
ar
X

iv
:1

11
2.

37
58

v2
 [

cs
.F

L
]

 3
0

M
ar

 2
01

2

Filtrations of Formal Languages by Arithmetic

Progressions

Hamoon Mousavi and Jeffrey Shallit
School of Computer Science

University of Waterloo

Waterloo, ON N2L 3G1
Canada

hamoon.mousavihaji@uwaterloo.ca

shallit@cs.uwaterloo.ca

June 16, 2018

Abstract

A filtration of a formal language L by a sequence s maps L to the set of words

formed by taking the letters of words of L indexed only by s. We consider the languages

resulting from filtering by all arithmetic progressions. If L is regular, it is easy to see

that only finitely many distinct languages result. By contrast, there exist CFL’s that

give infinitely many distinct languages as a result. We use our technique to show that

the operation diag, which extracts the diagonal of words of square length arranged in

a square array, preserves regularity but does not preserve context-freeness.

1 Introduction

Let s = (s(i))i≥0 be an infinite strictly increasing sequence of non-negative integers. Berstel
et al. [1] introduced the notion of filtering by s: given a finite word w = a0a1 · · · an, we write
w[s] = as(0)as(1) · · · as(k), where k is the largest integer such that s(k) ≤ n < s(k+1). (If there
is no such integer, then w[s] = ǫ.) Given a language L, we define L[s] = {w[s] : w ∈ L}.

Example 1. If w = theorem, and s = 0, 2, 4, 6, . . ., the sequence of even integers, then
w[s] = term. If t = 1, 3, 5, . . ., the sequence of odd integers, then w[t] = hoe.

Berstel et al. [1] proved a number of theorems about filters, and characterized those
sequences s that preserve regularity (i.e., L[s] is always regular if L is) and context-freeness.

In this note we revisit the concept of filtering from a slightly different point of view.
Suppose we have an infinite set of filters S = {s1, s2, . . .}. Given a language L, what can be
said about the set of all filtered languages {L[si] : i ≥ 1}? For example, is it finite?

1

http://arxiv.org/abs/1112.3758v2

In this note we are only concerned with filters s that represent arithmetic progressions:
there exist integers a ≥ 1, b ≥ 0 such that si = ai + b for i ≥ 0. We consider four different
types of filter sets:

(a) a ≥ 1 and b = 0: the weak arithmetic progressions

(b) a ≥ 1 and 0 ≤ b < a: the ordinary arithmetic progressions

(c) a ≥ 1 and b ≥ 0: the strong arithmetic progressions

(d) a = 1 and b ≥ 0: the shifts

If L is regular, a simple argument (given below) shows that filtration by the strong
arithmetic progressions produces only finitely many distinct languages (and hence the same is
true for filtration by the weak and ordinary arithmetic progressions and shifts). By contrast,
there exist context-free languages L so that filtering only by the weak arithmetic progressions
or the shifts produces infinitely many distinct languages (and hence the same is true for the
ordinary and strong arithmetic progressions).

In Section 4 we introduce a natural operation on formal languages that is related to the
results of Berstel et al. [1], but seemingly cannot be analyzed using their framework. We
show that this operation preserves regularity, but does not preserve context-freeness.

We adopt the following notation: if L is a language, and s = (si)i≥0 is an arithmetic
progression such that si = ai + b, then we define La,b := L[s]. Similarly, if w is a word, we
define wa,b := w[s].

2 The regular case

Theorem 2. If L is regular, then filtering by the strong arithmetic progressions produces

finitely many distinct languages.

Remark 3. It is easy to see that if L is regular and s is an arithmetic progression, then L[s]
is regular. Indeed, this follows immediately from the theorem that the regular languages are
closed under applying a transducer, since it is easy to make a transducer that extracts the
letters corresponding to indices in s. That is not the issue here; we need to see that among
all the regular languages produced by filtering by a strong arithmetic progression, there are
only finitely many distinct languages.

