1304.3307v1 [cs.FL] 11 Apr 2013

arxXiv

Principal ideal languages
and synchronizing automata

Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

Ural Federal University, Ekaterinburg, Russia
vl.gusev@gmail.com, maslennikova.marina@gmail.com,
elena.pribavkina@usu.ru

Abstract. We study ideal languages generated by a single word. We
provide an algorithm to construct a strongly connected synchronizing
automaton for which such a language serves as the language of syn-
chronizing words. Also we present a compact formula to calculate the
syntactic complexity of this language.

Keywords: ideal language, synchronizing automaton, synchronizing word,
strongly connected automaton, syntactic complexity.

1 Introduction

Let & = (Q,X,0) be a deterministic finite automaton (DFA for short), where
Q is the state set, X stands for the input alphabet, and 6 : Q x X — @Q is the
transition function defining an action of the letters in X on Q). The action extends
in a natural way to an action Q X X* — @ of the free monoid X* over X; the
latter action is also denoted by d. When ¢ is clear from the context, we will write
q - w instead of §(g, w) for ¢ € Q and w € X*. In the theory of formal languages
the definition of a DFA usually includes the set F' C @ of terminal states and
an initial state g € Q. We will use this definition when dealing with automata
as devices for recognizing languages. The language L C X* is recognized (or
accepted) by an automaton &7 = (Q, X, 0, F, qo) if L ={w € X* | §(qo,w) € F}.
We also use standard concepts of the theory of formal languages such as regular
language, minimal automaton, etc. [0]

A DFA o = (Q, X, 0) is called synchronizing if there exists a word w € X*
which leaves the automaton in unique state no matter which state in @ it is
started to read: d(q,w) = d(¢',w) for all ¢,¢' € Q. Such word is said to be
synchronizing (or reset) for the DFA 7. This notion has been widely studied
since the work of Jan Cerny [2] in 1964. He conjectured that any synchronizing
DFA with n states possesses a synchronizing word of length at most (n—1)2. This
conjecture is widely open and is considered one of the most longstanding open
problems in the combinatorial theory of finite automata. Various techniques were
developed to approach this conjecture. For more information on synchronizing
automata we refer the reader to the thorough survey by Mikhail Volkov [9]. In
this paper we focus on language theoretic aspects of the Cerny conjecture and
related questions.

http://arxiv.org/abs/1304.3307v1

2 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

Recall that a language L over X' is called ideal if L = X*LX*. By Syn(«/)
we denote the language of all words synchronizing «7. It is easy to see that
Syn(«7) is an ideal language. In what follows we consider only ideal regular
languages. It was observed in [4] that the minimal deterministic automaton <7,
recognizing an ideal regular language L is synchronizing, and Syn(</,) = L.
Interesting question arises: how many states the smallest automaton o/ such
that Syn(«/) = L may have? This question was posed in [4] and the notion of
reset complexity was introduced. The reset complezity rc(L) of an ideal language
L is the minimal possible number of states in a synchronizing automaton .o/
such that Syn(«/) = L. For brevity we will call the corresponding automaton
MSA (minimal synchronizing automaton). The Cerny conjecture can be stated
in terms of reset complexity as follows. Let ¢ be the minimal length of words in

an ideal language L, then r¢(L) > v/£ + 1. Even a lower bound re(L) > g for
some constant C' would be a major breakthrough.

From descriptive complexity point of view it is interesting to compare reset
complexity with the classical state complexity. The state complexity sc(L) of
a regular language L is the number of states in 7. In [4] it was observed
that re(L) < sc(L). Also in [4] it was shown that in some cases rc(L) can be
exponentially smaller than sc(L). In particular, it means that the description
of an ideal language L by means of an automaton <7 for which Syn(«/) = L
can be exponentially more succinct than the “standard” description via minimal
automaton recognizing L. The minimal automaton of an ideal regular language
always has a sink state (a state fixed by all letters), whereas the corresponding
MSA may be strongly connected, which means that for any two states p and
q (p # q) there exists a word mapping p to ¢g. Automata with the sink state
and strongly connected automata are essential for the Cerny conjecture, since it
was shown in [I0] that it is enough to prove this conjecture for each of the two
classes of automata. Thus, we may ask whether it is always possible to construct
a strongly connected synchronizing DFA for which L serves as the language of
synchronizing words.

We begin to approach this question by considering principal ideal languages,
i.e. ideal languages generated by a single word. A principal ideal language is a
partial case of a finitely generated ideal language. The latter languages viewed
as languages of synchronizing words were considered in [7] and [§].

