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Counting dependent and independent strings

Marius Zimand ⋆

Department of Computer and Information Sciences, Towson University, Baltimore, MD, USA

Abstract. We derive quantitative results regarding sets of n-bit strings that have different
dependency or independency properties. Let C(x) be the Kolmogorov complexity of the string
x. A string y has α dependency with a string x if C(y) − C(y | x) ≥ α. A set of strings
{x1, . . . , xt} is pairwise α-independent if for all i 6= j, C(xi) − C(xi | xj) ≤ α. A tuple of
strings (x1, . . . , xt) is mutually α-independent if C(xπ(1) . . . xπ(t)) ≥ C(x1) + . . .+ C(xt)− α,
for every permutation π of [t]. We show that:

– For every n-bit string x with complexity C(x) ≥ α+ 7 log n, the set of n-bit strings that
have α dependency with x has size at least (1/poly(n))2n−α. In case α is computable from
n and C(x) ≥ α + 12 log n, the size of same set is at least (1/C)2n−α − poly(n)2α, for
some positive constant C.

– There exists a set of n-bit strings A of size poly(n)2α such that any n-bit string has
α-dependency with some string in A.

– If the set of n-bit strings {x1, . . . , xt} is pairwise α-independent, then t ≤ poly(n)2α.
This bound is tight within a poly(n) factor, because, for every n, there exists a set of
n-bit strings {x1, . . . , xt} that is pairwise α-dependent with t = (1/poly(n)) · 2α (for all
α ≥ 5 log n).

– If the tuple of n-bit strings (x1, . . . , xt) is mutually α-independent, then t ≤ poly(n)2α

(for all α ≥ 7 log n+ 6).

1 Introduction

A fact common to many mathematical settings is that in a sufficiently large set some
relationship emerges among its elements. Generically, these are called Ramsey-type results.
We list just a few examples: any n + 1 vectors in an n-dimensional vector space must be
dependent; for every k and sufficiently large n, any subset of [n] of constant density must
have k elements in arithmetic progression; any set of 5 points in the plane must contain 4
points that form a convex polygon. All these results show that in a sufficiently large set,
some attribute of one element is determined by the other elements.

We present in this paper a manifestation of this phenomenon in the very general frame-
work of algorithmic information theory. We show that in a sufficiently large set some form of
algorithmical dependency among its elements must exist. Informally speaking, poly(n) · 2α

binary strings of length n must share at least α bits of information. For one interpretation
of “share”, we also show that this bound is tight within a poly(n) factor.

Central to our investigation are the notions of information in a string and the derived
notion of dependency between strings. The information in a string x is captured by its
Kolmogorov complexity C(x). A string y has α-dependency with string x if C(y)−C(y | x) ≥
α. The expression C(y) − C(y | x), denoted usually more concisely as I(x : y), represents
the quantity of information in x about y and is a key concept in information theory. It
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is known that I(x : y) = I(y : x) ± O(log n) (Symmetry of Information Theorem [20]),
where n is the length of the longer between the strings x and y, and therefore I(x : y) is
also called the mutual information of x and y. For any n-bit string x and positive integer
α, we are interested in estimating the size of the set Ax,α of n-bit strings y such that
C(y) − C(y | x) ≥ α. One can see by a standard counting argument that |Ax,α| ≤ 2n−α+c

for some constant c. Regarding a lower bound for |Ax,α|, it is easy to see that if C(x) � α,
then Ax,α is empty (intuitively, in order for x to have α bits of information about y, it
needs to have α bits of information to start with, regardless of y). The lower bound that
we establish holds for any string having Kolmogorov complexity � α.1 For such strings
x, we show that |Ax,α| ≥ (1/poly(n))2n−α. A related set is Bx,α consisting of the n-bit
strings y with the property C(y | n) − C(y | x) ≥ α. This is the set of n-bit strings about
which x has α bits of information besides the length. Note that Bx,α ⊆ Ax,α. The same
observations regarding an upper bound for |Bx,α| and the emptiness of Bx,α in case C(x) � α
remain valid. For x with C(x) � α and α computable from n, we show the lower bound
|Bx,α| ≥ (1/C) · 2n−α − poly(n) · 2α, for some positive constant C.

