic programming on tree-like decompositions related
to the width parameters (tree-decompositions and clique-decompositions – often called k-
expressions – in the cases above). However, there is the separate issue of the complexity of
computing the width of the formula graph and its decomposition. In the case of tree-width
this can be done in FPT [2]. For the much more general clique-width (every graph of bounded
tree-width also has bounded clique-width, while the converse does not hold) there exist no
such algorithms and we rely on approximations or an oracle. In [20] the authors made the
following statement on this issue:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky, and Ravve [7].
However, both algorithms rely on clique-width approximation algorithms. The known
polynomial-time algorithms for that purpose admit an exponential approximation
error [13] and are of limited practical value.

The exponential approximation error mentioned in this statement results by bounding the
clique-width by a another, fairly new, width parameter called rank-width (Definition 2). Rank-
width is bounded if and only if clique-width is bounded, but its value can be exponentially
lower than that of clique-width (Theorem 3 a,b). And since clique-width generalizes tree-
width, so does rank-width (Theorem 3 c). Moreover, for rank-width we can efficiently compute
the related decomposition (Theorem 4), which is in stark contrast to the case for clique-width.
Therefore an algorithm which is linear in the formula size and single-exponential in its
rank-width challenges the claim quoted above, and can be of real practical value. In this
paper we present such algorithms for the problems #SAT and Max-SAT (Theorems 9
and 17). Precisely we prove the following two results:

I Theorem 1. Both the #SAT and Max-SAT problems have FPT algorithms running in
time

O(t3 · 23t(t+1)/2 · |φ|),

provided a rank-decomposition of the input instance (CNF formula) φ of width t is given on
the input. If, on the other hand, no rank-decomposition is given along with the input φ, then
the runtime estimate is

O(2Θ(t2) · |φ|3)

where t is the rank-width of the input instance (CNF formula) φ.

We refer to further Theorems 11 and 9, 17 for details and the proofs.
Note that our results present an actual exponential runtime improvement in the parameter

over any algorithm utilizing the clique-width measure, including aforementioned [7]. This is
since any parameterized algorithm A for a SAT problem has to depend at least exponentially
on the clique-width of a formula (unless the Exponential Time Hypothesis fails). Then,
considering typical instances φ as from Proposition 8 b, such an algorithm A runs in time
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which is double-exponential in the rank-width of φ even if A is given an optimal clique-width
expression on the input.

As for potential practical usefulness of Theorem 1, note that there are no “huge hidden
constants” in the O-notation. One may also ask whether there are any interesting classes
of graphs of low rank-width. The answer is a resounding YES, since already for t = 1 we
obtain the very rich class of distance-hereditary graphs. Rank-width indeed is a very general
graph width measure.

The approach we use to prove both parts of Theorem 1 quite naturally extends the
elaborated new algebraic methods of designing parameterized algorithms for graphs of
bounded rank-width, e.g. [6, 3, 8], to the area of SAT problems. Yet, this is not a trivial
extension—we remark that a straightforward translation of the algorithm of [7] from clique-
width expressions to rank-decompositions (which is easily possible) would result just in a
double-exponential runtime dependency on the rank-width.

The rest of the paper is organized as follows: In Section 2 we present the rank-width
measure and some related technical considerations. This is applied to signed graphs of SAT
formulas. Section 3 then presents our FPT algorithm for the #SAT problem (Theorem 9
and Algorithm 16), and Section 4 the similar algorithm for Max-SAT (Theorem 17). We
conclude with some related observations.

2 Definitions

2.1 Rank-width
The usual way of defining rank-width [18] is via the branch-width of the cut-rank function
(Definition 2). A set function f : 2M → Z is symmetric if f(X) = f(M \X) for all X ⊆M .
A tree is subcubic if all its nodes have degree at most 3. For a symmetric function f : 2M → Z
on a finite ground set M , the branch-width of f is defined as follows:

A branch-decomposition of f is a pair (T, µ) of a subcubic tree T and a bijective function
µ : M → {t : t is a leaf of T}. For an edge e of T , the connected components of T \e induce a
bipartition (X,Y ) of the set of leaves of T . The width of an edge e of a branch-decomposition
(T, µ) is f(µ−1(X)). The width of (T, µ) is the maximum width over all edges of T . The
branch-width of f is the minimum of the width of all branch-decompositions of f .