In section 2 we answer the uniqueness question that was posed in [4]. The
question is whether the uniqueness of an MSA takes place within the class of
strongly connected automata. The answer is negative. For the language L =
X*am1hX* there exist two different strongly connected automata with n + 1
states over X = {a,b} yielding the minimum of reset complexity for L.

In section 3 we provide an algorithm to construct a strongly connected syn-
chronizing automaton whose language of synchronizing words is generated by a
single word.

In section 4 we consider some algebraic properties of principal ideal languages.
In particular, we establish the connection between the syntactic semigroup of
such a language and the transition semigroup of a synchronizing automaton

Principal ideal languages and synchronizing automata 3

for which this language serves as the language of reset words. Also, we find a
compact formula for calculating the syntactic complexity of a principal ideal
language.

2 On uniqueness question of an MSA

It is well-known that the minimal automaton 277, recognizing a given language
L is unique up to isomorphism. The same fact does not hold for an MSA, see
[4]. But the question, whether the uniqueness takes place within the class of
strongly connected automata, remained open. Here we answer this question in
the negative.

Consider the language L = X*a"10X* over ¥ = {a,b}. In [4] it was shown
that rc¢(L) = n+ 1. We present two different strongly connected automata with
n+1 states for which L serves as the language of synchronizing words. For clarity
the corresponding automata o7 and % with six states are shown on Fig. [l

Fig. 1. Automata % and %s.

The transition function § of the first DFA o7, is defined as follows:

i+1 if0<i<n, 0 f0<i<
i 1< n,
0(i,a) =<0 if 1 =0, o(i,b) = o)
o 1 ifi=0o0ri=n.
n if i =mn,

Note that 7,1 is strongly connected. Indeed, the states 1,2,...,n appear in a
cycle marked by the word a™~'b, furthermore 0.b =1 and 1.b = 0. Now we need
to check, that the language of words synchronizing the automaton .7, 1 coincides
with Z*a”~1bX*. The standard tool for finding the language of synchronizing
words of a given DFA o/ = (Q, 4, X)) is the power automaton P(<f). Its state
set is the set Q of all nonempty subsets of @), and the transition function is
defined as a natural extension of § on the set Q x X' (the resulting function is
also denoted by 0), namely §(S,a) = {(s,a) | s € S} for S C Q and a € X. The
automaton P(27) recognizes Syn(<7) provided one takes @Q as the initial state and
singletons as final states. It is easy to see, that if all the singletons are identified

4 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

to obtain unique sink state s, the resulting automaton still recognizes Syn (/).
Throughout the paper the term power automaton will refer to this modified
version. The Fig.2lshows the power automaton for the language 7,1 (for clarity
only reachable from @Q subsets are shown). From the structure of P(7,41) it is
easy to see that the language of synchronizing words of the automaton 7,1
coincides with L.

Next we consider the DFA %, 1 with n + 1 = 2k and transition function &
defined by the rule

5(2',@):{”1 if0<i<n, Mb):{o if i is odd and i # n,

n—1 ifi=n, 1 if i is even or i = n.

We verify that %,41 is strongly connected. Indeed, the states 1,2,..., n appear
in a cycle marked by the word @™~ !'b, furthermore 0.a = 1 and 1.b = 0. It is
easily seen that, for any odd n, %,+1 and 7,1 are not isomorphic. For the
power automaton P(%ay) see the left side of Fig. Bl (again, only reachable from
Q@ subsets are shown). It remains to construct a series of strongly connected

Fig. 2. The power automaton P (%, 1)

automata A, with n +1 = 2k + 1. The transition function ¢ is defined as
follows:
5(6.0) = {i—i—l ifl<i<mnori=0,

5(i,b) =

0 ifi=1o0ri=n, 2 ifi=0o0r¢=1.

{0 if1<i<n,

The states 2,3,...,n, 0 form a cycle marked by the word a” 'b, furthermore
0.a=1and 1.a =0. It is easily seen that, for any even n, %,,+1 and 7,1 are
not isomorphic. The power automaton P(Haxt1) consisting only of reachable
from @ subsets is on the right side of Fig. Bl From the structure of the power
automaton for 4,41 it easily follows that its set of synchronizing words coincides
with L.

