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Abstract

We investigate exact indexing for high dimensiohahorms based on the 1-Lipschitz property
and projection operators. The orthogonal projection thtisfes the 1-Lipschitz property for tig

norm is described. The adaptive projection defined by thiedfiiscipal component is introduced.
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1 Introduction

While there are relatively efficient approximate simikardiearch algorithms, it is widely supposed that
the exact search suffers from dimensionality! [11]. Thu$sisg the problem in the most general case
for an arbitrary dataset is impossible. We investigate eixaexing for a vector spadé and a distance

functiond. Exact indexing is based on exact similarity search, andata points are lost during range

gueries. For a range query vectofrom a collection ofs vectors,
X17X27X37 T 7XS
all vectorsx; that ares-similar according to the distance functidrare searched

d(xi,y) <. 1)
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In approximate indexing, the data points that may be losbasedistances are distorted. Approximate
indexing [8], [7] seems to be in some sense free from the afrdenensionality,[11]. Distance-based
exact indexing is based on the 1-Lipschitz propérty [11]. &pping functionF () maps two vectors
andy into a lower dimensional space, whetés a metric in the original space adgkgre iS @ metric in

the feature space that satisfies the 1-Lipschitz property

dreature(F (X),F(y)) < d(x,y). 2

This equation is also known as the lower bounding postuBiiltg4]. Using the 1-Lipschitz property, a
bound that is valid in both spaces can be determined. Thendistfrom similar vectors to a query vector
y is smaller or equal in the original space and, consequéstiynaller or equal in the lower dimensional
space as well. During the computation, all the points belmktound are discarded. In the second step,
the wrong candidates are filtered by comparisons in ther@igpace. The application of the 1-Lipschitz
property as used in metric trees and pivot tables does ralvveethe curse of dimensionality, as shown in
[1Q]. For high-dimensional spaces, the functions that dbeyl-Lipschitz property discard fewer points
as the number of dimensions grows|[10]. The number of poistsacded drops as fast as the number of
dimensions grows. As stated in11], every 1-Lipschitz fiorc concentrates sharply near its mean (or
median) value, which results from the fact that a sphere witlonstant radius increases exponentially
with growing dimensions. A linear radial increase leadsrt@aponential increase of points inside the
sphere|[[2], [[11], which leads to a degradation of the meth@e&rformance. This situation leads to
the “curse of dimensionality”, which states that for an eéxagarest neighbor, any algorithm for high
dimensiond andn objects must either use af-dimension space or have a query timaofd [2], [11].
However, [12],[[13], and [14] show how the recursive apglmaof the 1-Lipschitz property can be
used to overcome the curse of dimensionality for certaiesa$ points equally distributed by subspace
trees. A high-dimensional space is divided into low-dimenal sub-spaces [12], [13]. In the low-
dimensional sub-spaces, 1-Lipschitz functions can beessfally applied. The main contributions of

this paper are as follows:

e Introduction of a new adaptive projection. The optimal potion is not fixed by orthogonal

projection but learned.

e Extension of the technique beyond the Euclidean ndgn (Many applications rely on thig



norm. It is shown thalt; norm gives better results thémnorm.
o Simplification of the mathematical framework.
The paper is organized as follows:
e We review the projection operators.
e We introduce the adaptive projection and th@orm dependency.
e The adaptive projection and thenorm dependency are integrated into the subspace tree.

e We empirically compare the adaptive projection with théhogonal mapping. We empirically

compare théy, I, 14 andl, norms.