I Definition 2. (Rank-width [18]) For a simple undirected graph G and U,W ⊆ V (G),
let AG[U,W ] be the matrix defined over the two-element field GF(2) as follows: the entry
au,w, u ∈ U and w ∈ W , of AG[U,W ] is 1 if and only if uw is an edge of G. The cut-rank
function ρG(U) = ρG(W ) then equals the rank of AG[U,W ] over GF(2) whereW = V (G)\U .
A rank-decomposition (see Figure 1) and rank-width of a graph G is the branch-decomposition
and branch-width of the cut-rank function ρG of G on M = V (G), respectively.

As already mentioned in the introduction, rank-width is closely related to clique-width
and more general than better known tree-width. Indeed:

I Theorem 3. Let G be a simple graph, and tw(G), bw(G), cwd(G) and rwd(G) denote in
this order the tree-width, branch-width, clique-width, and rank-width of G. Then

a) [18] rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1,
b) [5] the clique-width cwd(G) can reach up to 2rwd(G)/2−1,
c) [17] rwd(G) ≤ bw(G) ≤ tw(G) + 1,
d) [folklore] tw(G) cannot be bounded from above by a function of rwd(G), e.g. the complete

graphs have rank-width 1 while their tree-width is unbounded,
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Figure 1 A rank-decomposition of the graph cycle C5, showing the matrices involved in evaluation
of its cut-rank function on the edges of the decomposition.

e) [15] rwd(G) = 1 if and only if G is a distance-hereditary graph.

Although rank-width and clique-width are “tied together” by Theorem 3 a, one of the
crucial advantages of rank-width is its parameterized tractability (note that it is not known
how to efficiently test cwd(G) ≤ k for k > 3):

I Theorem 4. [13] There is an FPT algorithm that, for a fixed parameter t and a given
graph G, either finds a rank-decomposition of G of width at most t or confirms that the
rank-width of G is more than t in time O(|V (G)|3).

With regard to our interest in precise runtime dependency on the parameter rank-width
one should ask how the FPT algorithm of Theorem 4 depends on t. This issue is not at all
addressed in [13], but a second look at the algorithm reveals a worst-case triple-exponential
dependency on t (this is the currently best upper bounded on the number of forbidden minors
for the matroids of branch-width t). One can do better while sacrificing the exact value of
rank-width, such as using [18] or an improvement of the second algorithm of [16]:

I Theorem 5. [16] There is an algorithm that, for a fixed parameter t and a given graph
G, either finds a rank-decomposition of G of width at most 3t or confirms that the rank-width
of G is more than t in time O(2Θ(t2) · |V (G)|3).

2.2 Signed graphs of CNF formulas
There are several methods for converting formulas to graphs, the two most common and
perhaps most natural approaches utilizing directed graphs (as seen e.g. in [20]) or so-called
signed graphs (e.g. [7, 20, 12]). We employ the latter approach for technical reasons, although
all the results also transfer straightforwardly to the former one. A signed graph is a graph
G with two edge sets E+(G) and E−(G). We refer to its respective positive and negative
subgraphs as to G+ and G−. Notice that G+ and G− are edge-disjoint and G = G+ ∪G−.

I Definition 6. The signed graph Fφ of a CNF formula φ is defined as follows:
V (Fφ) = W ∪ C where W is the set of variables of φ and C is the set of clauses of φ.
For w ∈W and c ∈ C, it is wc ∈ E+(Fφ) iff the literal ‘w’ occurs in c.
For w ∈W and c ∈ C, it is wc ∈ E−(Fφ) iff the literal ‘¬w’ occurs in c.

Since signed graphs have two distinct edge sets, the definition of rank-width needs to
be modified to reflect this. It should be noted that simply using two separate, independent
decompositions would not work – the bottom-up dynamic programming algorithm we are
going to use will need information from both edge sets at every node to work properly.
Instead, one may define, analogically to Definition 2, the signed rank-width of a signed graph
G as the branch-width of the signed cut-rank function ρ±

G(U) = ρG+(U) + ρG−(U).
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I Definition 7. (Rank-width of formulas) The (signed) rank-width rwd(φ) of a CNF
formula φ is the signed rank-width of the signed formula graph Fφ.