Principal ideal languages and synchronizing automata 5

Fig. 3. The power automata P(%Bai) and P(PBak+1)

3 Algorithm

3.1 Formal description

In this section we provide an algorithm to construct a strongly connected syn-
chronizing automaton whose language of synchronizing words is generated by a
single word w. The minimal automaton recognizing this language is denoted by
. The main idea of the construction is the following. We try to construct a
strongly connected automaton such that in its pair automaton there is a subau-
tomaton isomorphic to «7,. Our algorithm can be applied in case of an arbitrary
alphabet, but for clarity we explain it only in binary case.

Recall, that the pair automaton of a given DFA & = (Q, X, ¢) is the sub-
automaton P2 (&7) of the power automaton P (<) consisting only of 2-element
subsets of @) and the sink state s.

Fix a word w over X = {a,b}. Let |w| = n. Without loss of generality
suppose that the first letter of w is a. Denote the i-th letter of w by w[i] and
the prefix w[l]w[2]...w[i] by w[l..i]. For any letter = € {a,b} by T we denote its
complementary letter, i.e. @ = b, and b = a. Let us remind the construction of

b a,b
a wl2] N w[3]

Fig. 4. The minimal DFA 7,.

6 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

the minimal automaton recognizing the language X*wX™. It is well-known that
this automaton has n + 1 states. We enumerate the states of this automaton by
the prefixes of the word w so that the state w[l..i] maps to the state w[l..i 4 1]
under the action of the letter w[i + 1] for all 4, 0 < ¢ < n. The other letter
w(i + 1] maps the state w[1..7] to the state p such that p is the maximal prefix of
w that appears in the word w[l..i + 1] as a suffix. The state w is the sink state.
The initial state is € and the unique final state is w, see Figl] (the transitions
labeled by complementary letters wli] are not shown).

The algorithm constructing a required strongly connected synchronizing au-
tomaton £ with the state set @ = {0,1,...,n} proceeds inductively. On the
first step we put @ = {0, 1,2} and define the action of letters on the states 0
and 1. On the i*® step (1 < i < n) we add new state i + 1 to and define the
transition function on the state i. On the last, n*® step we define the transition
function on the state n. Transitions on each step are defined in such a way, that
after the i*® step of the algorithm (1 <4 < n) the current pair automaton has a
subautomaton isomorphic to the part of the minimal automaton <7, consisting
of the states g, w[1],...,w[l..4].

Consider the first step of the algorithm. We need to associate the states e
and w(l] of <, with 2-element subsets {p;,¢;} of @ = {0,1,2}. Without loss
of generality we associate the state ¢ with the subset {0,1}, and the state w[1]
with the subset {1,2}. In the automaton 7, the state ¢ is fixed by b and maps
to w[l] under the action of a. Define in % the transition function on 0 and 1
in such a way that the subset {0,1} in Z is fixed under the action of b, and
maps to the subset {1,2} under the action of a. We have four different ways
to do so (see Fighl). It is easy to see that in fact the second case is impossible
a,b

Fig. 5. Possible transitions from 0 and 1 in the automaton %.

since the DFA £ will not be strongly connected, not even during the rest of
the construction. For certainty consider the first variant, so 0.a =2, 0.b = 1,
l.a=1,and 1.6=0.

Let us describe the i*" step of the algorithm. We have Q = {0,1,...,3}.
For convenience we represent the subsets {p;,q;} # {0,1} of @ as ordered pairs
(pi,qi) with p; > g;, and the subset {0,1} as pair (0,1). On previous steps the
states e, w[1], ..., w[l..i—1] of <%, were associated with the pairs (po, qo), (p1,¢1),
ooy (Pic1,Gi—1) in Pl (#) in such a way that po = 0,p1 = 2,p2 =3,...,pi-1 =1
and the transition function on the states 0,1, ...,4 — 1 was defined (see the dash-

Principal ideal languages and synchronizing automata 7

dotted part on Fig. [B). We add the state i + 1 to Q. Next we associate the state
w[l..1] of o7, with the pair (i+1, ¢;), where ¢; = ¢;—1 . w[i], and put i . w[i] = i+1.

It remains to define the transition 7. w(i]. Let w[l..j] = w[l..i — 1] .w[i], and let
(p;,q;) be the associated pair of states in P[?/(%). In the correctness section we

will show that one of the equalities holds: either ¢;_1 . w[i] = g; or ¢;—1 . w[i] = p;.

If ¢;—1 . w[i] = g;, then we put i.w[i] = p;, otherwise, i.w[i] = ¢;. The i*" step
is illustrated on Fig. [6l The left part of the picture corresponds to the current
pair automaton (only states currently associated to the states of <7, are shown),
the right part is the corresponding subautomaton of «7%,. The correspondence
between states of .7, and those of pair automaton is shown in dashed lines. The
transitions defined on this step are shown in thick lines.