We turn to the Ramsey-type results announced above. A set of n-bit strings {x1, . . . , xt}
is pairwise α-independent if for all i 6= j, C(xi) − C(xi | xj) ≤ α. Intuitively, this means
that any two strings in the set have in common at most α bits of information. For the
notion of mutual independence we propose the following definition (but other variants are
conceivable). The tuple of n-bit strings (x1, . . . , xt) ∈ ({0, 1}n)t is mutually α-independent
if C(xπ(1) . . . xπ(t)) ≥ C(x1) + . . . + C(xt) − α, for every permutation π of [t]. Intuitively
this means that x1, . . . , xt share at most α bits of information. We show that if {x1, . . . , xt}
is pairwise α-independent or if (x1, . . . , xt) is mutually α-independent then t ≤ poly(n)2α.
The bound in the pairwise independent case is tight within a polynomial factor.

We also show that there exists a set B of size poly(n)2α that “α-covers” the entire set
of n-bit strings, in the sense that for each n-bit string y there exists a string x in B that
has α bits of information about y (i.e., y is in Ax,α).

The main technical novelty of this paper is the technique used to lower bound the
size of Bx,α = {y ∈ {0, 1}n | C(y | n) − C(y | x) ≥ α}, which should be contrasted
with a known and simple approach. This “normal” and simple approach is best illustrated
when x is random. In this case, the prefix x(1 : α) of x of length α is also random and,
therefore, if we take z to be an (n− α) long string that is random conditioned by x(1 : α),
then C(zx(1 : α)) = n − O(log n), C(zx(1 : α) | x(1 : α)) = n − α − O(log n), and
thus, zx(1 : α) ∈ Bx,α+O(logn). There are approximately 2n−α strings z as above, and
this leads to a lower bound of 2n−α for |Bx,α+O(logn)|, which implies a lower bound of
(1/poly(n))2n−α for |Bx,α|. This method is so basic and natural that it looks hard to beat.
However, using properties of Kolmogorov complexity extractors, we derive a better lower
bound for |Bx,α| that does not have the slack of 1/poly(n), in case α is computable from n
(even if α is not computable from n, the new method gives a tighter estimation than the
above “normal” method). A Kolmogorov complexity extractor is a function that starting
with several strings that have Kolmogorov complexity relatively small compared to their
lengths, computes a string that has Kolmogorov complexity almost close to its length. A
related notion, namely multi-source randomness extractors, has been studied extensively

1 We use notation poly(n) for nO(1) and ≈, � and � to denote that the respective equality or inequality
holds with an error of at most O(log n).
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in computational complexity (see[3,1,2,12,11]). Hitchcock, Pavan and Vinodchandran [8]
have shown that Kolmogorov complexity extractors are equivalent to a type of functions
that are close to being multisource randomness extractors. Fortnow, Hitchcock, Pavan,
Vinodchandran and Wang [7] have constructed a polynomial-time Kolmogorov complexity
extractor based on the multi-source randomness constractor of Barak, Impagliazzo and
Wigderson [1]. The author has constructed Kolmogorov complexity extractors for other
settings, such as extracting from infinite binary sequences [18,16] or from binary strings that
have a bounded degree of dependence [16,19,17]. The latter type of Kolmogorov complexity
extractors is relevant for this paper. Here we modify slightly an extractor E from [17],
which, on inputs two n-bit strings x and y that have Kolmogorov complexity at least s and
dependency at most α, constructs an m-bit string z with m ≈ s and Kolmogorov complexity
equal to m− α−O(1) even conditioned by any one of the input strings. Let us call a pair
of strings x and y with the above properties as good-for-extraction. We fix x ∈ {0, 1}n with
C(x) ≥ s. Let z be the most popular image of the function E restricted to {x} × {0, 1}n.
Because it is distinguishable from all other strings, given x, z can be described with only
O(1) bits (we only need a description of the function E and of the input length). Choosing
m just slightly larger than α we arrange that C(z | x) < m− α −O(1) . This implies that
all the preimages of z under E restricted as above are bad-for-extraction. Since the size
of E−1(z) ∩ ({x} × {0, 1}n) is at least 2n−m, we see that at least 2n−m pairs (x, y) are
bad-for-extraction. A pair of strings (x, y) is bad-for-extraction if either y has Kolmogorov
complexity below s (and it is easy to find an upper bound on the number of such strings),
or if y ∈ Bx,α. This allows us to find the lower bound for the size of Bx,α.