We remark that, although our signed rank-width is essentially equivalent to an existing
concept of bi-rank-width of directed graphs as introduced by Kanté [14] (in the bipartite
case, at least), the latter concept is not widely known and its introduction in the context of
CNF formulas would bring only additional technical complications.

In our paper we propose signed rank-width as a way of measuring complexity of formulas
that fares significantly better than previously considered signed clique-width of Fφ (e.g. [7]).
Signed clique-width is the natural extension of clique-width having two separate operators
for creating the ‘plus’ and the ‘minus’ edges. The main advantage of using rank-width as a
parameter instead of clique-width comes from the following claim:

I Proposition 8. Let φ be an arbitrary CNF formula and let cwd(φ) denote the signed
clique-width of Fφ. Then the following are true

a) rwd(φ) ≤ 2 cwd(φ),
b) there exist instances φ such that cwd(φ) ≥ 2rwd(φ)/4−1.

Proof. a) Assume a signed k-expression tree S for Fφ where k = cwd(φ). Clearly, S gives
ordinary k-expression trees for each of F+

φ , F−
φ . Now, analogically to Theorem 3 a [18], the

rank-decompositions of F+
φ and F−

φ with the same underlying tree as S have widths ≤ k

each, and hence rwd(φ) ≤ k + k = 2 cwd(φ).
b) We define φ such that F+

φ = G where, cf. Theorem 3 b, cwd(G) ≥ 2rwd(G)/2−1, and F−
φ

is arbitrary such that its rank-decomposition inherited from that of G has width ≤ rwd(G).
Then rwd(φ) ≤ 2 rwd(G) and the claim follows since cwd(φ) ≥ cwd(G). J

3 Algorithm for Propositional Model Counting #SAT

This section proves our main result – the #SAT part of Theorem 1:

I Theorem 9. Given a CNF formula φ and a (t+, t−)-labeling parse tree of the signed
formula graph Fφ, there is an algorithm that counts the number of satisfying assignments of
φ in time

O(t3 · 23t(t+1)/2 · |φ|) where t = max(t+, t−).

Note that the statement speaks about so called labeling parse trees (in place of rank-
decompositions) which is a technical algebraic concept [6] suited for easier handling of
rank-decompositions – this concept is briefly introduced in Section 3.1 to follow.

Our algorithm (see Algorithm 16) proving Theorem 9 applies the dynamic programming
paradigm on the parse tree of the formula graph Fφ (constructed by Theorem 11). This is,
on one hand, a standard approach utilized also by Fischer, Makowsky and Ravve [7]. On
the other hand, however, in comparison to [7] we achieve an exponential runtime speedup in
terms of rank-width, exploiting the nice linear-algebraic properties of rank-decompositions
and their parse trees – see Section 3.2.

3.1 Parse trees for rank-decompositions
First of all we remark that, unlike for tree-width or clique-width, a bare rank-decomposition
is not suitable for immediate design of algorithms. The remedy is provided by the notion
of labeling parse trees [6, 8] which, informally saying, “enrich” a rank-decomposition with
additional information captured in labelings of the vertices.

FSTTCS 2010
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A t-labeling of a graph is a mapping lab : V (G)→ 2[t] where [t] = {1, 2, . . . , t} is the set of
labels. Having a graph G with an associated t-labeling lab, we refer to the pair Ḡ = (G, lab) as
to a t-labeled graph. A canonical operation associated with t-labeled graphs Ḡ1 = (G1, lab

1)
and Ḡ2 = (G2, lab

2) is the labeling join Ḡ1⊗ Ḡ2, defined on the disjoint union of G1 and G2
by adding all edges (u, v) such that |lab1(u) ∩ lab2(v)| is odd, where u ∈ V (G1), v ∈ V (G2)
(the resulting graph is unlabeled).

The labeling concept is similar to the definition of clique-width where every graph vertex
carries one label (while here we allow a set of labels). It is actually more powerful to view a
t-labeling of G equivalently as a mapping V (G) → GF(2)t into the binary vector space of
dimension t, where GF(2) is the two-element finite field. (Then an edge {u, v} is added in
Ḡ1⊗ Ḡ2 if and only if lab1(u) · lab2(v) = 1 as a scalar product of vectors.)