2 Projection Operators

Ideally, the mapping functiofr () should preserve the exact distances [5], [4]. An examplaioh &
function for real vectors is a norm preserving linear opmar&. Such an operator can be represented
by an orthogonal matrix witlQ" = Q! performing a rotation or a reflection. An example of such an
operator is the Karhunen-Loéve transform, which rotatescoordinate system in such a way that the
new covariance matrix will be diagonal, resulting in eacmelsion being uncorrelated. A mapping
that reduces the dimensionality of a vector space can begepted by a projection operator in a Hilbert
space, which extends the two or three dimensional Euclidpane to spaces with any finite or infinite

number of dimensions. In such a space, the Euclidean nomdigéd by the inner product

[IX[] = v/ {x[x)- ®3)

If W is a subspace df, then the orthogonal complement\Wfis also a subspace ®f The orthogonal

complemenW- is the set of vectors
W ={yeV|(ylx)=0 xeV} (4)

and

V=WoW, (5)



Each vectox € V can be represented as= xy + Xy With xv € W andx,,. € W-. The mapping
P-x = xw is an orthogonal projection. Such a projection is alwaysedr transformation and can be
represented by a projection matix The matrix is self-adjoint witl® = P2. An orthogonal projection

can never increase a norm
IP-X[1 = [xw 1 < [xw 1+ X 12 =[x+ 12 = [1x]% (6)

Using the triangle inequality

Xyl < lIx]I+llyll @)
setting
X[ = {ly + (x=y)I < [lyll +[Ix=yIl @)
the tighten triangle inequality
Xl =1yl < [[x=ylI- )

follows. From the fact that the orthogonal projection camandncrease the norm and the tightened

triangle inequality, any orthogonal projection operatas the 1-Lipschitz property
[P-X|[ = [IP-y[[[ < [[P-x=P-y[|=[|P- (x=y)[ < [[x =Yl (10)

It follows that any projection satisfies the 1-Lipschitz peoty, which means that the lower bounding
postulate [[5][[4] and any orthogonal projection are satikfi For example, the “Quadratic Distance
Bounding” theorem is satisfied![5]. There is no the need foroaentomplicated proof based upon the

unconstrained minimization problem using Lagrange miigtip [5].

2.1 Projection onto one-dimensional subspace

For ||p|| =1, p-p" is an orthogonal projection onto a one-dimensional spacergéed byp. For

p:<%%\%> (12)

example for the vector



the orthogonal projection froR" onto one-dimensional spaé&as

Sl Sl
Sl Sl
= Sl Sl

Sl
Sl
Sl

For f < northogonal subspaces

R'=E1¢E,&...BE¢ (13)

of the vector spac®" we can define a projectioR : R" — Rf as a sum off projections onto one
dimensional space

P=p;-p; +Po-P2...+P;-PT (14)

with p; - p;’ : Ej — Rand||p;|| = 1. The 1-Lipschitz property of the projection from the siudsgE; the

one dimensional spadris

Ipi- P X[ = lIpi - -yl | < [lIx] = [IYlIl < lIx=yI- (15)

The projectionP, represented by Equatién]14, should distort the distanesgeen the vector spa¢®
andR' as little as possible. As a consequence, the distortionaftin subspack; should be minimized.
Because of the 1-Lipschitz property for the one-dimendispace, according to the Equation 15, we
need to minimize the distance in the one-dimensional spateeen the length of the vector and the
length of its projected counterpart

s - P Xl =[x (16)

Suppose the dimensionality of the subspBcis m. We define the vectaa as

a=p;-p; ‘X 17)

It follows that

a=ym-a=|al=|p-pl x| (18)



and with

a= (a1, 3, .8, -, an). (19)

With a being the length of the projected vector we preform the Valhg operation

min{|a— [|x]|[}. (20)

From the tighten triangle inequality, it follows that

minfa— [|x||} < min{fla—x]|} (21)

according to the Euclidean distance function. To minimize Euclidean metrigla— x||, how do we

choose the value af [14]? It follows that

rr)]in <\/(x1—a)2+(x2—a)2+...+(xm—a)2> (22)
_9dxd) _ m-a—(3i%:%)
0= %0 L (23)

JmaZ3m R 2. (31 x)
with the solution

_ PRI
a= e (24)

which is the mean value of the vectorlt follows

m
i—1 Xi
a= m'GZ\/ﬁ]'z'Tl:Hpi'piT‘XH (25)



with the corresponding projection matiix

3= 3=
- 3l 3l
Sl 3l

R=p-pi =] " I (26)

3l
=1
3l

R is generated by the normalised vegbor

which indicates the direction of the-secting line, which is a continuous map from a one-dimaraio

space to am-dimensional space given by

X1 = X1
Xo = X1
X3 =X] - (28)

Form= 2, this equation is the hisecting line wixh = x, or, represented as a curve,

X1 =X1
(29)
Xo = X1
which, for uncorrelated datg, is the best projection onto one dimension, as indicatedxt section.