2 Preliminaries

We work over the binary alphabet {0, 1}; N is the set of natural numbers. A string x is an
element of {0, 1}∗; |x| denotes its length; {0, 1}n denotes the set of strings of length n; |A|
denotes the cardinality of a finite set A; for n ∈ N, [n] denotes the set {1, 2, . . . , n}. We
recall the basics of (plain) Kolmogorov complexity (for an extensive coverage, the reader
should consult one of the monographs by Calude [4], Li and Vitányi [10], or Downey and
Hirschfeldt [6]; for a good and concise introduction, see Shen’s lecture notes [13]). Let M
be a standard Turing machine. For any string x, define the (plain) Kolmogorov complexity
of x with respect to M , as

CM (x) = min{|p| | M(p) = x}.

There is a universal Turing machine U such that for every machine M there is a constant
c such that for all x,

CU (x) ≤ CM (x) + c. (1)

We fix such a universal machine U and dropping the subscript, we let C(x) denote the
Kolmogorov complexity of x with respect to U . We also use the concept of conditional
Kolmogorov complexity. Here the underlying machine is a Turing machine that in addition
to the read/work tape which in the initial state contains the input p, has a second tape
containing initially a string y, which is called the conditioning information. Given such a
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machine M , we define the Kolmogorov complexity of x conditioned by y with respect to M
as

CM (x | y) = min{|p| | M(p, y) = x}.

Similarly to the above, there exist universal machines of this type and they satisfy the
relation similar to Equation 1, but for conditional complexity. We fix such a universal
machine U , and dropping the subscript U , we let C(x | y) denote the Kolmogorov complexity
of x conditioned by y with respect to U .

There exists a constant cU such that for all strings x, C(x) ≤ |x| + cU . Strings
x1, x2, . . . , xk can be encoded in a self-delimiting way (i.e., an encoding from which each
string can be retrieved) using |x1| + |x2| + . . . + |xk| + 2 log |x2| + . . . + 2 log |xk| + O(k)
bits. For example, x1 and x2 can be encoded as (bin(|x2|)01x1x2, where bin(n) is the
binary encoding of the natural number n and, for a string u = u1 . . . um, u is the string
u1u1 . . . umum (i.e., the string u with its bits doubled).

Given a string x and its Kolmogorov complexity C(x), one can effectively enumerate all
descriptions y of x of length C(x), i.e., the set {y ∈ {0, 1}C(x) | U(y) = x}. We denote x∗ the
first string in this enumeration. Note that C(x)−O(1) ≤ C(x∗) ≤ |x∗|+O(1) = C(x)+O(1).

The Symmetry of Information Theorem [20] states that for any two strings x and y,

(a) C(xy) ≤ C(y) +C(x | y) + 2 logC(y) +O(1).

(b) C(xy) ≥ C(x) + C(y | x)− 2 logC(xy)− 4 log logC(xy)−O(1).

(c) If |x| = |y| = n, C(y)− C(y | x) ≥ C(x)− C(x | y)− 5 log n

Since the theorem is usually stated in a slightly different form and since we use the constants
specified above, we present in the appendix the proof (which follows the standard method).

As discussed in the Introduction, our main focus is on sets of strings having certain de-
pendency or independency properties. For convenience, we restate here the main definitions.

Definition 1. The string y has α-dependency (where α ∈ N) with the string x if C(y) −
C(y | x) ≥ α or if x coincides with y.

We have included the case “x coincides with y” to make a string dependent with itself even
in case it has low Kolmogorov complexity.

Definition 2. The strings x1, . . . , xt are pairwise α-independent if for all i 6= j, C(xi) −
C(xi | xj) ≤ α.

Definition 3. The tuple of strings (x1, . . . , xt) is mutually α-independent (where α ∈ N) if
C(xπ(1)xπ(2) . . . xπ(t)) ≥ C(x1) + C(x2) + . . .+ C(xt)− α, for every permutation π of [t].

3 Strings dependent with a given string

Given a string x ∈ {0, 1}n, and α ∈ N, how many strings have dependency with x at least
α? That is we are interested in estimating the size of the set

Ax,α = {y ∈ {0, 1}n | C(y)− C(y | x) ≥ α}.
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This is the set of strings about which, roughly speaking, x has at least α bits of information.
A related set is

Bx,α = {y ∈ {0, 1}n | C(y | n)− C(y | x) ≥ α},

consisting of the n-bit strings about which x provides α bits of information besides the
length n. Clearly, Bx,α ⊆ Ax,α, and thus an upper bound for |Ax,α| also holds for |Bx,α|,
and a lower bound for |Bx,α| also holds for |Ax,α|.

