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Abstract

We investigate exact indexing for high dimensionallp norms based on the 1-Lipschitz property

and projection operators. The orthogonal projection that satisfies the 1-Lipschitz property for thelp

norm is described. The adaptive projection defined by the first principal component is introduced.

Keywords: 1-Lipschitz property; curse of dimensionality; nearest neighbour; high dimensional indexing;

lp normCognition

1 Introduction

While there are relatively efficient approximate similarity search algorithms, it is widely supposed that

the exact search suffers from dimensionality [11]. Thus, solving the problem in the most general case

for an arbitrary dataset is impossible. We investigate exact indexing for a vector spaceV and a distance

function d. Exact indexing is based on exact similarity search, and no data points are lost during range

queries. For a range query vectory from a collection ofs vectors,

x1,x2,x3, · · · ,xs

all vectorsxi that areε-similar according to the distance functiond are searched

d(xi,y)< ε . (1)
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In approximate indexing, the data points that may be lost as some distances are distorted. Approximate

indexing [8], [7] seems to be in some sense free from the curseof dimensionality, [11]. Distance-based

exact indexing is based on the 1-Lipschitz property [11]. A mapping functionF() maps two vectorsx

andy into a lower dimensional space, whered is a metric in the original space andd f eature is a metric in

the feature space that satisfies the 1-Lipschitz property

d f eature(F(x),F(y))≤ d(x,y). (2)

This equation is also known as the lower bounding postulate [5], [4]. Using the 1-Lipschitz property, a

bound that is valid in both spaces can be determined. The distance from similar vectors to a query vector

y is smaller or equal in the original space and, consequently,is smaller or equal in the lower dimensional

space as well. During the computation, all the points below the bound are discarded. In the second step,

the wrong candidates are filtered by comparisons in the original space. The application of the 1-Lipschitz

property as used in metric trees and pivot tables does not resolve the curse of dimensionality, as shown in

[10]. For high-dimensional spaces, the functions that obeythe 1-Lipschitz property discard fewer points

as the number of dimensions grows [10]. The number of points discarded drops as fast as the number of

dimensions grows. As stated in [11], every 1-Lipschitz function concentrates sharply near its mean (or

median) value, which results from the fact that a sphere witha constant radius increases exponentially

with growing dimensions. A linear radial increase leads to an exponential increase of points inside the

sphere [2], [11], which leads to a degradation of the method’s performance. This situation leads to

the “curse of dimensionality”, which states that for an exact nearest neighbor, any algorithm for high

dimensiond andn objects must either use annd-dimension space or have a query time ofn×d [2], [11].

However, [12], [13], and [14] show how the recursive application of the 1-Lipschitz property can be

used to overcome the curse of dimensionality for certain cases of points equally distributed by subspace

trees. A high-dimensional space is divided into low-dimensional sub-spaces [12], [13]. In the low-

dimensional sub-spaces, 1-Lipschitz functions can be successfully applied. The main contributions of

this paper are as follows:

• Introduction of a new adaptive projection. The optimal projection is not fixed by orthogonal

projection but learned.

• Extension of the technique beyond the Euclidean norm (l2). Many applications rely on thel1

2



norm. It is shown thatl1 norm gives better results thanl2 norm.

• Simplification of the mathematical framework.

The paper is organized as follows:

• We review the projection operators.

• We introduce the adaptive projection and thelp norm dependency.

• The adaptive projection and thelp norm dependency are integrated into the subspace tree.

• We empirically compare the adaptive projection with the orthogonal mapping. We empirically

compare thel1, l2, l4 andl∞ norms.