As shown first by Courcelle and Kanté in [6], a rank-decomposition of width t can be
equivalently characterized by a t-labeling parse tree (thereafter called an algebraic expression
for rank-width). A t-labeling parse tree T for the t-labeled graph Ḡ is a finite rooted ordered
subcubic tree such that

the leaves of T form the vertex set of Ḡ, and
for each internal node z of T , the subtree Tz ⊆ T rooted at z builds up a t-labeled graph
Ḡz which (up to relabeling) equals the subgraph of Ḡ induced on the leaves of Tz.

To keep this paper simple and accessible, we skip a (rather long) formal definition of the
algebraic operations taking place in the internal nodes of a t-labeling parse tree. Instead, we
summarize their properties which will be used in our algorithm:

I Property 10. [8] Let a t-labeled graph Ḡ have a t-labeling parse tree T . For every internal
node z of T with a son (left or right) x, the following holds.

a) The labels of the vertices of V (Gx) in Ḡz are obtained from the corresponding labels in
Ḡx by a linear transformation (relabeling) over the binary vector space GF(2)t.

b) For each vertex v ∈ V (Gz), the Ḡ-neighbours of v in the set V (G)\V (Gz) depend only on
the label of v in Ḡz. More precisely, there exists a t-labeled graph H̄ such that unlabeled
H is equal to the subgraph of G induced on V (G) \ V (Gz), and G = Ḡz ⊗ H̄.

In the context of signed graphs we, moreover, introduce the following two straightforward
extensions:

A signed graph G with associated pair of labelings lab+ : V (G)→ 2[t+] and lab− : V (G)→
2[t−] is called a (t+, t−)-labeled graph G̃ = (G, lab+, lab−). We use G̃+ as a shorthand for
the t+-labeled graph (G+, lab+), and G̃− is defined analogically. The scope of the join
operation ⊗ is then extended in a natural way: G̃1⊗ G̃2 =

(
G̃+

1 ⊗ G̃
+
2
)
∪
(
G̃−

1 ⊗ G̃
−
2
)
.

A (t+, t−)-labeling parse tree T = (T+, T−) of a signed graph G is a pair (T+, T−) of
labeling parse trees T+ and T− such that T+ (T−) is a t+-labeling (t−-labeling) parse
tree generating G+ (G−), and the underlying rooted trees of T+ and T− are identical.

The underlying idea is to separately handle the labelings for the positive and negative
subgraphs of signed G, while keeping the same parse tree structure for both.

Finally, we shall use the following extension of Theorem 5 which makes restricted use of
“partitioned” rank-width of vertex-partitioned graphs.

I Theorem 11. There is an algorithm that, for a fixed parameter t and a given CNF formula
φ, in time O(2Θ(t2) · |φ|3) either finds a (t+, t−)-labeling parse tree for the formula graph Fφ
where t+≤ 3t and t−≤ 3t, or confirms that the signed rank-width of φ is more than t.



R. Ganian, P. Hliněný, and J. Obdržálek 79

3.2 Recording partial assignments of a formula
The core of every dynamic programming algorithm is the specification of information which
is then (exhaustively) processed on the input parse tree. Here we heavily apply the basic
calculus of linear algebra (which is indeed natural in view of the definition of rank-width).

We say that labeling ` is orthogonal to a set of labelings X if ` has an even intersection
with every element of X (i.e. the scalar product of the labeling vectors is 0 over GF(2)).
Remember that for t-labeled graphs, in order for two vertices to become adjacent by the join
operation ⊗, their labelings need to have an odd intersection, i.e. to be non-orthogonal. The
power of orthogonality comes from the following rather trivial claim appearing already in
[3, 8]:

I Lemma 12. [3, 8] Assume t-labeled graphs Ḡ and H̄, and arbitrary X ⊆ V (Ḡ) and
y ∈ V (H̄). In the join graph Ḡ⊗ H̄, the vertex y is adjacent to some vertex in X if and only
if the vector subspace spanned by the Ḡ-labelings of the vertices of X is not orthogonal to the
H̄-labeling vector of y in GF(2)t.

In view of Lemma 12, the following result will be useful in deriving the complexity of our
algorithm.

