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Abstract. We extend the study of networks of evolutionary processors accepting words to a similar 
model, processing rectangular pictures. To this aim, we introduce accepting networks of evolu­
tionary picture processors and investígate their computational power. We show that these networks 
can accept the complement of any local picture language as well as picture languages that are not 
recognizable. Some open problems regarding decidability issues and closure properties are flnally 
discussed. 

Keywords: Rectangular picture, local picture language, recognizable picture language, evolution­
ary picture processor, network of evolutionary picture processors. 



1. Introduction 

Picture languages defined by different mechanisms have been studied extensively in the literature. Two-
dimensional matrix and array models describing pictures that are rectangular arrays of symbols have 
been proposed in [11, 12, 16, 14]. On the other hand, models defining pictures that are connected arrays 
but not necessarily rectangular have been proposed as early as in the 70's in [8] and a hierarchy of 
these grammars was considered in [15, 13]. A related class of grammars for picture generation, again 
not necessarily rectangular, has been proposed in [7]. A new model of recognizable picture languages, 
extending to two dimensions the characterization of the one-dimensional recognizable languages in terms 
of alphabetic morphisms of local languages, has been introduced in [3]. An early survey on autómata 
recognizing rectangular pictures languages is [4], a more recent one considering different mechanisms 
defining picture languages, not necessarily rectangular, is [8] and an even more recent and concise one 
is [2]. 

This work tries to carry over to rectangular pictures the investigation started in [1] and [5] and con-
tinued in a series of papers; the reader may consult the early survey [6]. In these papers a mechanism 
inspired from cell biology was considered, namely accepting networks of evolutionary processors, i.e. 
networks whose nodes are very simple processors able to perform just one type of point mutation (in-
sertion, deletion or substitution of a symbol). These nodes are endowed with filters defined by some 
very simple context conditions. In a more general view, each node processor acts on the local data in 
accordance with some predefined rules. Local data is then transmitted over the network following a given 
protocol. Only data which can pass a filtering process can be communicated. This filtering process may 
require to satisfy some conditions imposed by the sending processor, by the receiving processor or by 
both of them. All the nodes simultaneously send their data to and receive data from the nodes they are 
connected to. 

In this paper, we consider networks of evolutionary picture processors acting as acceptors on rect­
angular pictures. Each node is either a row/column substitution node or a row/column deletion node. 
The action of each node on the data it contains is precisely defined. For instance, if a node is a row 
substitution node, then it can substitute a letter by another letter in either the topmost or the last or an 
arbitrary row, according to the action of the rules associated with that node. Moreover, if there are more 
occurrences of the letter that is to be substituted in the row on which the substitution rule acts, then an 
instance of the picture for each such occurrence will be produced such that a different occurrence of 
the letter is substituted by the rule in every copy of the given picture. An implicit assumption is that 
arbitrarily many copies of every picture are available. A similar informal explanation concerns column 
substitution and deletion nodes. 

Although this computational process is not exactly an evolutionary process in the Darwinian sense, 
the rewriting operations performed in the nodes might be interpreted as a 2D generalization of gene 
mutations in chromosomes and the filtering process viewed as a selection process. Recombination is 
missing but it was asserted that evolutionary and functional relationships between genes can be captured 
by taking only local mutations into consideration [10]. We would like to stress from the very beginning 
that the evolutionary processor we propose here is just a mathematical object and the biological hints 
mentioned above are intended to explain in an informal way how some biological phenomena are sources 
ofinspiration for our model. 

The paper is structured as follows: in the next section we present the formal definitions of the con-
cepts forming the computational model of accepting networks of picture processors; then we discuss a 



brief comparison of its expressive power with respect to two well-known classes of rectangular picture 
languages, namely, local and recognizable picture languages [3]. 

2. Preliminaries 

The basic terminology and notations concerning two-dimensional languages are taken from [2]. 
The set of natural numbers from 1 to n is denoted by [n]. The cardinality of a finite set A is denoted 

by card(A). Let V be an alphabet, V* the set of one-dimensional strings over V and e the empty string. 
A picture (or a two-dimensional string) over the alphabet V is a two-dimensional array of elements from 
V. We denote the set of all pictures over the alphabet V by V£; a two-dimensional language over V is a 
subsetof V*. 