2 Projection Operators

Ideally, the mapping functionF() should preserve the exact distances [5], [4]. An example of such a

function for real vectors is a norm preserving linear operator Q. Such an operator can be represented

by an orthogonal matrix withQT = Q−1 performing a rotation or a reflection. An example of such an

operator is the Karhunen-Loève transform, which rotates the coordinate system in such a way that the

new covariance matrix will be diagonal, resulting in each dimension being uncorrelated. A mapping

that reduces the dimensionality of a vector space can be represented by a projection operator in a Hilbert

space, which extends the two or three dimensional Euclideanspace to spaces with any finite or infinite

number of dimensions. In such a space, the Euclidean norm is induced by the inner product

‖x‖=
√

〈x|x〉. (3)

If W is a subspace ofV, then the orthogonal complement ofW is also a subspace ofV. The orthogonal

complementW⊥ is the set of vectors

W⊥ = {y ∈V |〈y|x〉= 0 x ∈V} (4)

and

V =W ⊕W⊥. (5)
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Each vectorx ∈ V can be represented asx = xW + xW⊥ with xW ∈ W andxW⊥ ∈ W⊥. The mapping

P · x = xW is an orthogonal projection. Such a projection is always a linear transformation and can be

represented by a projection matrixP. The matrix is self-adjoint withP = P2. An orthogonal projection

can never increase a norm

‖P ·x‖2 = ‖xW‖2 ≤ ‖xW‖2+‖xW⊥‖2 = ‖xW +xW⊥‖2 = ‖x‖2. (6)

Using the triangle inequality

‖x+y‖ ≤ ‖x‖+‖y‖ (7)

setting

‖x‖= ‖y+(x−y)‖ ≤ ‖y‖+‖x−y‖ (8)

the tighten triangle inequality

‖x‖−‖y‖ ≤ ‖x−y‖. (9)

follows. From the fact that the orthogonal projection can never increase the norm and the tightened

triangle inequality, any orthogonal projection operator has the 1-Lipschitz property

‖P ·x‖−‖P ·y‖| ≤ ‖P ·x−P ·y‖= ‖P · (x−y)‖ ≤ ‖x−y‖. (10)

It follows that any projection satisfies the 1-Lipschitz property, which means that the lower bounding

postulate [5],[4] and any orthogonal projection are satisfied. For example, the “Quadratic Distance

Bounding” theorem is satisfied [5]. There is no the need for a more complicated proof based upon the

unconstrained minimization problem using Lagrange multipliers [5].

2.1 Projection onto one-dimensional subspace

For ‖p‖ = 1, p · p⊤ is an orthogonal projection onto a one-dimensional space generated byp. For

example for the vector

p =

(
1√
n
,

1√
n
, · · · , 1√

n

)

(11)
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the orthogonal projection fromRn onto one-dimensional spaceR is

P = p ·p⊤ =












1
n

1
n · · · 1

n

1
n

1
n · · · 1

n
...

...
. . .

...

1
n

1
n · · · 1

n












. (12)

For f ≤ n orthogonal subspaces

Rn = E1⊕E2⊕ . . .⊕E f (13)

of the vector spaceRn we can define a projectionP : Rn 7→ R f as a sum off projections onto one

dimensional space

P = p1 ·p⊤
1 +p2 ·p⊤

2 . . .+p f ·p⊤
f (14)

with pi ·p⊤
i : Ei 7→ R and‖pi‖= 1. The 1-Lipschitz property of the projection from the subspaceEi the

one dimensional spaceR is

∣
∣
∣‖pi ·p⊤

i ·x‖−‖pi ·p⊤
i ·y‖

∣
∣
∣ ≤ |‖x‖−‖y‖| ≤ ‖x−y‖. (15)

The projectionP, represented by Equation 14, should distort the distances between the vector spaceRn

andR f as little as possible. As a consequence, the distortion for each subspaceEi should be minimized.

Because of the 1-Lipschitz property for the one-dimensional space, according to the Equation 15, we

need to minimize the distance in the one-dimensional space between the length of the vector and the

length of its projected counterpart
∣
∣
∣‖pi ·p⊤

i ·x‖−‖x‖
∣
∣
∣ . (16)

Suppose the dimensionality of the subspaceEi is m. We define the vectora as

a = pi ·p⊤
i ·x. (17)

It follows that

a =
√

m ·α = ‖a‖= ‖pi ·p⊤
i ·x‖ (18)
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and with

a1 = a2 = ...= ak = ...= am = α

a = (a1,a2, ..ak, ..,am). (19)

With a being the length of the projected vector we preform the following operation

min{|a−‖x‖|}. (20)