Proof. Let A = (Q,Σ, δ, q0, F) be a DFA accepting L. Our proof is based on the boolean
matrix interpretation of automata [3]. Let Mc be the boolean incidence matrix of the under-
lying transition graph of the automaton corresponding to a transition on the symbol c ∈ Σ.
That is, if Q = {q0, q1, . . . , qn−1}, then

(Mc)i,j =

{

1, if δ(qi, c) = qj ;

0, otherwise.

2

We also write M =
∨

c∈ΣMc. By standard results about path algebra, the matrix Mn has a
1 in row i and column j if and only if there is a length-n path from qi to qj.

Suppose L = L(A). We show how to create a DFA A = (Q′,Σ, δ′, q′0, F
′) accepting La,b.

The idea is that w = c0c1 · · · cn−1 should be accepted if and only if there exists a word x ∈ L

such that
x = x0c0x1c1 · · ·xn−1cn−1xn,

where x0, x1, . . . , xn are words such that |x0| = b, |xi| = a− 1 for 1 ≤ i < n, and |xn| < a.
The state set is Q′ = {q′0} ∪ {0, 1}n. Thus all states except q′0 are boolean vectors. We

let f be a boolean vector with 1’s in the positions corresponding to final states of F .
We define the transition function δ′ as follows:

δ′(q′0, c) = [1

n−1
︷ ︸︸ ︷

0 0 · · · 0]M bMc;

δ′(q, c) = qMa−1Mc,

for all boolean vectors q and symbols c ∈ Σ. Also define

T = {q : there exists i, 0 ≤ i < a, such that q ·M i · f = 1 }.

Finally, set

F ′ =

{

T ∪ {q′0}, if L contains a word of length ≤ b;

T, otherwise.

An easy induction on n now shows that if δ′(q′0, c0c1 · · · cn−1) = v, then v has 1’s in the
positions corresponding to all states of the form δ(q0, x0c0 · · ·xn−1cn−1), where the words xi

satisfy the inequalities mentioned previously. It follows that L(A′) = La,b.
Note that A′ has 2n + 1 states, and this quantity does not depend on a or b. There are

only finitely many languages with this property.

3 The context-free case

Theorem 4. There exists a context-free language L such that filtering by the weak arithmetic

progressions produces infinitely many distinct languages.

Proof. Consider the language

L = {10n2(0+3)n : n ≥ 1}.

Then it is easy to see that L is context-free, as it is generated by the context-free grammar

S → 10AB

A → 0AB | 2

B → 0B | 03

3

We claim that the languages La,0 for a ≥ 2 are all distinct. To see this, it suffices to show
that La,0 ∩ 123+ = {123a−1}.

Clearly 123a−1 = za,0, where z = 10a−12(0a−13)a−1 ∈ L.
Now suppose x ∈ La,0 ∩ 123+. Then x = wa,0 for some w ∈ L. Since each word in L starts

10n2 and contains no other 2’s, we must have n = a−1. It follows that w ∈ 10a−12(0+3)a−1.
But then w contains only a − 1 3’s, so to get a − 1 3’s in x, each of them must be used. It
follows that the exponent of 0 in each 0+3 is a− 1, and so x = 123a−1.

This completes the proof.

Theorem 5. There exists a context-free language such that L filtered by the shifts results in

infinitely many distinct languages.

Proof. Let L = {0n1n : n ≥ 0}. Then each of the languages L1,b is distinct, as for each
b ≥ 0, the word 1b is the longest word of the form 1∗ in L1,b.

4 The operation diag

Inspired by [2], which considered the transposition of words arranged into square arrays, we
introduce the following natural operation on words of length n2 for some integer n ≥ 1: we
arrange the letters of the word w = a0a1 · · · an2−1 in row major order in a square array,

a0 a1 · · · an−1

an an+1 · · · a2n−1
...

...
. . .

...
an2−n an2−n+1 · · · an2−1

and then take the diagonal a0an+1a2n+2 · · · an2−1. We call the result diag(w). Thus, for exam-
ple, diag(absorbent) = art. Diagonals of matrices have long been studied in mathematics.
We extend diag to languages L as follows:

diag(L) = {diag(w) : w ∈ L and there exists n ≥ 1 such that |w| = n2}.