We show that for some polynomial p and for some constant C, for all x and α except
some special values,

(1/p(n)) · 2n−α ≤ |Ax,α| ≤ C2n−α,

and, in case α(n) is computable from n,

(1/C) · 2n−α − p(n)2α ≤ |Bx,α| ≤ C2n−α,

The upper bounds for the sizes of Ax,α and Bx,α can be readily derived. Observe that the
set Ax,α is included in {y ∈ {0, 1}n | C(y | x) < n−α+c} for some constant c, and therefore

|Ax,α| ≤ C · 2n−α,

for C = 2c.

We move to finding a lower bound for the size of Ax,α. A first observation is that for
Ax,α to be non-empty, it is needed that C(x) � α. Indeed, it is immediate to observe that
for any strings x and y of length n,

C(y) ≤ C(x) + C(y | x) + 2 logC(x) +O(1) ≤ C(x) + C(y | x) + 2 log n+O(1),

and thus, if C(y) − C(y | x) ≥ α, then C(x) ≥ α − 2 log n − O(1). Intuitively, if the
information in x is close to α, not too many strings can be α-dependent with it.

We provide a lower bound for |Ax,α|, for every string x with C(x) ≥ α+7 log n. The proof
uses the basic ”normal” approach presented in the Introduction. To simplify the discussion,
suppose C(x) = α. Then if we take a string z of length n−α that is random conditioned by
x∗, it holds that C(x∗z) ≈ n and C(x∗z | x∗) ≈ n−α. Thus, C(x∗z)−C(x∗z | x∗) � α. Note
that there are approximately 2n−α such strings x∗z. Since x∗ can be obtained from x and
C(x), we can replace x∗ by x in the conditioning at a small price. We obtain approximately
2n−α strings in Ax,α.

Theorem 1. For every natural number n, for every natural number α and for every x ∈
{0, 1}n such that C(x) ≥ α+ 7 log n,

|Ax,α| ≥
1

2n7
2n−α,

provided n is large enough.

Proof. Let k = C(x) and let β = α + 7 log n. Let x∗ be the smallest description of x as
described in the Preliminaries. Let x∗β be the prefix of x∗ of length β. Since x∗ is described
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by x∗β and by its suffix of length k − β, C(x∗) ≤ C(x∗β) + (k − β) + 2 logC(x∗β) +O(1) and,
thus

C(x∗β) ≥ C(x∗)− (k − β)− 2 logC(x∗β)−O(1)

≥ (k −O(1))− (k − β)− 2 logC(x∗β)−O(1)

≥ β − 2 log β −O(1).

The set B = {z ∈ {0, 1}n−β | C(z | x∗β) ≥ n − β − 1} has size at least (1/2) · 2n−β (using
a standard counting argument). Consider a string y ∈ {0, 1}n of the from y = x∗βz with

z ∈ B. There are at least (1/2) · 2n−β such strings.

By symmetry of information,

C(y) = C(x∗βz) ≥ C(x∗β) +C(z | x∗β)− (2 log n+ 4 log log n+O(1))

≥ (β − 2 log β) + (n− β − 1)− (2 log n+ 4 log log n+O(1))
≥ n− (4 log n+ 4 log log n+O(1)) ≥ n− 5 log n.

On the other hand, C(y | x∗β) = C(x∗βz | x∗β) ≤ C(z) +O(1) ≤ (n− β) +O(1). Note that

C(y | x) ≤ C(y | x∗β) + 2 log n+ 4 log log n+O(1),

because one can effectively construct x∗β from x, k and β. Therefore,

C(y | x) ≤ (n− β) + 2 log n+ 4 log log n+O(1),

and thus

C(y)− C(y | x) ≥ β − (6 log n+ 8 log log n+O(1)) ≥ β − 7 log n.

So, y ∈ Ax,β−7 logn = Ax,α. Since this holds for all the strings y mentioned above, it follows
that |Ax,α| ≥ (1/2)2n−β = (1/(2n7)) · 2n−α.

The lower bound for |Bx,α| is obtained using a technique based on Kolmogorov com-
plexity extractors, as explained in the Introduction. We use the following theorem which
can be obtained by a simple modification of a result from [17].