I Lemma 13. [11] (cf. [8, Proposition 6.1]) The number S(t) of subspaces of the binary
vector space GF(2)t satisfies S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

In the course of computation of our algorithm we need to remember some local information
about all satisfying assignments for φ. The information to be remembered for each such
assignment will be formally described in Definition 14. Before that, we would like to informally
introduce its key idea of recording an “expectation” (when processing the parse tree of the
input) – in addition to the information recorded about a partial solution processed so far,
we also keep what is expected from a complementary partial solution coming from the
unprocessed part of the input (cf. Definition 14. II).

The idea behind the algorithm is that the amount of information one has to remember
about a partial solution shrinks a lot if one “knows” what the complete solution will look like.
Such saving sometimes largely exceeds the cost of keeping an exhaustive list of all possible
future shapes of complete solutions. This is also our case: we may exhaustively preprocess
the values of some variables in advance.

The idea of using an “expectation” to speed up a dynamic programming algorithm on
a rank-decomposition has first appeared in Bui-Xuan, Telle and Vatshelle [3] in relation
to solving the dominating set on graphs of bounded rank-width. This concept has been
subsequently formalized and generalized by the authors in [8] (in the so called PCE scheme
formalism). Furthermore, it has also been shown [8, Proposition 5.1] that use of the
“expectation” concept is unavoidable to achieve speed up for the dominating set problem
which shares, in a sense, a similar background with our situation.

By Definition 6 the signed graph Fφ of a formula φ has a vertex set V (Fφ) = W ∪ C
where W is the set of variables and C is the set of clauses of φ. An assignment is then a
mapping ν : W → {0, 1}. We speak about a partial assignment if ν is a partial mapping
from a specific subset of W (a situation that is typical in dynamic processing). For every
partial assignment we then define:

I Definition 14. Consider an arbitrary (t+, t−)-labeling F̃1 = (F1, lab
+, lab−) of a signed

subgraph F1 ⊆ Fφ, and any partial assignment ν1 : V (F1) ∩W → {0, 1}. We say that ν1 is
an assignment of shape (Σ+,Σ−,Π+,Π−) in F̃1 if

FSTTCS 2010
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I. Σ+ is the subspace of GF(2)t generated by the set of labeling vectors lab+(ν−1
1 (1)) and

Σ− is the subspace of GF(2)t generated by lab−(ν−1
1 (0)), and

II. Π+,Π− (the expectation part of the shape) are subspaces of GF(2)t such that, for every
clause c ∈ V (F1) ∩ C, at least one of the following is true
c is adjacent to some vertex from ν−1

1 (1) in F+
1 or to one from ν−1

1 (0) in F−
1 , or

the label vector lab+(c) is not orthogonal to Π+ or lab−(c) is not orthogonal to Π−

(cf. Lemma 12).

Very informally saying, I. states which true literals in F1 (w.r.t. ν1) are available to satisfy
clauses of Fφ, and II. stipulates that every clause in F1 is already satisfied by a literal in F1
or is expected to be satisfied by some literal in Fφ \ V (F1). Note that one partial assignment
ν1 could be of several distinct shapes, which differ just in the expectation part, i.e. in Π+,Π−.
This is true even for complete assignments. Moreover, there is no requirement on Π+ and
Π− to have an empty intersection with Σ+, Σ− and each other.

From the definition, considering Property 10 b and Lemma 12, one easily gets:

I Proposition 15. We consider a CNF formula φ with the variable setW , and any assignment
ν : W → {0, 1}. Assume F̃1, F̃2 are (t+, t−)-labeled graphs such that Fφ = F̃1⊗ F̃2, and let
ν1, ν2 denote the restrictions of ν to F̃1, F̃2.

a) The assignment ν is satisfying for φ if, and only if, there exist subspaces Σ+,Σ−,
Π+,Π− of GF(2)t such that ν1 is of shape (Σ+,Σ−,Π+,Π−) in F̃1 and ν2 is of shape
(Π+,Π−,Σ+,Σ−) in F̃2.

b) If, in F̃1, ν1 is of shape (Σ+
0 ,Σ

−
0 ,Π

+
0 ,Π

−
0 ) and, at the same time, ν1 is of shape

(Σ+
1 ,Σ

−
1 ,Π

+
1 ,Π

−
1 ), then Σ+

0 = Σ+
1 and Σ−

0 = Σ−
1 .

c) The assignment ν1 is satisfying for φ1 – the subformula of φ represented by F1 if, and
only if, ν1 is of shape (Σ+,Σ−, ∅, ∅) for some subspaces Σ+,Σ−.