Fig. 6. Step i: Current pair automaton, and the corresponding part of 7.

On the last n'" step we map the state n of Z to the state g, . w[n] under
the action of the letter w[n| in order to associate the state w of <%, with the
sink state s of P2/(#). The action of the letter w[n] is defined as before.

Obviously the language consisting of words synchronizing the subset {0, 1}
coincides with X *wX*. Since the set of words synchronizing the whole automaton

8 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

A is contained in the set of words synchronizing any of its subsets, we have
Syn(#) C X*wX*. Let us show that the word w synchronizes %. Let 0.w =
1.w =m € Q. We proceed inductively. Assume that for any 0 < k < i we have
k.w = m. Let us show that ¢ .w = m. The state ¢ belongs to the pair (¢, g) in the
subautomaton of P1?/(28) isomorphic to .#%,. Thus, the pair (i, q) is synchronized
by the word w. Since ¢ < ¢, by induction hypothesis we have ¢ .w = m, therefore
i.w = m. Finally, we have n.w = m, so w € Syn(%#). Hence X*wX* C Syn(A).

FEzxample 1. We apply our algorithm to the word aabab. First, build the minimal
automaton recognizing X*aababX* (see Fig. [[). Next we show in details the

Fig. 9. Strongly connected synchronizing automaton % with Syn(#) = X*aababX™.

construction of the DFA £.
Step 1. We have @ ={0,1,2},and 0.a =2,0.b=1,1.a=1,and 1.0 =0.

Principal ideal languages and synchronizing automata 9

Step 2. Add state 3 to @ and put 2.a = 3. Associate the state aa of <, with
the pair (3,¢2), where g0 = 1.a = 1. To define 2.b we see that the condition
{1,2}.b = {0,1} must be satisfied. Since 1.5 =0, we put 2.b = 1.

Step 8. Add state 4 to @ and put 3.b = 4. Associate the state aab of <7, with
the pair (4, ¢3), where g3 = 1.b = 0. To define 3.a we see that the condition
{1,3}.a = {1, 3} must be satisfied. Since 1.a =1, we put 3.a = 3.

Step 4. Add state 5 to @ and put 4.a = 5. Associate the state aaba of %, with
the pair (5,q4), where g4 = 0.a = 2. To define 4.b we see that the condition
{0,4} .b = {0,1} must be satisfied. Since 0.b =1, we put 4.5 =0.

Step 5. This is the last step of the algorithm. We do not add any new states, only
define the transition function on the state 5. We put 5.6 =2.b =1 in order to
have the pair (5,2) associated with the sink state of the pair automaton. Since
the condition {2,5}.a = {1, 3} must be satisfied, and 2.a = 3, we put 5.a = 1.
The resulting pairs associated with the states of 7, are shown on Figl8 The
corresponding strongly connected DFA £ is shown on Fig.

3.2 Correctness

Now we prove the correctness of the algorithm. The proof consists of two stages.
First we verify that there will be no conflict while defining the action of letters
on the states of #. Next we show that the resulting automaton 4% is strongly
connected.

Stage 1. Consider the word a”. Construct the DFA % using the algorithm.
Its transition function is defined as follows:

i+1 il <i<n o X
, o . . 1 ifi=0o0rl<i<mn;
dz(i,a) = {1 ifi=1ori=n; dz(i,b) = o
e 0 ifi=1.
2 if 1 =0.

Obviously, the automaton is strongly connected and all assignments are correct.
Thus we assume that the word w contains b, i.e. w = a*bv, v € X*. We need to
show that on i*" step of the algorithm either ¢;_, w—[z] = pj Or gj—1 w—[z] = gj,
where (p;,q;) is the pair associated with the prefix w][1..j] of w. Since w = a*bv,
the states w[1], w[1..2], ..., w[l..k —1] in &7, are mapped under the action of b to
e. By the construction of Z the state ¢ is associated with the pair (0, 1). Thus,
the letter b maps the states pg,p1,...,pk—1 to 0 or 1. Since the state 1 is fixed
by the letter a, we have that g9 = 1, g1 = 1,...,qx = 1. Since the letter b maps
the state 1 to 0, we have g;+1 = 0. Note that py—1 is equal to the length of the
prefix w[1..4] of w. If v and w have common non-empty prefix, then gx12 = 2,
qr+3 = 3, etc. So the sequence of ¢’s consists of blocks of 1’s and possibly blocks
0,2, 3... corresponding to the length of some prefix. Let u be the maximal suffix
of the word w[1..i — 1] which appears in this word as a prefix. Then in the pair
(pi—1,Gi—1) the state ¢;—; is either Plu| OF Gjy- It is clear that in o, the state