Theorem 2. For any computable functions s(n),m(n) and α(n) with n ≥ s(n) ≥ α(n) +
7 log n and m(n) ≤ s(n) − 7 log n, there exists a computable ensemble of functions E :
{0, 1}n × {0, 1}n → {0, 1}m(n) such that for all x and y in {0, 1}n

– if C(x) ≥ s(n), C(y | n) ≥ s(n) and C(y | n)− C(y | x) ≤ α(n)

– then C(E(x, y) | x) ≥ m(n)− α(n)−O(1).

Theorem 3. Let α(n) be a computable function. For every sufficiently large natural number
n, for every x ∈ {0, 1}n such that C(x) ≥ α(n) + 8 log n,

|Bx,α(n)| ≥
1

C
· 2n−α(n) − n82α(n),

for some positive constant C.
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Proof. Let m = α(n) + c and s = α(n) + 8 log n, where c is a constant that will be specified
later. Consider E : {0, 1}n×{0, 1}n → {0, 1}m the Kolmogorov extractor given by Theorem 2
for these parameters. Let z ∈ {0, 1}m be the string that has the largest number of E
preimages in the set {x} × {0, 1}n. Note that, for some constant c1, C(z | x) ≤ c1, because,
given x, z can be constructed from a table of E, which at its turn can be constructed from
n which is given because it is the length of x. On the other hand, if y ∈ {0, 1}n is a string
with C(y | n) ≥ s and C(y | n) − C(y | x) ≤ α(n), then Theorem 2 guarantees that, for
some constant c2, C(E(x, y) | x) ≥ m − α(n) − c2 = c − c2 > c1, for an appropriate c.
Therefore all the strings y such that E(x, y) = z are bad for extraction, i.e., they belong to

{y ∈ {0, 1}n | C(y | n) < s} ∪ {y ∈ {0, 1}n | C(y | n) ≥ s and C(y | n)− C(y | x) ≥ α}.

Since there are at least 2n−m such strings y and the first set above has less than 2s elements,
it follows that

|{y ∈ {0, 1}n | C(y | n)− C(y | x) ≥ α(n)}| ≥ 2n−m − 2s =
1

2c
· 2n−α(n) − n82α(n).

This concludes the proof.

The proof of Theorem 1 actually shows more: The lower bound applies even to a subset of
Ax,α containing only strings with high Kolmogorov complexity. More precisely, if we denote
Ax,α,s = {y ∈ {0, 1}n | C(y) ≥ s and C(y)− C(y | x) ≥ α}, then |Ax,α,n−5 logn| ≥

1
2n7 2

n−α.
Note that there is an interesting “zone” for the parameter s that is not covered by this result.
Specifically, it would be interesting to lower bound the size of Ax,α,n. This question remains
open. Nevertheless, the technique from Theorem 3 can be used to tackle the variant in
which access to the set R = {u ∈ {0, 1}n | C(u) ≥ |u|} is granted for free. Thus, let
AR

x,α,n = {y ∈ {0, 1}n | CR(y) ≥ n and CR(y)− CR(y | x) ≥ α}.

Proposition 1. For the same setting of parameters as in Theorem 3, |AR
x,α,n| ≥

1
C ·2n−α(n),

for some positive constant C.

Proof. Omitted from this extended abstract.

4 Pairwise independent strings

We show that if the n-bit strings x1, . . . , xt are pairwise α-independent, then t ≤ poly(n)2α.
This upper bound is relatively tight, since there are sets with (1/poly(n)) · 2α n-bit strings
that are pairwise α-independent.

Theorem 4. For every sufficiently large n and for every natural number α, the following
holds. If x1, . . . , xt are n-bit strings that are α-independent, then t < 2n3 · 2α.

Proof. There are less than 2α+3 logn strings with Kolmogorov complexity less than α+3 log n.
We discard such strings from x1, . . . , xt and assume that x1, . . . , xt′ are the strings that are
left. Since t < 2α+3 logn + t′, we need to show that t′ ≤ n32α.

For 1 ≤ i ≤ t′, let ki = C(xi) and let x∗i be the shortest description of xi as described
in the Preliminaries. Let β = α+ 3 log n (we assume that α ≤ n− 3 log n, as otherwise the
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statement is trivial). We show that the prefixes of length β of the strings x1, . . . , xt′ are all
distinct, from which we conclude that t′ ≤ 2β = n3 · 2α.