From the tighten triangle inequality, it follows that

min{a−‖x‖} ≤ min{‖a−x‖} (21)

according to the Euclidean distance function. To minimize the Euclidean metric‖a− x‖, how do we

choose the value ofα [14]? It follows that

min
α

(√

(x1−α)2+(x2−α)2+ ...+(xm −α)2

)

(22)

0=
∂d(~x,~a)

∂α
=

m ·α − (∑m
i=1xi)

√

m ·α2+∑m
i=1x2

i −2·α · (∑m
i=1xi)

(23)

with the solution

α =
∑m

i=1 xi

m
(24)

which is the mean value of the vectorx. It follows

a =
√

m ·α =
√

m · ∑m
i=1xi

m
= ‖pi ·p⊤

i ·x‖ (25)
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with the corresponding projection matrixPi

Pi = pi ·p⊤
i =












1
m

1
m · · · 1

m

1
m

1
m · · · 1

m
...

...
. . .

...

1
m

1
m · · · 1

m












. (26)

Pi is generated by the normalised vectorpi

pi =

(
1√
m
,

1√
m
, · · · , 1√

m

)

. (27)

which indicates the direction of them-secting line, which is a continuous map from a one-dimensional

space to anm-dimensional space given by

x1 = x1

x2 = x1

x3 = x1

...

xm = x1

. (28)

For m = 2, this equation is the bisecting line withx1 = x2 or, represented as a curve,

x1 = x1

x2 = x1

(29)

which, for uncorrelated dataPi, is the best projection onto one dimension, as indicated in next section.

The projection can be computed efficiently without needing matrix operations as the mean value of the

vector multiplied with the square root of its dimensionality.

√
m · ∑m

i=1 xi

m
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












∑m
i=1 xi

m

∑m
i=1 xi

m
...

∑m
i=1 xi
m












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












1
m

1
m · · · 1

m

1
m

1
m · · · 1

m
...

...
. ..

...

1
m

1
m · · · 1

m












·












x1

x2

...

xm












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (30)
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A projectionP : Rn 7→ R f given the decomposition intof orthogonal spaces according to Equation 13 is

composed of a sum off projections onto a one-dimensional space. Each projectionis a projection on

anm-secting line withPi : Rm 7→ R. The method works with the space split in any way. For simplicity,

we assume that then-dimensional space is split intof equal-dimensional subspaces. In this case, the

projections are efficiently computed as the mean value of each sub-vector. The corresponding mean

values are multiplied with the constantc =
√

m =
√

n
f . The selection of the division can be determined

by empirical experiments in which we relatem to n with the constraint thatn is divisible bym.

2.2 The First Principal Component

The covariance matrix represents the tendency of two dimensions varying in the same direction as indi-

cated by the data points. The Karhunen-Loève transform rotates the coordinate system in such a way that

the new covariance matrix will be diagonal. Therefore, eachdimension will be uncorrelated. The trans-

formation is described by an orthonormal matrix, which is composed of the normalized eigenvectors of

the covariance matrix. The squares of the eigenvalues represent the variances along the eigenvectors.

The first principal component corresponds to the normalizedeigenvectorz with the highest variance.

‖z‖ = 1 with Z = z · z⊤ is the best projection onto one-dimensional space because,in a Hillbert

space, the first principal component passes through the meanand minimizes the sum of squares of the

distances of the points from the line. It follows that

‖x‖ ≥ ‖P ·x‖ ≥ ‖Z ·x‖. (31)

For uncorrelated data,Z = P represents the projection on them-secting line. For correlated data contrary

to the projection on them-secting line, all the components of the vectorz do not need to be equal, and the

projection cannot be computed efficiently. For a vectoro of length
√

m in the direction of them-secting

line whereP is the projection on them-secting line,

o = (1,1,1, · · · ,1)
︸ ︷︷ ︸

m

(32)

it follows that
√

m = ‖o‖= ‖P ·o‖ ≥ ‖Z ·o‖ ≥ 1. (33)
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The value
√

m−‖Z ·o‖ (34)

indicates the diversion from them-secting line with value 0 corresponding to uncorrelated data and
√

m−1 one dimension data with

√
m−1≥

√
m−‖Z ·o‖ ≥ 0. (35)

For a given decomposition intof orthogonal spaces according to the Equation 13 the data points are

mapped into corresponding subspacesEi. For each subspaceEi the covariance matrixCi is computed.