The minimal alphabet containing all symbols appearing in a picture ir is denoted by alph(ir). Let 
ir be a picture in Vf; we denote the number of rows and the number of columns of ir by W and \TT\, 
respectively. The pair (W, \ir\) is called the size of the picture ir. 

The set of all pictures over V with m rows is denoted by V^ while the set of all pictures over V 
with n columns is denoted by V™. Consequently, the set of all pictures over V of size (m, ri), where 
m,n > 1, is denoted by V^. The symbol placed at the intersection of the ¿th row with the jth column of 
the picture 7r, is denoted byir(i,j). The row picture of size (l,ri) containing occurrences of the symbol a 
only is denoted by a™. Similarly the column picture of size (m, 1) containing occurrences of the symbol 
a only is denoted by am. 

We recall informally the row and column concatenation operations between pictures. For a formal 
definition the reader is referred to [4] or [2]. The row concatenation of two pictures ir of size {rti, ri) 
and p of size (jn , n ) is denoted by ® and is defined only if n = n . The picture ir®p is obtained 
by adjoining the picture p under the last row of ir. Analogously one defines the column concatenation 
denoted by (c). We now define four new operations, in some sense the inverse operations of the row and 
column concatenation. Let ir and p be two pictures of size (m, ri) and (m ,n), respectively. We define 
the partial operations: 

- The column right-quotíent of ir with p: 7r/^.p = 6 iff ir = 6©p. 
- The column left-quotient of ir with p: 7r/̂ _p = 6 iff ir = p©6. 
- The row down-quotient of ir with p: ir/^p = 9 iff ir = 9®p. 
- The row up-quotíent of ir with p: ir/^p = 9 iff ir = p®9. 

Let V be an alphabet; a rule of the form a —> b, with a, b € VU{e} is called an evolutionary rule. We say 
that a rule a —> b is: a) a substitution rule if neither of a and b is e; b) a deletion rule if a / e, b = e; c) an 
insertion rule if a = e, b / e. In this paper, we shall ignore insertion rules because we want to process 
every given picture in a space bounded by the size of that picture. Let Suby = {a —> b \ a, b € V} and 
Delv = {a —> e \ a € V}. Given a rule a as above and a picture ir € V^, we define the following 
actions of a on ir: 

• If <7 = a —> b (z Suby, then 

- If the first column of ir contains an occurrence of a, then a^~ (ir) is the set of all pictures ir' such 
that the following conditions are satisfied: 

(i) there exists 1 < i < m such that ir(i, 1) = a and ir1 (i, 1) = b, 
(ii) ir'(j, l) = ir(j, l) for all (j, l) € ([m] x \ri\) \ {(i, 1)}. 



• 

- If this column does not contain any occurrence of a, then a^(ir) = {ir}. 

Informally, a^~ (ir) is the set of all pictures that can be obtained from ir by replacing an occurrence 
of a by b in the first (leftmost) column of ir. Note that a is applied to all occurrences of the letter 
a in the leftmost column of ir in different copies of the pie ture ir. 

In an analogous way, we define a^(ir), a^ (ir), a^ (ir), a+(ir), as the set of all pictures obtained by 
applying a to the rightmost column, to the first row, to the last row, and to any column/row of ir. 

If a = a —> e € Dely, then 

- a^(ir) is the picture obtained from ir by deleting the leftmost column of ir, provided that this 
column contains at least one occurrence of a. More formally, 

TT/^—p, where pis the leftmost column of7r, if the leftmost 

column of ir does contain at least one occurrence of the letter a 
(T^_(-7r) = < 

7T, if the leftmost column of ir does not contain any occurrence 

of the letter a. 

Analogously, a^(ir), a^(ir), and a^(ir) is the picture obtained from ir by applying a to the right­
most column, to the first row, and to the last row of ir, respectively. Furthermore, 

- a\n) (<T~(7T)) is the set of pictures obtained from TT by deleting an arbitrary column (row) 
containing an occurrence of a from ir. If more than one column (row) of ir contains a, then each 
such column (row) is removed from different copies of 7r. If ir does not contain any occurrence of 
a, then cr'(7r) = U~(TT) = {ir}. More formally, 

{7Ti(c)7r2 | 7T = 7Ti(c)p©7r2, for some 7Ti, 7T2 € V* and p is a 

column of ir that contains an occurrence of the letter a} 
<r'(7Tj — < 

{TT}, if 7T does not contain any occurrence of the letter a. 