J

3.3 The dynamic processing algorithm
We now return to the proof of our Theorem 9.

I Algorithm 16. (Theorem 9) Given is a CNF formula φ and a signed (t+, t−)-labeling
parse tree Tφ of the formula graph Fφ. Our task is to compute the total number of satisfying
assignments of φ:

At every node z such that the subtree of Tφ rooted at z parses a (t+, t−)-labeled graph F̃z,
we create an integer-valued array Tablez indexed by all the quadruples of subspaces of GF(2)t,
where t = max(t+, t−). The value of the entry Tablez[Σ+,Σ−,Π+,Π−] shall be equal to the
total number of variable assignments in the subformula of φ corresponding to Fz ⊆ Fφ that
are of the shape (Σ+,Σ−,Π+,Π−) in F̃z (cf. Definition 14).

The computation is (briefly, details in [9]) as follows.

1. We initialize all entries of Tablez for z ∈ V (Tφ) to 0.
2. We process all nodes of Tφ in the leaves-to-root order as follows.

a) At a clause leaf c of Tφ, we set Tablec[∅, ∅,Π+,Π−] = 1 (there is just one, empty,
possible partial assignment in F̃c) for all pairs of expectation subspaces Π+,Π− that
would satisfy this clause c.

b) At a variable leaf ` of Tφ, we record one partial variable assignment with ` = 1 and
one with ` = 0, both for all possible expectation pairs Π+,Π− (this is since there is no
clause in F̃`, and so any expectation would work).
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c) Consider an internal node z of Tφ, with the left son x and the right son y such that
Tablex and Tabley have already been computed. We loop exhaustively over all
“compatible” triples of indices to Tablex,Tabley, and Tablez as follows.

We say that the indices in Tablex[Σ+
x ,Σ−

x ,Π+
x ,Π−

x ], Tabley[Σ+
y ,Σ−

y ,Π+
y ,Π−

y ], and
Tablez[Σ+

z ,Σ−
z ,Π+

z ,Π−
z ] are compatible if, e.g., the space Σ+

z spans the union of
relabeled (cf. Property 10 a) spaces Σ+

x ,Σ+
y , and the expectation space Π+

x is spanned
by the (again relabeled accordingly) expectation space Π+

z and the space Σ+
y (which

records the true literals of the corresponding Tabley entry). Analogical conditions
ought to be true for Σ−

z , and Π−
x ,Π+

y ,Π−
y .

Whenever such a compatible triple of table indices is found, we add up
the product Tablex[Σ+

x ,Σ−
x ,Π+

x ,Π−
x ] · Tabley[Σ+

y ,Σ−
y , Π+

y ,Π−
y ] to the entry

Tablez[Σ+
z ,Σ−

z ,Π+
z ,Π−

z ].

3. For the root r of Tφ, we sum up all the entries Tabler[Σ+,Σ−, ∅, ∅] where Σ+,Σ− are
arbitrary subspaces of GF(2)t. This is the resulting number of satisfying assignments of φ
according to Proposition 15 c.

Correctness of Algorithm 16 routinely follows from Definition 14 of assignment shapes,
Properties 10 of labeling parse trees, and Proposition 15. Our key novel contribution, on
the other hand, is the runtime analysis of this algorithm in which we employ subspace
orthogonality and the notion of expectation outlined in Section 3.2.

Runtime of Algorithm 16 is dominated by the calls to step (2c). Although we say that
we exhaustively loop over all 12-tuples of subspaces of GF(2)t there, actually half of the
subspaces are determined by the others using linear algebra. Hence one call to this step takes
time O

(
t3 · S(t)6) where S(t) bounds the number of subspaces as in Lemma 13. Altogether

our Algorithm 16 takes time

O
(
|V (Tφ)| · t3 · S(t)6) = O

(
|V (Tφ)| · t3 · 26t(t+1)/4) = O

(
|φ| · t3 · 23t(t+1)/2).