Suppose that there are two strings in the set that have equal prefixes of length β. W.l.o.g.
we can assume that they are x1 and x2. Then

C(x∗1 | x
∗

2) ≤ (k1 − β) + log β + 2 log log β +O(1),

because, given x∗2, x
∗

1 can be constructed from β and the suffix of length k1 − β of x∗1. Note
that

C(x∗1 | x2) ≤ C(x∗1 | x
∗

2) + log k2 + 2 log log k2 +O(1),

because x∗2 can be constructed from x2 and k2. Also note that C(x1 | x2) ≤ C(x∗1 | x2)+O(1).
Thus,

C(x1 | x2) ≤ C(x∗1 | x
∗

2) + log k2 + 2 log log k2 +O(1).

Therefore,

C(x1)− C(x1 | x2) ≥ k1 − (C(x∗1 | x
∗

2) + log k2 + 2 log log k2 +O(1))
≥ k1 − (k1 − β)− log β − 2 log log β − log k2 − 2 log log k2 −O(1)
≥ β − 3 log n = α,

which is a contradiction.

The next result shows that the upper bound in Theorem 4 is relatively tight. It relies
on the well-known Turán’s Theorem in Graph Theory [14], in the form due to Caro (un-
published) and Wei [15] (see [9, page 248]): Let G be a graph with n vertices and let di be
the degree of the i-th vertex. Then G contains an independent set of size at least

∑ 1
di+1 .

Theorem 5. For every natural number n and for every natural number α satisfying
5 log n ≤ α ≤ n, there exists a constant C and t = 1

Cn5 · 2α n-bit strings x1, . . . , xt that are
pairwise α-independent.

Proof. Let β = α−5 log n. Consider the graph G = (V,E), where V = {0, 1}n and (u, v) ∈ E
iff C(u)−C(u | v) ≥ β and C(v)−C(v | u) ≥ β. Note that for every u ∈ {0, 1}n, the degree
of u is bounded by |Au,β| ≤ 2n−β+c, for some constant c. Therefore, by Turán’s theorem,
the graph G contains an independent set I of size at least 2n · 1

2n−β+c+1
≥ 2β−c−1 = 1

Cn5 ·2
α.

For any two elements u, v in I, we have either C(u)−C(u | v) < β or C(v)−C(v | u) < β.
In the second case, by symmetry of information, C(u) − C(u | v) < β + 5 log n = α. It
follows that the strings in I are pairwise α-independent.

5 Mutually independent strings

In this section we show that the size of a mutually α-independent tuple of n-bit strings is
bounded by poly(n)2α.

For u ∈ {0, 1}n, we define Dα(u) = {x ∈ {0, 1}n | u ∈ Ax,α} = {x ∈ {0, 1}n | C(u) −
C(u | x) ≥ α} and dα(u) = |Dα(u)|.

8



Lemma 1. For every natural number n sufficiently large, for every natural number α, and
for every u ∈ {0, 1}n, with C(u) ≥ α+ 12 log n,

1

2n12
2n−α ≤ dα(u) ≤ n5 · 2n−α.

Proof. For every x ∈ Au,α+5 logn,

C(x)− C(x | u) ≥ α+ 5 log n

which by symmetry of information implies

C(u)− C(u | x) ≥ α+ 5 log n− 5 log n = α,

and therefore, u ∈ Ax,α. Thus

dα(u) ≥ |Au,α+5 logn| ≥
1

2n7
2n−α−5 logn =

1

2n12
2n−α.

For every u ∈ {0, 1}n,

x ∈ Du,α ⇒ u ∈ Ax,α

⇒ C(u)− C(u | x) ≥ α
⇒ C(x)− C(x | u) ≥ α− 5 log n
⇒ C(x | u) ≤ n− α+ 5 log n.

Thus, dα(u) ≤ |{x ∈ {0, 1}n | C(x | u) ≤ n− α+ 5 log n}| ≤ n5 · 2n−α.

Since for any string x and natural number α, |Ax,α| ≤ 2n−α−c, for some constant c,
it follows that we need at least T = 2α−c strings x1, . . . , xT to “α-cover” the set of n-bit
strings, in the sense that for each n-bit string y, there exists xi, i ∈ [T ] such that y is
α-dependent with xi. The next theorem shows that poly(n)2α strings are enough to α-cover
the set of n-bit strings.