|u| under the action of w[i] maps to j. Thus we can define the action of w[i] on
the state p; 1 to make the pair (p;_1,¢;—1) map to (p;, g;). Indeed, if g1 = pjy
then p; 1 . wl[i] = gy - w[i], otherwise put p; 1 . w[i] = py Lwli].

10 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

Stage 2. Now we prove that the resulting automaton % is strongly con-
nected. Denote by 27, the minimal automaton <, after deleting the sink state.
Let us assume first that &7 is strongly connected. Let ¢ be an arbitrary state
in the automaton Z. By assumption there is a path in PI?/(2) from the pair
(i,qi—1) (associated with some state in «7,) to the pair (0,1) (associated with
the state €). Hence, either 0 or 1 is reachable from the state . In fact both states
0 and 1 are reachable from ¢, since 0.b = 1 and 1.b = 0. By the construction
the pair (7, ¢;—1) is reachable from the pair (0, 1), so the state 4 is reachable both
from 0 and 1 in #. Thus, in this case the automaton 4 is strongly connected.

Let us prove that if w ¢ {a"~'b,ab™ '}, then the automaton &7/, is strongly
connected. Consider an arbitrary state w[l..i] of &7,. This state is obviously
reachable from the state e. We show that the state ¢ is reachable from wl[l..].
Let w(l..5] = w[l..i].c"l, where ¢ = w[i + 1]. The state w[l..j] is a maximal
prefix of w of the form c*. If ¢ = b, then w|[1..j] = ¢, so we are done. Suppose
¢ = a. Apply b to the state w|[1..j] (this is possible, since w # a™~'b). Next
we apply w[j + 2]. If w[j+2] = b, then w[l..j].bb = e. If w[j + 2] = a, then
w[l..5].bab = € (since w # ab™~1). So in both cases the state ¢ is reachable from
w(l..4].

It remains to apply the algorithm to w = a” b and w = ab™ ! to make sure
that the resulting automata in this case are also strongly connected. Indeed, in
case w = a"~'b the transitions of the automaton % are defined as follows:

it+1 ifl<i<n,
dz(iya) =< ifi =1if i = n, 5@(i,b)={
2 ifi =0,

1 ifi=0ifl <i<n,
0 ifi=1ifi=n.

The states 0,2, ..., n form a cycle marked by the word ™~ !b, furthermore 0.5 =
1 and 1.6 = 0. Thus, £ is strongly connected.
In case w = ab™ ! the algorithm constructs the following DFA %:

. 1 if0<i<nisodd, . i+1 f0<i<mn,i#l,
dz(i,a) = . . . 0(i,b) = .
2 if 0 <i<niseven, 0 ifi =1,
0 ifn is even
1) ,b) = ’
#(n,0) {1 if n is odd.
If n is even, then the states 0,2,...,n form a cycle marked by the word ab™ !,

if n is odd, then then the states 0,2,...,n,1 form a cycle marked by the word
ab™. Thus, £ is strongly connected.

4 On syntactic semigroup of a principal ideal language

In the previous section for each word w of length n we constructed a strongly
connected synchronizing DFA % with n+ 1 states such that Syn(%#) = Y*wX™*.
Is it possible to construct such a DFA with less than n + 1 states? In [] it

Principal ideal languages and synchronizing automata 11

was shown that for the case w € {a",b", a" b} we have rc(Ly,) = n + 1,
where L,, = X*wX* and |w| = n. But in general this question remains open.
Nevertheless computer experiments show that the answer seems to be negative,
i.e. the minimal in terms of reset complexity strongly connected synchronizing
DFA has n + 1 states. Another observation concerns the structure of that DFA.
Even for a word w of length 3 there may be several non-isomorphic strongly
connected synchronizing automata yielding the minimum of reset complexity.
But, as experiments show, the transition semigroups of all these automata have
the same algebraic structure. In this regard it is interesting to study the structure
of the transition semigroup of a synchronizing automaton for which given ideal
language serves as the language of synchronizing words.

For an ideal language L C X* the Myhill conguence [5] =, of L is defined as
follows:

u =~y if and only if zuy € L < xvy € L for all z,y € X*.