In the next step for each covariance matrixCi the first principal component with the highest variance is

determined. It is represented it by the normalised eigenvector zi. Each projection

Zi = zi · z⊤i (36)

is a projection onto the first principal component withZi : Rm 7→ R. An adaptive projectionA : Rn 7→ R f ,

given the decomposition intof orthogonal spaces according to the Equation 13, is composedof a sum

of f projectionsZi onto a one-dimensional space.

A = z1 · z⊤1 + z2 · z⊤2 . . .+ z f · z⊤f . (37)

The method works under any splitting of the space, such as theprojectionP : Rn 7→ R f .

2.3 lp norm dependency

Some applications require distance functions that differ from the Euclidian distance function. In addition

to the Euclidean distance function, the Manhattan distanceand the Chebyshev distance function are

commonly used. In the following, we generalize the Euclidean norm to thelp norm that induces a

corresponding metric. Thelp norm is defined as the following (forp = 2 it is the Euclidean norm):

‖x‖p = (|x1|p + |x2|p + · · ·+ |xm|p)
1
p (38)
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lp norms are equivalent and the following relation holds for 0< q < p

‖x‖p ≤ ‖x‖q ≤ m
1
q− 1

p · ‖x‖p (39)

and

m
1
p− 1

q · ‖x‖q ≤ ‖x‖p ≤ ‖x‖q. (40)

The tighten triangle inequality is valid in anylp norm due to the definition of norm. Because thelp

norms are equivalent the following equation is valid as wellfor any lp norm

‖P ·x‖p −‖P ·y‖|p ≤ ‖P ·x−P ·y‖p = ‖P · (x−y)‖p ≤ ‖x−y‖p (41)

and

‖Z ·x‖p ≤ ‖P ·x‖p ≤ ‖x‖p. (42)

The linear projection operatorP has the 1-Lipschitz property in anylp norm and

m
1
p · ∑m

i=1 xi

m
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












∑m
i=1 xi

m

∑m
i=1 xi
m
...

∑m
i=1 xi

m












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












1
m

1
m · · · 1

m

1
m

1
m · · · 1

m
...

...
. . .

...

1
m

1
m · · · 1

m












·












x1

x2

...

xm












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p

. (43)

The projectionP can be computed efficiently without needing a matrix operation as the mean value of

the vector multiplied with the constantc = m
1
p . For the dimensionm, for the l1 norm,c = m, for the l2

norm,c =
√

m, and for thel∞ norm,c = 1. A lower lp norm corresponds to a higher constantm ≥ c ≥ 1

and less information loss. We cannot gain any advantage of the 1-Lipschitz property using the different

lp norms. The behavior of the constantc is related to the equivalence of the norms relation. For example,

the l1 andl2 relation is

‖x‖2 ≤ ‖x‖1 ≤
√

m · ‖x‖2. (44)

For ‖q‖p = 1 with Q = q⊤ · q is a mapping onto one dimensional space generated byq. It is not a

projection forp > 2 because the matrix is not self-adjoint withQ = Q2. The mapping on them-secting
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line. the operator can be understood as

Q = q⊤ ·q =













1

m
2
p

1

m
2
p

· · · 1

m
2
p

1

m
2
p

1

m
2
p

· · · 1

m
2
p

...
...

. . .
...

1

m
2
p

1

m
2
p

· · · 1

m
2
p













. (45)

Q is generated by thelp normalized vectorq indicating the direction of them-secting line.

q⊤ =

(
1

m
1
p

,
1

m
1
p

, · · · , 1

m
1
p

)

. (46)

The mapping can be computed efficiently without requiring matrix operations as the mean value of the

vector multiplied with the constantd = m
p−1

p .

m
p−1

p · ∑m
i=1 xi

m
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣













∑m
i=1xi

m
2
p

∑m
i=1xi

m
2
p

...