Theorem 6. For every natural number n sufficiently large, for every natural number α,
there exists a set B ⊆ {0, 1}n of size poly(n)2α such that each string in {0, 1}n is α-
dependent with some string in B, i.e., {0, 1}n =

⋃
x∈B Ax,α. More precisely the size of B is

bounded by (2n13 + n12) · 2α.

Proof. (a) We choose T = 2n132α strings x1, . . . , xT , uniformly at random in {0, 1}n. The
probability that a fix u with C(u) ≥ α+12 log n does not belong to any of the sets Axi,α, for
i ∈ [T ], is at most (1− 1

2n122α
)T < e−n (by Lemma 1). By the union bound, the probability

that there exists u ∈ {0, 1}n with C(u) ≥ α + 12 log n, that does not belong to any of the
sets Axi,α, for i ∈ [T ], is bounded by 2n · e−n < 1. Therefore there are strings x1, . . . , xT in
{0, 1}n such that

⋃
Axi,α contains all the strings u ∈ {0, 1}n having C(u) ≥ α + 12 log n.

By adding to x1, . . . , xT , the strings that have Kolmogorov complexity < α + 12 log n, we
obtain the set B that α-covers the entire {0, 1}n.

To estimate the size of a mutually α-independent tuple of strings, we need the following
lemma.
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Lemma 2. Let α, β ∈ N and let the tuple of n-bit strings (x1, x2, . . . , xk) satisfy
C(x1 . . . xk) ≥ C(x1) + . . . + C(xk)− β. Then there exists a constant d such that

|Ax1,α ∩ . . . ∩Axk,α| ≤ dn7k+5k32n−kα+β.

Proof. Let u ∈ {0, 1}n be a string in Ax1,α ∩ . . . ∩Axk,α. Then C(u)−C(u | xi) ≥ α, for all
i ∈ [k]. Therefore, by symmetry of information, C(xi)−C(xi | u) ≥ α−5 log n, for all i ∈ [k].
It follows that for every i ∈ [k], there exists a string pi of length |pi| ≤ C(xi)− α+ 5 log n
such that, given u, is a descriptor of xi (i.e., U(pi, u) = xi). The strings p1, . . . , pk describe
the string x1x2 . . . xk, given u, and therefore

C(x1x2 . . . xk | u) ≤ |p1|+ . . . + |pk|+ 2 log |p1|+ . . .+ 2 log |pk|+O(1)
≤ C(x1) + . . . +C(xk)− kα+ 5k log n+ 2 log |p1|+ . . .+ 2 log |pk|+O(1)
≤ C(x1) + . . . +C(xk)− kα+ 7k log n+O(1)
≤ C(x1 . . . xk) + β − kα+ 7k log n+O(1).

So,
C(x1 . . . xk)− C(x1 . . . xk | u) ≥ −(β − kα+ 7k log n+O(1)).

By symmetry of information,

C(u)− C(u | x1 . . . xk) ≥ C(x1 . . . xk)− C(x1 . . . xk | u)− 2 logC(u)− 2 logC(x1 . . . xku)
−4 log logC(x1 . . . xku)−O(1).

It follows that

C(u)− C(u | x1 . . . xk) ≥ −(β − kα+ 7k log n)− 5 log n− 3 log k

and thus
C(u | x1 . . . xk) ≤ C(u) + β − kα+ (7k + 5) log n+ 3 log k

≤ n+ β − kα+ (7k + 5) log n+ 3 log k +O(1).

Therefore,

Ax1,α∩. . .∩Axk,α ⊆ {u ∈ {0, 1}n | C(u | x1 . . . xk) ≤ n+β−kα+(7k+5) log n+3 log k+O(1)}.

The conclusion follows.

Finally, we prove the upper bound for the size of a mutually α-independent tuple of
n-bit strings.

Theorem 7. For every sufficiently large natural number n the following holds. Let α be an
integer such that α > 7 log n+6. Let (x1, . . . , xt) be a mutually α-independent tuple of n-bit
strings. Then t ≤ poly(n)2α.