For every rule a, symbol a € {•<—, —>, t> -U l> — > +}> a nd L C V*, we define the a-action of a on L by 
aa(L) = I ) cra (7r). Note that + is defined only for substitution rules, while | and — are defined only 

TT£L 

ior cieietion ruies. vjiven a nnire set oí ruies ivi, we cienne uie (x~&CiiOri oj ivi on trie picture TT ancí tne 
language L by: 

Ma(7r) = I ) cra(7r) and Ma(L) = l )M a (7 r ) , 

respectively. In what follows, we shall refer to the rewriting operations defined above as evolutionary 
picture operations since they may be viewed as the 2-dimensional linguistic formulations of local gene 
mutations. 

For two Qisjoint subsets ± and t ot an alptiabet V and a picture TT over v, we consider tne tollowing 
two predicates which we will later use to define two types ot filters: 

rcs(ir; P, F) = (PC alphfa)) A (F í l alph(7r) = 0) 

rcw(ir; P, F) = (alph(ir) n P / 0 ) A (F O alph(ir) = 0). 



The construction of these predicates is based on random context conditíons defined by the two sets P 
(permitting contexts/symbols) and F (forbidding contexts/symbols). Informally, both conditíons require 
that no forbidding symbol is present in ir; furthermore the first condition requires all permitting symbols 
to appear in ir, while the second one requires that at least one permitting symbol appears in ir. It is plain 
to see that the first condition is stronger than the second one, provided that P is not empty. 

For every picture language L C V* and fi € {s, w}, we define: 

rcp(L, P, F) = {-7T € L | rcg(-7r; P, F) = t rue} . 

An evolutionary picture processor over V is a 5-tuple (M, PI, FI, PO, FO), where: 
- Either M C Suby or M C Dely- The set M represents the set of evolutionary rules of the 

processor. As one can see, a processor is "specialized" into one type of evolutionary operation only. 
- PI, FI C V are the input sets of permitting/forbidding symbols (contexts) of the processor, while 

PO, FO C V are the output sets of permitting/forbidding symbols of the processor (with PI n FI = 0 
and PO n FO = 0). 

We denote the set of evolutionary picture processors over V by EPPy. 
An accepting network of evolutionary picture processors (ANEPP for short) is a 8-tuple 

r = (V, U, G, Ai, a, fí,xi, Out), 

where: 

• V and U are the input and network alphabet, respectively, with V C U. 

• G = (XQ, EQ) is an undirected graph without loops with set of vértices XQ and set of edges 
EQ. G is called the underlying graph of the network. Alfhough in network theory, several types 
of graphs are common like complete, rings, stars, grids, we focus here on complete underlying 
graphs, so that we can implicitly define the graph G by specifying the set of its nodes. 

• J\í is a mapping which associates with each node x € XQ the picture processor J\í(x) = (Mx, PIX, 
FIX, POx, FOx). 

• a : XQ — > {•<—, —>-,T>-U I) — > +} ; Oi[x) gives the action mode of the rules of node x on the 
pictures existing in that node. 

• fj : XQ —> {s, w} defines the type of the input/output filters of a node. More precisely, for every 
node, x € XQ, the following filters are defined: 

inputfilter: ¡ix{-) = rc^x^{-; PIx, FIx), 
outputfilter: TX(-) = rc^tx\{-;POx,FOx). 

That is, ¡J.X(TT) (resp. TX(TT)) indicates whefher or not the picture ir can pass the input (resp. output) 
filter of x. More generally, /J.X(L) (resp. TX(L)) is the set of pictures of L that can pass the input 
(resp. output) filter of x. 

• xi € XQ is the input node and Out C XQ is the set of output nodes of T. 

We say that card(Xc) is the size of T. A configuration of an ANEPP T as above is a mapping 
C : XQ —> 2 - * which associates a finite set of pictures with every node of the graph. A configuration 



may be understood as the sets of pictures which are present in any node at a given moment. Given a 
picture 7r € V*, the initial configuration of Y on ir is defined by CQ (xi) = {ir} and CQ (X) = 0 for 
all x € XG \ {xi}. 