The projection can be computed efficiently without needirajrir operations as the mean value of the

vector multiplied with the square root of its dimensionalit

1 1 1
m m m m X1
m
m 2i=1Xi 1 1 1
m.x Xo
J/m- Zlml — ™ — L Y . (30)
—1% 1 1 1
Im m m Xm




A projectionP : R" — R' given the decomposition intb orthogonal spaces according to Equafioh 13 is
composed of a sum df projections onto a one-dimensional space. Each projediarprojection on
anm-secting line withR, : R — R. The method works with the space split in any way. For sinitglic
we assume that the-dimensional space is split intb equal-dimensional subspaces. In this case, the
projections are efficiently computed as the mean value dfi sab-vector. The corresponding mean
values are multiplied with the constanit= /m= \/? The selection of the division can be determined

by empirical experiments in which we relateto n with the constraint that is divisible bym.

2.2 TheFirst Principal Component

The covariance matrix represents the tendency of two dilessarying in the same direction as indi-
cated by the data points. The Karhunen-Loéve transforatesthe coordinate system in such a way that
the new covariance matrix will be diagonal. Therefore, ediaiension will be uncorrelated. The trans-
formation is described by an orthonormal matrix, which imposed of the normalized eigenvectors of
the covariance matrix. The squares of the eigenvaluesseptr¢he variances along the eigenvectors.
The first principal component corresponds to the normalégednvector with the highest variance.
lz|| =1 with Z=z-2" is the best projection onto one-dimensional space becauseHillbert

space, the first principal component passes through the arehminimizes the sum of squares of the

distances of the points from the line. It follows that
X[ = [[P-x[| = {|Z-x]|. (31)

For uncorrelated dat@, = P represents the projection on thmesecting line. For correlated data contrary
to the projection on thersecting line, all the components of the vectalo not need to be equal, and the
projection cannot be computed efficiently. For a vectof length,/min the direction of then-secting

line whereP is the projection on thersecting line,

o=(1,1,1,---,1) (32)
m
it follows that
vm=lo|| =|P-o|]| > [|Z-0]| > 1. (33)



The value

Vin—|z-of (34)

indicates the diversion from thersecting line with value O corresponding to uncorrelateth dand

v/m— 1 one dimension data with
vVm—1>/m—|Z-0| >0. (35)

For a given decomposition intb orthogonal spaces according to the Equalfioh 13 the dataspaia
mapped into corresponding subspaBgsFor each subspadg the covariance matrig; is computed.
In the next step for each covariance magjxhe first principal component with the highest variance is

determined. It is represented it by the normalised eigaavec Each projection
Zi =z -ZiT (36)

is a projection onto the first principal component with R™ — R. An adaptive projectior: R" — R,
given the decomposition intb orthogonal spaces according to the Equafion 13, is compafsgdum

of f projectionsz; onto a one-dimensional space.
A=21-2{ +2,-2) ... +2¢-2]. (37)
The method works under any splitting of the space, such gsrdjectionP : R" — R'.

2.3 |pnorm dependency

Some applications require distance functions that diffamfthe Euclidian distance function. In addition
to the Euclidean distance function, the Manhattan distamukethe Chebyshev distance function are
commonly used. In the following, we generalize the Euclidearm to thel, norm that induces a

corresponding metric. THg norm is defined as the following (fgr= 2 it is the Euclidean norm):

1
[1Xllp = (Xa|P+ [X2|P+ -+ [Xm[P) ¥ (38)



Ip norms are equivalent and the following relation holds fer Q < p
1 1
[X[p < fIXllqg <ma® - [x][p (39)

and

11
me—a - |[x[|q < [[X][p < [[X]q- (40)