Proof. By Theorem 6, there exists a set B of size at most poly(n)2α+5 logn such that every
n-bit string x is in Ay,α+5 logn, for some y ∈ B. We view {x1, . . . , xt} as a multiset. Let
y be the string in B that achieves the largest size of multiset Ay,α+5 logn ∩ {x1, . . . , xt}
(we take every common element with the multiplicity in {x1, . . . , xt}). Let k be the size of
the above intersection. Clearly, k ≥ t/|B|. We will show that k = poly(n), and, therefore,
t ≤ k · |B| = poly(n) · 2α.
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Without loss of generality suppose Ay,α+5 logn ∩ {x1, . . . , xt} = {x1, . . . , xk} (as multi-
sets). Since, for every i ∈ [k], C(xi)−C(xi | y) ≥ α+5 log n, by symmetry of information, it
follows that C(y)−C(y | xi) ≥ α. Thus y ∈ Ax1,α∩. . .∩Axk,α. In particular, Ax1,α∩. . .∩Axk,α

is not empty. We want to use Lemma 2 but before we need to estimate the difference between
C(x1 . . . xk) and C(x1) + . . . +C(xk).

Claim. C(x1 . . . xk) ≥ C(x1) + . . .+ C(xk)− β, where β = α+ 4 log(nt/2).

Proof of claim. Suppose C(x1 . . . xk) < C(x1) + . . .+ C(xk)− β. Note that

C(x1 . . . xt) ≤ C(x1 . . . xk) + C(xk+1 . . . xt) + 2 logC(x1 . . . xk) +O(1)
≤ C(x1) + . . . C(xk) +C(xk+1 . . . xt)− β + 2 log kn+O(1).

Since C(x1 . . . xt) ≥ C(x1) + . . .+ C(xt)− α, it follows that

C(xk+1) + . . . +C(xt)− α ≤ C(xk+1 . . . xt)− β + 2 log kn+O(1).

On the other hand,

C(xk+1 . . . xt) ≤ C(xk+1) + . . .+ C(xt) + 2 log(t− k)n+O(1).

It follows that
β − α ≤ 2 log kn+ 2 log(t− k)n +O(1).

However, from the definition of β,

β − α = 4 log(nt/2) > 2 log kn+ 2 log(t− k)n+O(1).

The contradiction proves the claim.

Now, by Lemma 2,

|Ax1,α ∩ . . . ∩Axk,α| ≤ dn7k+5k32n−kα+β

= dn7k+5k32n−(k−1)α+4 log t+4 log(n/2)

≤ dn7k+5k325n−(k−1)α+4 log(n/2),

where in the last line we used the fact that t ≤ 2n.
It can be checked that if α > 7 log n+ 6 and k ≥ n, then the above upper bound is less

than 1, which is a contradiction. It follows that k < n.

6 Final remarks

This paper provides tight bounds (within a polynomial factor) for the size of Ax,α (the set
of n-bit strings that have α-dependency with x) and for the size of sets of n-bit strings that
are pairwise α-independent.

The size of a mutually α-independent tuple of n-bit strings is at most poly(n)2α. We do
not know how tight this bound is and leave this issue as an interesting open problem.

We have recently learned about the paper [5], which obtains similar results regarding
the size of sets of pairwise and k-independence strings, for a notion of independence that is
suitable for strings with large Kolmogorov complexity.
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A

Symmetry of Information Theorem

Theorem 8. For any two strings x and y,

(a) C(xy) ≤ C(y) +C(x | y) + 2 logC(y) +O(1).

(b) C(xy) ≥ C(x) + C(y | x)− 2 logC(xy)− 4 log logC(xy)−O(1).

(c) If |x| = |y| = n, C(y)− C(y | x) ≥ C(x)− C(x | y)− 5 log n

Proof (sketch): (a) is easy and (c) follows immediately from (a) and (b). We prove (b).
Let C(xy) = t, A = {(u, v) | C(uv) ≤ t}, Au = {v | C(uv) ≤ t}. Note that |A| < 2t+1. Let
e = ⌊log |Ax|⌋. Let B = {u | |Au| ≥ 2e}. Note that x ∈ B and |B| < |A|/2e < 2t−e+1.

FACT: x can be described by: t, rank in B (which is written on exactly t− e+1 bits so
that e can be also reconstructed), O(1) bits. So C(x) ≤ (t−e+1)+log t+2 log log t+O(1).

FACT: y, given x, can be described by: t, rank in Ax, O(1) bits. So, C(y | x) ≤ e +
log t+ 2 log log t+O(1).

Combining the last two: C(x) ≤ t − (C(y | x) − log t − 2 log log t − O(1)) + log t +
2 log log t + (1) = C(xy) − C(y | x) + 2 log t + 4 log log t + O(1) = C(xy) − C(y | x) +
2 logC(xy) + 4 log logC(xy) +O(1).
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