This congruence is also known as the syntactic congruence of L. The quotient
semigroup X1/ a1, of the relation =, is called the syntactic semigroup of L.

Proposition 1. Let L be an ideal language, S the syntactic semigroup of L and
S(PB) the transition semigroup of a synchronizing DFA % for which L serves as
the language of synchronizing words. Then S is a homomorphic image of S(4).

Proof. Take an arbitrary word x € X*. Let [z] be the class of z in S, and {z} the
class of z in S(B). Define the map f : S(B) — S by the rule f({z}) = [z]. Check
that f is a homomorphism. First, we check the correctness of defining f. Consider
two words u and v from the same class in S(B), it means that {u} = {v}. Show
that in this case [u] = [v]. We need to check that for any z,y € X* from zuy € L
it follows that xvy € L. By conditions of the proposition L = Syn(B). Since
{u} = {v}, then u and v generate the same transformations in the transition
semigroup of B. But then either both zuy and zvy synchronize B, or both do
not synchronize. Hence [u] = [v]. And finally, f({u}{v}) = f({uv}) = [uv] =
[u][v] = f({u})f({v}). This completes the proof. O

Note that this proposition holds for every regular ideal language L. It means
that if the transition semigroup of any DFA Z such that Syn(#) = L possesses
some algebraic property which is preserved under homomorphisms, then also the
syntactic semigroup of L must possess this property. Thereby it is interesting to
study the structure of the syntactic semigroup of an ideal language. The syn-
tactic complezity o(L) of a regular language L is the cardinality of its syntactic
semigroup. The notion of syntactic complexity is studied quite extensively: for
surveys of this topic and lists of references we refer the reader to [IL3]. In [I] it
was conjectured that in case of ideal languages o(L) < n"~2 + (n — 2)2" "2 + 1,
where n is the state complexity of L. Also in [I] it was shown that there exists
an ideal language of syntactic complexity n”~2 + (n — 2)2"~2 + 1. We consider
partial case of principal ideal languages. Recall that w € X is an inner factor of
w if there exist words ¢, s € Xt such that w = tus. Denote by N (w) the number
of different inner factors of w. We prove the following

12 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

Theorem 1. Let w ¢ {a" 1b,ab" ' ba™ 1, 0" ta} and L = X*wX*, where
|w| =n. Then o(L) = n? + 1+ N(w).

Proof. Build the minimal automaton @77, recognizing L. We refer to words u €
X* as pairs (s,p), where s is the maximal suffix of w that appears in u as a
prefix, and p is the maximal prefix of w that is also a suffix of u. For instance,
consider the word w = aabab. For the word u = abbaba the corresponding pair
is (ab,a). Assume that s # w and p # w.

First we show that the words corresponding to different pairs (s1,p1) and
(s2,p2) define different transformations of the DFA o7, Indeed, if p; # po, then
the first (initial) state of &7 is mapped by this prefixes into different states (p;
and po respectively). Thus, the corresponding transformations act differently on
the first state. If s1 # s, then without loss of generality assume that|s;| < |sa].
In this case there exists a prefix-state, which so maps to the terminal state, and
s1 does not. Thus, again the corresponding transformations act differently on this
state. If in pairs (s1,p1) and (s2,p2) we have that s; = so = w or p; = p2 = w,
then all words corresponding to such pairs generate the same transformation,
since w € Syn(<7).

We construct for each pair (s,p) (s or p also can be empty words) a word
in the syntactic semigroup which differs from w. Take the suffix s, append to
it 2 - |w| — |s| times the letter, different from the last letter of s. Denote this
letter by . If s = ¢, then T is chosen to be different from the last letter of w.
Further we append 2 - |w| — |p| times the letter, different from the first letter
of w. Denote this letter by 7, then complete the word by adding p to the end.
By the construction s is the maximal suffix of w that appears in u as a prefix,
and p is the maximal prefix of w, which is also a suffix of u. However, it could
happen that after adding blocks of T and 7 the word w appeared in w. It would
be only in the case when w = Z'§™ for some ,m > 1. Assume that [,m > 1,
because w ¢ {a" b, ab""t, ba" "1, b""Lla}. For such a word w we construct u
as follows. First append the letter T as above. Then add the word yz, and then
carry on the construction as described above. The word w is not a factor of the
constructed word u. So if w ¢ {a”~1b, ab”~ !, ba" "1, b""la}, then the syntactic
semigroup of L consists of at least n2 + 1 elements.