A configuration can change via either an evolutionary step or a communication step. When changing 
via an evolutionary step, each component C(x) of the configuration C is changed in accordance with 
the set of evolutionary rules Mx associated with the node x and the way of applying these rules a(x). 
Formally, we say that the configuration C" is obtained in one evolutionary step from the configuration C, 
written as C = > C, iff 

C (x) = M^x'{C{x)) for all x € XG-

When changing via a communication step, each node processor x € XG sends one copy of each 
picture it has, which is able to pass the output filter of x, to all the node processors connected to x and 
receives all the pictures sent by any node processor connected with x provided that they can pass its input 
filter. 

Formally, we say that the configuration C" is obtained in one communication step from configuration 
C, written as C h C", iff for all x € XG, the following holds: 

C (x) = (C(x) \ TX(C(X))) U I ) (Ty(C(y)) n fix(C(y))). 
{X,U}&EQ 

Note that pictures that cannot pass the output filter of a node remain in that node and can be further 
modified in the subsequent evolutionary steps, while pictures that can pass the output filter of a node are 
expelled. Further, all the expelled pictures that cannot pass the input filter of any node are lost. 

Let T be an ANEPP, then the computation of Y on an input picture ir € V* is a sequence of con-
figurations C0 ,C1 ,C2 , • • •, where C0 is the initial configuration of Y on n, C2i = > C2 i + 1 and 

2¿+i ^2í+2> " — 0- Note that configurations are changed by alternative steps. By the previous 
definitions, each configuration Q is uniquely determined by C ^ . A computation as above weakly 
(stronsly) accepts TT if there exists a configuration in which the set of pictures existing in at least one 
outnut node íall outnut nodes) is non-emntv The nicture laneuaee weaklv (stronelv) accentedhv T de-
noted bv L (T) (L (T)) is the set of all innut nictures TT such that the comnutation of T on TT weaklv 
(stronglv) accents TT 

The following two notions will be verv useful in the seauel We recall that all considered ANEPPs 
hfivp a romnlete nnderlvinp pranh henee we mav renlace the pranh C bv its set of vértices denoted 
bv y If h is a one-to-one manoing from U to W and Y = (V U y J\í a 8 x Out) is an ANEPP 
then we ANEPP r = (h(V) h(U) y h(M) a B r Out) where bv h(M) we 
mean h(AÍ)(r) — (h(M ) h(PT ") h(FT ") h(PO ) h(FO )) for everv r G y thatA/Tr") — 
(M PI FT PO FO *) Further h(a —> b) — h(a) —>• h(b) for anv evolutionarv rule —>• b 
Now eiven two ANFPPs Y- — (V- TI- y- A/"- a- ñ- r ¿ Out) ?' — 1 2 y f l y — 0 we denote bv 
Y I IF — (V U l lU y IJy Ai' n B r'1 Out \ where o I — o- for all o <= í Ai ni B\ 

3. Comparison With Other Devices 

In this section we compare the classes Cwa{ANEPP) and Csa(ANEPP) of picture languages weakly 
and strongly accepted by ANEPPs, respectívely, with C(LOC) and C(REC) denoting the classes of 



local and recognizable picture languages, respectively [3]. Before starting this investigation, we establish 
arelatíonship between the two classes Cwa(ANEPP) and Csa(ANEPP). As it was expected, wehave 

Theorem 1. Cwa{ANEPP) C Csa{ANEPP). 

Proof: 
Actually, we prove a bit more general result, namely that for every ANEPP Y there exists an ANEPP 
r ' with one output node only and Lwa(Y) = Lwa(Y') = Lsa(Y'). W.l.o.g. we assume that the set of 
rules in every output node of Y is empty and that all its filter types are strong. Indeed, if the filter type 
of one node is a weak one, with P its input set of permitting symbols, then this node can be replaced 
by 2card(p) — 1 output nodes, each of them having a strong filter type where the input sets of permitting 
and forbidding symbols are an arbitrary non-empty subset of P and the empty set, respectively. Further 
on, the output sets of permitting and forbidding symbols of every such node are {Z} and the empty set, 
respectively, where Z is a new symbol. Now, in order to get r ' , we add one more node to Y, which is 
the unique output node of Y'. This node can receive only those pictures containing the new symbol Z. 
We now associate with each output node of Y a set of substitution rules formed by one substitution only, 
namely X —> Z, where X is an arbitrary symbol from the input set of permitting symbols of that node. 
The action mode of all these rules is +. D 

We start with one simple example which lays the basis for further results. 