The tighten triangle inequality is valid in aly norm due to the definition of norm. Because the

norms are equivalent the following equation is valid as Migllany|, norm
IP-Xl[p=lIP-yll[p < IP-x=P-yllp=[[P-(x=Y)llp < [[X=Yllp (41)

and

1Z-X[lp < |IP-X]lp < [IX][ p- (42)

The linear projection operatét has the 1-Lipschitz property in ahy norm and

PIEES 11 1
m m m m Xl
PRIERL 1 1 1
mp . z|_1X| _ m _ m m m . . (43)
m : : T, : :
Sy X i1 ... 1 Xm
m p m m m p

The projectionP can be computed efficiently without needing a matrix opera#is the mean value of

the vector multiplied with the constant= mpe

. For the dimensiom, for thel; norm,c = m, for thel,
norm,c = ,/m, and for thd., norm,c=1. A lowerl, norm corresponds to a higher constamt ¢ > 1
and less information loss. We cannot gain any advantageedf-hipschitz property using the different
Ip norms. The behavior of the constans related to the equivalence of the norms relation. For @tem
thel, andl, relation is

X2 < [IX[l2 < v/m-[IX]l2. (44)

For ||la|lp = 1 with Q=g - q is a mapping onto one dimensional space generateq. bl is not a

projection forp > 2 because the matrix is not self-adjoint wigh= Q2. The mapping on thersecting

10



line. the operator can be understood as

1 1 1
2 2 2
mpP mpP mP
11 1
2 2 2
Q=q'-gq=| mP mb mp (45)
1 1 1
2 2 2
mpP mpP mpP
Qs generated by thi normalized vectoq indicating the direction of thersecting line.
1 1 1
qT:<_17_1>"'a_1>' (46)
pPme mpe

The mapping can be computed efficiently without requiringrir@perations as the mean value of the

-1
vector multiplied with the constamt = mbo .

Di=1X 1 1 1
2 7 7 —z X1
mP mpP mpP mP
T X 101 1
- - = = X
mpTl 2i=1% = mb — mP  mb mb 2 47
m ,
2Ly L a2 )
mP p mpP mpP mP p
However this mapping can increase a norm. For the rigrtine induced matrix norm is
1Qllp = max||Q- x| (48)
[[x-pl
and forx =q
p-2
[Qlp=m*. (49)
It follows that forp > 2
1Q-Xllp > [[x[lp (50)

the norm is increased. Only far< 2 the norm is not increased withithe projectiorP andl; the simple

mean value.

11



3 Subspacetreerevisited

An adaptive projectionA: R" — R', maps two vectorsx andy, into a lower-dimensional space and

satisfies the 1-Lipschitz property:

IA-x=A-Y[[[p < [[x=Yllp- (51)

Using the 1-Lipschitz property, a bound that is valid in bsffaces can be determined. The distance
of similar vectors to a query vectgris smaller or equal in the original space of dimensionatity
and, consequently, it is also smaller or equal in the loweredsional space of the dimensionality
During the computation, all the points below the bound aseatided. In the second step, the wrong
candidates are filtered by comparisons in the original spabe number of points discarded drops as
fast as the relation between the dimensionalilegrows. Depending on the correlation between the

dimensionalities, the 1-Lipschitz property is only uséfuhe relation is sufficiently small with

IN
o

(52)

—-| 3>

whered varies between Z d < 16 in relation to the data set. However, high-dimensiondgiing
requires that the mappirfg: R" — RY with n>> d satisfies the 1-Lipschitz property. For such a function,
only a tiny fraction of the points of a given set are below tioaitd. Thus, the majority of the points
have to be filtered by comparisons in the original space. &bex, no speed up, compared tp the use of
a simple list matching, can be achieved, as proclaimed bgdhgcture “the curse of dimensionality”.
If at least some points of a given set are below the bounde tisest way to build a recursive function
that achieves a considerable speed up using a simple lishingt Motivated by the divide and conquer
principle and the tree structure, one can build such a fanatcursively, indicating that the “the curse
of dimensionality” conjecture igrong for some data sets. It is well known that, for a dimensiopalit

(2 < d <16), metric index trees operate efficiently. Thus, in thet séep we define an efficient indexing
structure that builds on the mappifig: R" — RY that satisfies the 1-Lipschitz property, wihbeing a
projection or an adaptive projection.