4 Algorithm for the Max-SAT Problem

The same ideas as presented in Section 3 lead also to a parameterized algorithm for the
Max-SAT optimization problem which asks for the maximum number of satisfied clauses
in a CNF formula. We briefly describe this extension, though we have to admit that the
importance of the Max-SAT algorithm on graphs of bounded rank-width is not as high as
that of #SAT. The reason for lower applicability is that for “sparse” formula graphs (i.e.
those not containing large bipartite cliques) their rank-width is bounded iff their tree-width
is bounded, while for dense formula graphs the satisfiability problem is easier in general.

I Theorem 17. There is an algorithm that, given a CNF formula φ and a (t+, t−)-labeling
parse tree of the formula graph Fφ, solves the Max-SAT optimization problem of φ in time
O(t3 · 23t(t+1)/2 · |φ|) where t = max(t+, t−).

In order to formulate this algorithm, we extend Definition 14 as follows. Recall V (Fφ) =
W ∪ C where W are the variables and C are the clauses of φ.

I Definition 18. Consider a (t+, t−)-labeling F̃1 = (F1, lab
+, lab−) of a signed subgraph

F1 ⊆ Fφ, and a partial assignment ν1 : V (F1)∩W → {0, 1}. We say that ν1 is an assignment
of defective shape (Σ+,Σ−,Π+,Π−) in F̃1 if there exists a set C0 ⊆ C ∩ V (F1) such that ν1
is of shape (Σ+,Σ−,Π+,Π−) in F̃1 − C0. The value (the defect) of ν1 with respect to this
defective shape is the minimum cardinality of such C0.
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Informally, the defect equals the number of clauses in F1 which are unsatisfied there and not
expected to be satisfied in a complete assignment in Fφ.

I Algorithm 19. (Theorem 17) Given is a CNF formula φ and a signed (t+, t−)-labeling
parse tree Tφ of the formula graph Fφ. Our task is to compute the maximum number of
satisfied clauses over all variable assignments of φ. A brief sketch follows, while the details
can be found in [9]:

We process the parse tree Tφ of Fφ similarly to Algorithm 16, but this time the value
of the entry Tablez[Σ+,Σ−,Π+,Π−] shall be equal to the minimum defect over all partial
assignments in F̃z that are of defective shape (Σ+,Σ−,Π+,Π−). Within the framework of
Algorithm 16 we, in an internal node z of Tφ with the sons x, y, determine the defect of
any partial assignment in F̃z (with respect to a particular shape, cf. Definition 18) as the
sum of the defects of the corresponding (inherited) partial assignments in F̃x and F̃y. The
implementation is similar to the former.

At the end of processing, in the root r of Tφ, we find the minimum m over all the entries
Tabler[Σ+,Σ−, ∅, ∅] where Σ+,Σ− are arbitrary subspaces of GF(2)t. An optimal solution
to Max-SAT of φ then has |C| −m satisfied clauses.

5 Conclusions

We have presented new FPT algorithms for the #SAT and Max-SAT problems on formulas
of bounded rank-width. Our algorithms are single-exponential in rank-width and linear
in the size of the formula (cubic if a rank-decomposition has to be computed first), and
they do not involve any “large hidden constants”. This is a significant improvement over
previous results, for several reasons. In the case of tree-width this follows from the fact that
rank-width is much less restrictive than tree-width. If a graph has bounded tree-width it also
has bounded rank-width, but there are classes of graphs with arbitrarily high tree-width and
small rank-width (e.g. cliques, complete bipartite graphs, or distance hereditary graphs).

As for clique-width (which is bounded iff rank-width is bounded), we have obtained two
significant improvements over the existing algorithms such as [7]. Firstly, rank-width can be
exponentially smaller than clique-width, and therefore we obtain an exponential speed-up
over the existing algorithms in the worst case. Secondly, there is an FPT algorithm for
computing the rank-width of a graph (and the associated rank-decomposition) exactly, or a
faster one providing a factor-3 approximation, whereas in the case of clique-width we have to
rely on an approximation by an exponential function of rank-width.

Finally, our paper shows that many of the recent ideas and tricks of parameterized
algorithm design on graphs of bounded rank-width smoothly translate to certain SAT-related
problem instances, a fact which may also provide new inspiration for related research.
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