Example 1. Let L be the set of all pictures TT € V2* consisting of two identical rows over the alphabet 
V. The language L can be formally described as 

L = {ir € V™ | 7r(l, i) = 7r(2, i), i € [m], m> 1}. 

L can be weakly (strongly) accepted by the complete ANEPP given in Table 1, with 3 • card(V) + 3 
nodes, namely xj, xa, x'a, x"a, a € V, Xdei, the working alphabet U = V U {Xa, Ya \ a € V} U {X, Y}, 
and one output node only, namely XQ '• 

Node M PI PO a Node M 

FI FO P 
Xj 0 V V t Xj 0 

u\v 0 w 

•^a {a -> Xa} V \Xa] t •^a {a -> Xa} 

u\v 0 w 

x' {a -+ Ya} \Xa\ \Ya] 4-x' {a -+ Ya} 

{Yb | b £ V} 0 s 

x" {Xa^X,Ya^Y} {Xa, Ya] {X, Y] —> x" {Xa^X,Ya^Y} 
U\ {Xa, Ya] 0 s 

•^del {Xa^e\a£V} {Ya | a £ V] V \ •^del {Xa^e\a£V} 

0 u\v w 

x0 0 {X, Y] 0 + x0 0 
U\ {X, Y] u s 

Table 1. 



Let us follow a computation of this network on a generic input pie ture ir. In the input node no action 
is done on this picture in the first computation step, but a copy of this picture is sent simultaneously to 
all nodes xa, a € V in the next communication step. We now follow what happens with this picture in 
the node xa for some a. Here an oceurrence of a of the first row is replaced by Xa and all pictures are 
sent out. They can be received by x'a only, where an oceurrence of a in the last row is replaced by Ya. 
All pictures going out from all nodes x'a, a € V, arrive in x¿,ei- They all remain here forever except for 
those having the leftmost column starting with Xa and ending with Ya, for some a € V. They are sent 
out after their leftmost column is removed. A copy of each of them will enter every node xa, a £ V, and 
the process resumes. The computation either continúes until a single column picture starting with Xa 

and ending with Ya, for some a € V is obtained in x'a, or halts without accepting the input picture. If 
such a column picture is obtained in x'a, for some a £ V, then it enters x"a where Xa and Ya are replaced 
by X and Y, respectively. The new column picture is sent out by x" but it is lost unless its length is two, 
in which case it enters xo and the input picture is accepted. By these explanations, it follows that every 
input picture with a number of rows other than two cannot be accepted. • 

Clearly, the language of all pictures of size (n, 2), n > 1, over a given alphabet V, where the two 
columns are identical can also be accepted by an ANEPP. The network from Example 1 can be extended 
to accept the language of all pictures (of any size) having two identical rows. The role of the next example 
is to show how two ANEPPs can be combined in order to form a new ANEPP. 

Example 2. Let L be the set of all pictures TT € V* with two identical rows over the alphabet V. The 
language L can be formally described as 

L = {ir € V™ | 3í, j € N, 1 < i T¿ j < n (ir(i, k) = ir(j, k)), k € [m], n,m > 1}. 

In what follows we assume that the same alphabet V is used in Examples 1 and 2. First, we construct 
the ANEPP Ti = (V, U\, xi, A/i, a i , /3i,yi, {y'a \ a € V}) of size 4 • card(V) + 2 with the working 
alphabet U\ = V U {a', a", a \ a € V}, and the nodes defined as shown in Table 2: 

Node M PI PO o.\ Node M 

FI FO Pí 

Vi {a —> a' | 

aeV} 
0 {a' | a (E V} <— Vi {a —> a' | 

aeV} \J 1 0 w 

y' {a —> a" 

aeV} 

{a' | a G V} {a" | a (E V} • ^ y' {a —> a" 

aeV} {a", a \ a G V} 0 w 

ya {b^e\ 

b€V} 

{a\ a"} 0 -ya {b^e\ 

b€V} U\ \ {V U {a', a"}) 0 s 

y'a 

b€V} 

{a', a"} 0 -y'a 

b€V} U\ {Xa, Ya] 0 s 

ya {a' -> a}U 
{b^b\b£V} 

{a', a"} 0 t ya {a' -> a}U 
{b^b\b£V} U\ \ {V U {a', a"}) Ia 1 s 

y'a {a" -4- a}U 
{b^b\b£V} 

{a, a"} 0 4-y'a {a" -4- a}U 
{b^b\b£V} U\ \(VU{a, a }) V^ U {&', 6" | b (E V^} s 

Table 2. 