If words u referred to the pair (s, p) have length at least 4n, then these words
define the same transformation of @7;. Otherwise, applying the word u to some
state ¢ we may obtain another prefix ¢:

This situation occurs only when w is an inner factor of w. So we need to add in
the transition semigroup all inner factors of w.
And finally the whole word w always belongs to the transition semigroup. 0O

Note that for the word a™ b it is impossible to construct words correspond-
ing to pairs of the form (g, p) or (b, p), where p is a prefix w. In this case T = a,

Principal ideal languages and synchronizing automata 13

7 = b. And the word u constructed by the algorithm from the Theorem con-
tains w as a factor. Hence we need to find the words corresponding to the pairs
of this form separately. There is no word in the transition semigroup corre-
sponding to the pair (g,). Pairs (g, p) can be associated with the corresponding
prefixes p, and pairs (b, p) with the word bp. All factors of the word has al-
ready been considered, because they coincide with prefixes and suffixes. Finally,
o(L)=14+n%?—-2n+2n—-1=n2

Analogously, the same result holds for words ab™” !, " 'a, and ba™'. The
number of all different inner factors is estimated as N (w) < w;nd) And we
have the following estimation: n? < o(L) < 1.5n2 + o(n?). In particular, lower
bound is tight. Moreover, the equality o(L) = n? holds only for words a™~!b,
ab”~ ! and " la, ba™ 1.

The upper bound of the value o(L) is 1.5n? +0(n?). Next we give an example
of the language L,, = X*wX* for which the equality o(L,,) = 1.5n%+0(n?) takes
place.

Proposition 2. There exists a word w of length |w| = n > 21 for which
o(Ly) = 1.5n% + o(n?).

Proof. We prove the Proposition in a constructive way. Take the word w =
ab?a®b*---a*71oF ie.m = 14+2+ .-+ k for even k > 4. Count N(w), the
number of all different inner factors v of the word w. Denote by m the maximal
power of b that appears in v, i.e. v = tb™r.

If m =0, then v does not contain b, there are k — 1 such factors.

If m =1, then we have three cases:

v=>ba! (0<I<k—1);

v=ab(1<I<k—1);

v = ba'b (I is odd from 3 to k — 1).

There are k +k — 1 + % = %k — 2 such factors.

If m = 2, then we have three cases:

v=>b%' (0<I<k-1);

v=ab? (1<I1<k-1);

v = b2%alb, or v = ba'b?, or v = b2a'b? (I is odd from 3 to k — 1).

There are k +k — 1+ 3% = %k — 4 such factors.

If m =k — 1, then v = tb*~!, where 0 < |t| < n — k — 1. There are n — k such
factors.

Consider the case of odd m. Let 2 < m < k— 1. We have the following cases:

v=tb" 0 < [t| <2434 4 m = Ctmlm-l,

v=b"a, 1 <1<k-—1;

v=b"adb", 1<r<m,m+2<I1<k-—1,1is odd;

v=adb", m+1<Ii<k-1,

v=>0"ab", 1<r<m-1,m+2<I1<k-1,1is odd.

There are W—i—k—l—i—%m—i—k—l—m—i—%(m—l) such
factors.

Consider the case of even m. Let 2 < m < k — 1. The following cases are
possible:

14 Vladimir V. Gusev, Marina I. Maslennikova, Elena V. Pribavkina

V=t 0 < [t <243+ +m— 1= Lmm=2),
u:bmal,lglgk—l;
Uzbmale,1§r§m,m+1§l§k—1,lisodd;

v=ab", m<Ii<k-1,

v=badb™ 1<r<m-1,m+1<I1<k—1,1is odd;
Uztbmal,1§|t|§2+3+---+m—1:wand1§l§m+1;

v:tbmaerle,1§|t|§2+3+-~-+m—1:7(1+m)2(m72) and 1 <r <m.