Suppose there exist a sequence of subspdggs;,U,. ..., U; with R" = Ug andR® = U; in which

12



each subspace is a subspace of another space
U DU DU D...D U (53)
and withdim(U;) indicating the dimension of the subspade
dim(Ug) > dim(Uz) > dim(Uy) ... > dim(Uy)

and the relation between neighbouring subspaces is safficiemall with

dim(Ut_l)

dim(Uo) <d dlm(Ul)

gmuy) = % dimuy) =%

<d. (54)

We define a family of projections for the sequence of subspéaither adaptive or not) with the follow-
ing
AL:Ug— U AU —=Ug A U1 — U (55)

The family of projections defines the sequence of subsp&geen a bound and a query vectoy for
each subspace including the original spllgecertain points are below the bound. For each subspace

U;, the number of points below the bouads indicated by the value;. It follows that
0OQ<01<...< G <S (56)
wheresis the size of the data set. The resulting computing coshgavieounds and a query vectoy is
t
costs = Zlai -dim(U;_1) +s-dim(Uy). (57)
i=

The cost of list matching is

cog) = s-dim(Up) (58)

The savingcosts < cog is related to the bound. Empirical experiments suggest thwakts < cos; for
a bound withgp < d.
The described projection based method cannot be appliqzhteesrepresentation, as present in the

vector space model][1].
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3.1 Treeisomorphy

The isomorphy to a tree results from the assumption thatdhevof g; is reciprocal to the preceding
dimensionality[[13]. Therefore, a bigger dimensionatityn(U; ., 1) results in a smaller value, and vice
versa. We can express this relation by

congt - gy = (59)

dim(Ui+1) '
The value ofcong is dependent on the data set and its norm. The valug @ reciprocal to the

preceding dimensionalitgfim(U; 1) (Equatior{ 598), and the computing costs are expressed by

dimUo)  dim(Us) dim(Un_1)
dimUy) |~ dimUy) T Tdim(uy)

cods ~ 1/congt - ( > +dim(Uy) -s. (60)
Supposingd = dim(U;) andn = dim(Up)

costs ~ 1/congt -d-logy(n—d)+d-s. (61)

For a dimensiord, the metric index trees operate efficiently with a nearlyakithmic search time. For

the bound withoyp < d, the value Ycongt < s
costs =~ 1/congt -d - (logg(n) — 1) +d-logy(s). (62)
It follows that the lower bound of the computational cost is

Q(log(n) +log(s)). (63)

4 Examplesof € similarity

The £ range queries depends on the adequate valge Afmethod for the estimation of such a value is
described in[[12]. LeDB be a database osfmultimedia objectx!) represented by vectors of dimen-

sionality n in which the index is an explicit key identifying each object

{x!) ¢ DBJi € {1..s}}. (64)

14



For a query objecy, all objectsx!!) are searched that agesimilar

XV —y|lp < €. (65)

For high dimensional vector space such a set can be detatriina list matching over the whole data

set.

4.1 Computational procedure

For the databaseB that is projected into the subspddg
{Ux)" € U(DB)Ji € {1..s}}. (66)

The algorithm to determine attsimilar objects is composed of two loops. The first loopates over the
elements of the databaBd, and the second iterates over their represengitmm can easily parallelize
the algorithm over the first loop; different parts of the daise can be processed by different processors,

kernels, or computers.

Algorithm to determine NN

forall {x) € DBJi € {1..s}}
{
for(k=t;k#0,k——)
{

load Uk (x));

[* 1-Lipschitz property */

if (U)W —Uk(y))llp >=€)
break :;
if (k=0) print X" isNN of y

1An implementation can be obtained upon request from theoauth
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Each call of the 1-Lipschitz property costam(Uy). The cost according to Equatibn]57 correspond to

the number of 1-Lipschitz property calls, correspondinthtovalueoy.