The informal idea is the following. In the nodes yi and y1 two symbols, say a and b (possibly the 
same) on theleftmost column arereplacedby a1 and b", respectively. lía ^ b, then no other pictures can 
be obtained. If a = b, then by means of the nodes ya and y'a, some rows are deleted from the pictures. 
Only those pictures in which all rows except the rows starting with a' and a" are deleted can still be 
active for the rest of the computation. Furthermore, these pictures must have the first row starting with a' 
and the second one starting with a". We follow what happens with these pictures as soon as they arrive 
in ya, for some a € V. Here some symbols from the first row are transformed into their barred copies, 
including a'. Then, some symbols on the second row are transformed into their barred copies in y'a. A 
picture cannot go out from y'a, for any a € V, unless all its symbols were substituted by barred copies. 
Therefore, for a picture to go out from y', it must have only barred symbols on its first row when leaving 

Va-
We now consider the ANEPP Y = [V, U, %, AI, a, p, xj, xo) from Example 1 and the one-to-one 

mapping h : U —> {a \ a € V} U {U \ V) defined by h{a) = a, a € V, and h{b) = b,b € U \V. 
Let T2 be the ANEPP obtained from Y^ by replacing h(U) with U\L¡U wherever h(U) appears in the 
definition of parameters of IV We claim that Y\ U 1^ weakly accepts L. Indeed, the subnetwork 1^ can 
start to work when it receives pictures having barred symbols only. These pictures can be obtained from 
the nodes y'a, a € V. By the above explanations, they are pictures with only two rows that are barred 
copies of two rows randomly selected from the input picture. • 

In what follows, instead of giving all the details of how two networks are merged, as in Example 
2, we simply say that the pictures processed by the network Y\ are given as inputs to the network 1^ 
suitably modified. We recall that a picture language L is said to be local if there exists a finite set of 
pictures of size (2, 2) which contains the set of (2, 2) sub-pictures of every picture of L. Furthermore, 
every recognizable picture language is the projection of a local picture language. 

Now we can state: 

Theorem 2. Cwa(ANEPP) \ C(REC) / 0. 

Proof: 
We claim that the following language 

L = {-7T € V^ | n, m > 1,(n(n, i) = 7r(n + 1, i)),Vi € [m]} 

is not recognizable, provided that card(V) > 2. A bit more informally, L consists of all pictures that 
can be written in the form 7TI®7T2, where IT\, 1T2 are pictures of the same size and the last row of IT\ is 
equal to the first row of 7T2. We now formally show that this language is not recognizable. Assume that 
L is recognizable and let L = h(L'), where his a projection from some alphabet U to V and L' C U* is 
a local language. Clearly, L consists of all pictures that can be written in the form 7TI®7T2, where n\, 7T2 
are pictures of the same size and the last row of n\ is equal to the first row of 7T2. For two positive integers 
n, m, let L(n, m) be the subset of L formed by all pictures that can be written in the form 7TI®7T2 with 
7Ti, 7T2 as above but satisfying also the following two conditions: 

- both 7Ti and 7T2 are of size (n, m); 
- neither TT\ ñor 7T2 contains two consecutive identical rows. 
Therefore, there exists a subset L'(n, m) of L such that L(n, m) = h(L'(n, m)) for all n, m. Let 

m be fixed; as every set L(n, m) is not empty for all valúes of n, it follows that all sets L'(n, m) are 
non-empty as well. Therefore, there are two pictures ( € L'(n\, m) and 9 € L'(rt2, m), with ri\ / «2 



such that the stripe rectangle of size (2, m) consisting of the n\-th and (n\ + l)-th rows in ( equals 
the stripe rectangle of size (2, m) consisting of the n2-th and 112 + 1-th rows in 9. Consequently, both 
pie tures obtained from ( and 9 by interchanging with each other their first halves are in L'. However, the 
projection by h of any of these pictures is not in L, a contradiction. 