Theorem 6. If L is regular then so is diag(L).

Proof. Given a DFAA = (Q,Σ, δ, q0, F) accepting L, we construct an NFAA′ = (Q′,Σ, δ′, q′0, F
′)

accepting diag(L). As in the proof of Theorem 2, we let Mc be the n× n boolean incidence
matrix of the underlying transition graph of the automaton corresponding to a transition on
the symbol c ∈ Σ, and we define M =

∨

c∈ΣMc.
The idea is that w = a1 · · · at ∈ L(A′) if and only if there exists x ∈ L(A) such that

x = a1x1 · · · at−1xt−1at where |xi| = t for 1 ≤ i < t.
The states of A′ are of the form [v, V,W] where v is a length-n boolean vector and V and

W are n×n boolean arrays. Let i = [1

n−1
︷ ︸︸ ︷

0 0 · · · 0] and f be the boolean vector corresponding

4

to the final states of A. The transitions of A′ are given by

δ′(q′0, c) = {[i ·Mc,M,X] : ∃n ≥ 0 such that X = Mn}

δ′([v, V,W], a) = {[vMaW,VM,W]}.

for all c ∈ Σ, and boolean vectors v, and boolean matrices V,W . The final states of A′ are

F ′ = {[v, V,W] : vf = 1 and V = W}.

We leave it to the reader to verify that L(A′) = diag(L).

Theorem 7. There exists a context-free language L such that diag(L) is not context-free.

Proof. For expository reasons, our example is over the alphabet {a, b, c, d, e, f, g, h, i, j, 0} of
11 letters, although it is easy to reduce this.

Consider

L = {a03m+1b(0+c)m−20+d03n+1e(0+f)n−20+g03p+1h(0+i)p−20+j : m,n, p ≥ 3}.

It is clear that L is context-free, as it is the concatenation L1L2L3 of the three languages

L1 = {a03m+1b(0+c)m−20+ : m ≥ 3}

L2 = {d03n+1e(0+f)n−20+ : n ≥ 3}

L3 = {g03p+1h(0+i)p−20+j : p ≥ 3}

each of which is easily seen to be context-free.
We will show that diag(L) is not context-free by showing that

L′ := diag(L) ∩ abc+def+ghi+j

is not context-free.
We claim that L′ = {abctdef tghitj : t ≥ 1}. It is easy to see that every word of the

form abctdef tghitj for t ≥ 1 is in L′, since we can take m = n = p = t+2, and the exponent
of 0 in each 0+ term to be 3m+ 1.

It remains to see that these are the only words of the form abc+def+ghi+j in L′. Let
x ∈ L′, and let y ∈ L such that x = diag(y). Then since the first two symbols of x

must be ab, and since they are separated by 3m + 1 0’s for some m ≥ 3, it must be that
|y| = (3m+ 1)2. Then |x| = 3m+ 1. We can repeat the argument with the letters d, e and
g, h to get m = n = p. Removing the single occurrence of each letter a, b, d, e, g, h, j from x

leaves 3m− 6 letters, which must be chosen from {c, f, i}. But there are only m− 2 possible
occurrences of each of the letters c, f, i in y, so each occurrence of these letters must appear
on the diagonal of y to get x. Then these letters must be separated by 3m + 1 0’s. Thus
x = abcm−2defm−2ghim−2j.

Now an easy argument from the pumping lemma shows that L′ is not context-free. Hence
diag(L) is not context-free.

5

References

[1] J. Berstel, L. Boasson, O. Carton, B. Petazzoni, and J.-E. Pin. Operations preserving
regular languages. Theoret. Comput. Sci., 354:405–420, 2006.

[2] A. Lepistö, F. Pappalardi, and K. Saari. Transposition invariant words. Theoret. Comput.

Sci., 380:377–387, 2007.

[3] G.-Q. Zhang. Automata, boolean matrices, and ultimate periodicity. Info. Computation,
152:138–154, 1999.

6

	1 Introduction
	2 The regular case
	3 The context-free case
	4 The operation `39`42`"613A``45`47`"603Adiag