There are W+k—l+’“‘7mm+k—m+k_7m(m—l)+%2(m_2)(m—
1)+ w such factors.
Finally, the total number of all different inner factors is equal to

5 7
N(w)=k—1+k=2+ck—d+n—k+ > 5
m=3,m is odd
k—m—1 k—m—1
#m-}—k—l—m—f—#(m—l))—i—

k—3
+1
th—1+4

= m(m — 1) k—m k—m
+ Z f—i-k—l—i-Tm—i—k—m—i-T(m—l)-i-

m=4, m is even

+(m+1)2(m—2) m(m+1)(m —2)

5 (m—1)+ 5) =n+6k— T+
k—3
mim—1) k—m
2m—1)+2k—m —1
—l—mz_3< 5 +) (2m —1) + m)—l—
N1(k)

Ns (k) N3(k)

Count the values Ni(k), Na(k), N3(k). It is easy to find Na(k) = —1 - &2 =
—E22 Then using formula 2% +43 + -+ + (2n)® = 2n?(n + 1) and 2% + 4% +

+ (2n)? obtain N3(k) = % L % + Lk + 1. Finally, using the formula
124224 4n? = In?+ In+ In, find Ny (k) = %S—I—]%f — 108k +9. Generalizing
all results obtain o(L) = n? + 14 n + 6k — 7+ Ni(k) + Na(k) + N3(k) =
n2+n+%—k—3+%k2—%+5. Note that n =1+2+--- 4+ k = @ Then
o(L) = %nz + A%n — kn — 3k + 5, where k is a positive root of the equation
k> +k—2n=0.

Let n > 21 can not be decomposed into a sum n = 142+ - -+k for some even
k. Find the number k, such that 1+2+4---+k <n <1+42+.--4+k+1. Consider
the word w = ab?a®...b*a!, where I = n— #k Otherwise, 1 +2+---+k+1<
n<1+24---+k+2, then construct the word w = ab®a®...b*a*+1b", where
r=n-— %(k +1). Using analogous arguments one may verify that the equality
o(L) = 1.5n? + o(n?) holds. O

Principal ideal languages and synchronizing automata 15

The previous theorem provides rather simple formula to calculate the syntac-

tic complexity of a principal ideal language. Indeed, we do not need to construct
the minimal automaton of the language and then analyze its transition semi-
group for an arbitrary w. We just need to count all different inner factors of w
and it can be done in time O(n?) in a trivial way.

Acknowledgement. The authors acknowledge support from the Presiden-

tial Programm for young researchers, grant MK-266.2012.1.

References

10.

. Brzozowski J., Ye Y.Syntactic Complexity of Ideal and Closed Languages. In G.

Mauri, A. Leporati (Eds.) Proc. DLT 2011, Lect. Notes Comp. Sci. Vol. 6795,
Springer-Verlag Berlin-Heidelberg 2011. P. 117-128.

J. Cerny. Pozndmka k homogénnym eksperimentom s koneénymi automatami.,
Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14 (1964) 208-216.

. Holzer, M., Konig, B.: On deterministic finite automata and syntactic monoid size.

Theoret. Comput. Sci. 327 (2004) P. 319-347

Maslennikova M.I. Reset Complexity of Ideal Languages. In M. Bielikova, G.
Friedrich, G. Gottlob, S. Katzenbeisser, R. Spanek, G. Turdn (eds.) Int. Conf.
SOFSEM 2012, Proc. Volume II, Institute of Computer Science Academy of Sci-
ences of the Czech Republic, 2012, P. 33-44.

Myhill, J.: Finite automata and representation of events. Wright Air Development
Center Technical Report, 57624 (1957)

D. Perrin Finite automata. Handbook of Theoretical computer Science, J. van
Leewen, (ed.), Elsevier, B., P. 1-57, 1990.

E. Pribavkina, E. Rodaro. Synchronizing automata with finitely many minimal
synchronizing words// Inf. and Comput. V.209(3), 2011. P.568-579.

E. Pribavkina, E. Rodaro. Recognizing synchronizing automata with finitely many
minimal synchronizing words is PSPACE-complete// B. Lowe, D. Normann, I.
Soskov, A. Soskova (Eds.) Proc. CiE 2011, Lect. Notes Comp. Sci. Vol. 6735,
Springer-Verlag Berlin-Heidelberg 2011. P. 230-238.

M. V. Volkov. Synchronizing automata and the Cerny conjecture, in C.Martin-
Vide, F.Otto, H.Fernau (eds.), Languages and Automata: Theory and Applica-
tions. LATA 2008. Lect. Notes Comp. Sci. 5196, Berlin, Springer (2008) 11-27.
M. V. Volkov Synchronizing automata preserving a chain of partial orders// In
J. Holub and J. Zdérek (eds.) Implementation and Application of Automata.
Proc. 12th Int. Conf. CTAA 2007, Lect. Notes Comp. Sci., Springer-Verlag, Berlin-
Heidelberg-New York. 2007. V.4783. P.27-37.

	Principal ideal languages and synchronizing automata