In the last part of the proof, we give some informal hints on how this language can be weakly accepted 
by an ANEPP consisting of two subnetworks: the first one alternatively deletes the first and the last row 
of the input picture until it is reduced to only two rows. Now these pictures are given as inputs to the 
subnetwork from Example 1. A formal construction of the first subnetwork, that is the network which 
processes the input pictures until they are sent to the input node of the network from Example 1 suitably 
modified, is presented in the sequel. It consists of six nodes that are defined as follows (Table 3): 

Node M PI PO a Node M 

FI FO P 
Xj {a^X \ a€ V}U 

{a —> a' \ a G V} 

0 {X} U {a' | a G V} t Xj {a^X \ a€ V}U 

{a —> a' \ a G V} {X, Y} U {a/ | a G V} 0 w 

X\ {a^Y | a€ V} \X\ i* J 4-X\ {a^Y | a€ V} 

{Y} U {a' | a G V} 0 w 

x2 {X^e} {X, Y} \x \ t x2 {X^e} 

{a/ | a G V} {-"*} s 

x3 {Y^e} i* í 0 4-x3 {Y^e} 

{X} U {a' | a G V} {X, Y} s 

X4 {a —> a' \ a G V} {a/ | a G V} {a/ | a G V} t X4 {a —> a' \ a G V} 

{X, Y} 0 w 

x5 {a —> a' \ a G V} {a/ | a G V} {a/ | a G V} 4-x5 {a —> a' \ a G V} 

{X, Y} 0 w 

Table 3. 

The working mode of this network is rather simple. In the input node the first row of the picture is 
marked either for deletion (if a symbol of the first row was replaced by X) or for the checking phase. 
If the first row was marked for deletion, the picture goes to the node x\ where the last row is marked 
for deletion. Then these two rows are deleted in the nodes X2 and xs, and the process resumes in the 
input node x¡. Let us now see what happens with a picture marked for the checking phase in the input 
node. This picture enters nodes X4 and x$ which exchange this picture with each other until all symbols 
on the first and last row are replaced by the primed copies of the original symbols. Now, this picture is 
sent to the input node of the subnetwork from Example 1 suitably modified. As this node cannot accept 
pictures containing other symbols than primed ones, it follows that the pictures able to enter this node 
have exactly two rows. This concludes the proof. D 

The last result of this section could imply the previous result provided that there exists a local lan­
guage whose complement is not recognizable. We are not aware of such a result though it is known that 
C(REC) is not closed under complement. In any case, the previous result provides a new language that 
is not recognizable, therefore it might be useful from this point of view too. 



Theorem 3. The complement of every local language can be weakly accepted by an ANEPP. 

Proof: 
For a better understanding, we first give an informal argument followed by the complete formal proof. 
The argument starts with the observation that one can construct a network that weakly accepts only a 
fixed picture of size (2,2). Now, if L is a local language over the alphabet V defined by the set F of 
(2,2)-tiles, then we consider the set Fc of all (2,2)-tiles over V that do not belong to F. The rough idea 
of the network weakly accepting the complement of L is the following one. First, one constructs a set 
of completely disjoint networks each one accepting exactly one picture from Fc. Then another network 
cuts an arbitrary (2, 2)-tile from the input picture and sends it to all these networks suitably modified. 

Formally, let L be a local language over the alphabet V defined by the set F of (2,2)-tiles. We 
consider the set Fc of all (2,2)-tiles over V that do not belong to F. Assume that Fc has the tiles 
ti, ¿2> • • • tn for some n > 1. We first define a network r¿ that accepts exactly the singleton picture 

a b 
language {ti} for some 1 < i < n; for sake of simplicity we assume that í¿ = . The nodes of this 

C- (Ai 

network are described in Table 4; xj and xo are the input and output node, respectively. 