4.2 960-dimensional vector space

We apply computational procedure on high-dimensional dataof 100000 vectors of dimensionality
960. The vectors represent the GIST global descriptor ofreagé and are composed by concatenated
orientation image histograms![9]. The vectgrof dimensionality 960 is split into 480 distinct sub-
vectors of dimensionality 2. The data points are described8D covariance matrices; for each

subspace. For all points, the covariance matrices are dechjteratively.

X = X1, X2, X3, X, "+ , X479, X959 (67)
—— =~ ———
G G Cago

The resulting 480 projectiong; - z', define the adaptive projectioh : R%° — R0, We apply the
adaptive projection and the determination of the adaptiegeption recursively. The resulting family of
projections,

AL:Ug— U A2 Ui = Uy L A7 Ug— Uy (68)

defines the dimensionalities of the subspaces.

dim(Ug) = 960> dim(U;) = 480> dim(U;) = 240> dim(U3) = 120

> dim(Uy) = 60 > dim(Us) = 30> dim(Ug) = 10 > dim(U7) = 5.

In Table[1, we indicate the mean costs according to Equaifusthg thd, norm.

| projection | € for ~52 NN | mean cos{ ratio |

orthogonal 6300 4584277 | 21.38
adaptive 6300 4393127 | 22.31

Table 1: Mean ratio of list matching to the mean computatiostaccording to Equatiénl57. The
values were determined over a disjunct sampl8 @fDB with size|§ = 400. The adaptive projection
gives only a slight improvement. The diversion from thesecting line according to Equatiéni34 is

always< 0.0001.

16



4.3 12288-dimensional vector space

The 12288-dimensional vector space corresponds to an ictgbase that consists aB96 3-band
RGB (Red, Green, Blue) images of size 2296. Each color is represented by 8 bits|[12]. Each of
the tree bands of size 12896 is tiled with rectangular windowd/ of size 4x 4. The data points are
described by 3% 24 covariance matriceS; for each subspace, for each band. The resulting=68
32 x 24 projectiong; - z' define the adaptive projectioh: R'2288, R’®8 for each band (Red, Green,
Blue). We apply the adaptive projection and the deternomatif the adaptive projection recursively.

The resulting family of projections,

AlZUoI—>U1;A22U1'—>U2;A3ZU2'—>U3 (69)

defines the dimensionalities of the subspaces for each band

dim(Ug) = 12288> dim(U;) = 768> dim(U,) =48=8x 6> dim(U3) =12=4x 3.

For an orthogonal projection, the sequence of subspagesU; D U, D Us corresponds to the “image
pyramid” [3], [6], which has a base that contains an imagéaithigh-resolution and an apex that is
the low-resolution approximation of the image. In Table 2 wdicate the mean costs according to

Equatior 5¥. Thé; norm gives the best results.

| projection | I, [ efor~52NN| cost | ratio |
orthogonal| I, 1240000 8571752 | 4247

adaptive | I, 8500 10343766| 35.20
orthogonal| I, 8500 10386043| 35.05
orthogonal| I4 825 12464281| 29.32
orthogonal| I 161 39639239 9.19

Table 2: Mean ratio of list matching to the mean computatiostEaccording to Equation/s57. The
values were determined over a disjunct sampl8 @fDB with size|S = 400. The diversion from the
m-secting line, according to Equatibn| 34, is alwagd.0001.

5 Conclusion

An adaptive projection that satisfies the 1-Lipschitz propdefined by the first principal component

was introduced. We indicated the behavior of the projestion thel, norms. The Manhattan distance

17



I, loses the least information, followed by Euclidean distahunction. Most information is lost when

using the Chebyshev distance function. Motivated by the steucture, we indicated a family of pro-

jections that defines a mapping that satisfies the 1-Lipsghdperty. It is composed of orthogonal or

adaptive projections in thig space. Each projection is applied recursively in a low-disienal space,

where “the curse of dimensionality” conjecture does notyapp
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