Node M PI PO <y.\ Node M 

FI FO Pi 

Xj {a —> a^ {a, 6, c, d} {ai} \ Xj {a —> a^ 

\ di, Oi7 Ci7 Cti f 0 IV 

X\ { c - > c¿} {ai} |c¿ j 4-X\ { c - > c¿} 

{6¿,Ci, di} 0 s 

x2 {b^k} \di7 Ci} {h} t x2 {b^k} 
{6¿, di} 0 s 

x3 {d^ di} {a¿, bi, Ci} {di} —> x3 {d^ di} 

{di} 0 s 

X4 {a,i ->• e} j di, 0i7 Ci7 di f {bi, di} \ X4 {a,i ->• e} 

V {ai,ci} s 

x0 0 {bi, di} {h, di} + x0 0 
V 0 s 

Table 4. 

One can rather easily see that only pictures of size (2,2) might be eventually accepted. We modify 
the filters of each network r¿, 1 < i < n, such that as soon as a picture enters a node of some network r¿, 
it is processed only in T¿ until the computation halts. The network weakly accepting the complement of 
L contains all networks T¿, 1 < i < n, modified as above, as subnetworks and has the set of output nodes 
formed by the output nodes of all r¿, 1 < i < n. It has four further nodes, two for deleting rows and two 
for deleting columns, in the aim of preparing input pictures for the subnetworks T¿, 1 < i < n. D 



4. Closure Properties 

Closure properties of the families of picture languages defined here under some common operations on 
picture languages appear to be of interest. We mention here the following result, where rotations are 
intended as 90 rotations clockwise or counterclockwise: 

Theorem 4. 1. The class Cwa(ANEPP) is closed under unión, rotation, vertical and horizontal reflec-
tion, projection, inverse projection. 
2. The class Csa(ANEPP) is closed under intersection, rotation, vertical and horizontal reflection, 
projection, inverse projection. 

Proof: 
1. For unión, we give an informal proof that can be easily formalized by the reader. Let T\ and 1^ be to 
ANEPPs; we construct a new ANEPP V that contains three subnetworks. In the input node of the first 
subnetwork, an arbitrary symbol of the input picture is substituted by either its primed copy or its barred 
copy. All pictures containing a primed symbol are received by a specific node while those containing a 
barred symbol are received by another specific node. All symbols of the pictures arrived in these two 
nodes are replaced by their primed and barred copies, respectively. When this process is finished, each of 
the two nodes contains only one picture. The picture containing primed symbols only is given as an input 
picture to the subnetwork formed from T\ suitably modified. The other picture is processed analogously 
by the subnetwork formed from T2 suitably modified. The set of output nodes of T is the unión of the 
sets of output nodes of the modified T\ and IY Clearly, Lwa(T) = Lwa(Ti) U Lwa(Y2)-

The closure under rotation is immediate as soon as we modify the row rules into column rules and 
vice versa, and the action mode accordingly. The closure under vertical and horizontal reflection can be 
proved analogously. 

If h : V —> U is a projection and V is an ANEPP with input alphabet V, then let T' be the ANEPP 
with input alphabet U formed by two subnetworks as follows. In the input node of the first subnetwork, 
each symbol b of the input picture is substituted by a symbol a1 such that a1 is a copy of a £ V that does 
not appear in V U U and h(a) = b. When all symbols of the input picture are substituted, all the obtained 
pictures will be sent to the input node of the subnetwork formed from V suitably modified. It is plain that 
h{Lwa{T)) = Lwa(V). The construction for the closure under inverse projection is pretty similar and 
left to the reader. 

2. The closure under intersection, projection and inverse projection follows similarly to the previous 
case. Note the fundamental role played by strong acceptance in the case of intersection. D 

The closure of Cwa(ANEPP) under intersection as well as that of Csa(ANEPP) under unión are 
left open. The closure of the two classes under row and column concatenation has a similar status. 

5. Final Remarks 

We finish this work with a very short discussion on some problems left open here besides those con-
cerning the closure properties which have been mentioned above. The first natural problem regards 
the equality between the classes Cwa(ANEPP) and Csa(ANEPP). Another attractive problem, in 
our view, concerns the relationships between these two classes and the classes C(LOC) and C(REC). 



Along the same lines, a future direction may be the comparison with other other array language families 
like those considered in [11-16]. 

It is rather plain that the membership problem is decidable for both classes Cwa(AN E P P) and 
Csa{ANEPP). What other problems are still decidable? 
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