∑m
i=1xi

m
2
p













∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣













1

m
2
p

1

m
2
p

· · · 1

m
2
p

1

m
2
p

1

m
2
p

· · · 1

m
2
p

...
...

. . .
...

1

m
2
p

1

m
2
p

· · · 1

m
2
p













·












x1

x2

...

xm












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p

. (47)

However this mapping can increase a norm. For the normlp the induced matrix norm is

‖Q‖p = max
‖x p|

‖Q ·x‖p (48)

and forx = q

‖Q‖p = m
p−2

p . (49)

It follows that for p > 2

‖Q ·x‖p > ‖x‖p (50)

the norm is increased. Only forp ≤ 2 the norm is not increased withl2 the projectionP andl1 the simple

mean value.
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3 Subspace tree revisited

An adaptive projection,A : Rn 7→ R f , maps two vectors,x andy, into a lower-dimensional space and

satisfies the 1-Lipschitz property:

‖A ·x−A ·y‖|p ≤ ‖x−y‖p. (51)

Using the 1-Lipschitz property, a bound that is valid in bothspaces can be determined. The distance

of similar vectors to a query vectory is smaller or equal in the original space of dimensionalityn,

and, consequently, it is also smaller or equal in the lower-dimensional space of the dimensionalityf .

During the computation, all the points below the bound are discarded. In the second step, the wrong

candidates are filtered by comparisons in the original space. The number of points discarded drops as

fast as the relation between the dimensionalitiesn
f grows. Depending on the correlation between the

dimensionalities, the 1-Lipschitz property is only usefulif the relation is sufficiently small with

n
f
≤ d (52)

whered varies between 2≤ d ≤ 16 in relation to the data set. However, high-dimensional indexing

requires that the mappingF : Rn 7→ Rd with n ≫ d satisfies the 1-Lipschitz property. For such a function,

only a tiny fraction of the points of a given set are below the bound. Thus, the majority of the points

have to be filtered by comparisons in the original space. Therefore, no speed up, compared tp the use of

a simple list matching, can be achieved, as proclaimed by theconjecture “the curse of dimensionality”.

If at least some points of a given set are below the bound, there is a way to build a recursive function

that achieves a considerable speed up using a simple list matching. Motivated by the divide and conquer

principle and the tree structure, one can build such a function recursively, indicating that the “the curse

of dimensionality” conjecture iswrong for some data sets. It is well known that, for a dimensionality d

(2≤ d ≤ 16), metric index trees operate efficiently. Thus, in the next step we define an efficient indexing

structure that builds on the mappingF : Rn 7→ Rd that satisfies the 1-Lipschitz property, withF being a

projection or an adaptive projection.

Suppose there exist a sequence of subspacesU0,U1,U2, . . . ,Ut with Rn = U0 andRd = Ut in which
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each subspace is a subspace of another space

U0 ⊃U1 ⊃U2 ⊃ . . .⊃Ut (53)

and withdim(Ui) indicating the dimension of the subspaceUi

dim(U0)> dim(U1)> dim(U2) . . . > dim(Ut)

and the relation between neighbouring subspaces is sufficiently small with

dim(U0)

dim(U1)
≤ d,

dim(U1)

dim(U2)
≤ d, . . .

dim(Ut−1)

dim(Ut)
≤ d. (54)

We define a family of projections for the sequence of subspaces (either adaptive or not) with the follow-

ing

A1 : U0 7→U1;A2 : U1 7→U2; . . . ;At : Ut−1 7→Ut . (55)

The family of projections defines the sequence of subspaces.Given a boundε and a query vectory for

each subspace including the original spaceU0, certain points are below the bound. For each subspace

Ui, the number of points below the boundε is indicated by the valueσi. It follows that

σ0 < σ1 < .. . < σt < s (56)

wheres is the size of the data set. The resulting computing cost given a boundε and a query vectory is

costs =
t

∑
i=1

σi ·dim(Ui−1)+ s ·dim(Ut). (57)

The cost of list matching is

costl = s ·dim(U0) (58)

The savingcosts < costl is related to the boundε . Empirical experiments suggest thatcosts ≪ costl for

a bound withσ0 < d.

The described projection based method cannot be applied to sparse representation, as present in the

vector space model [1].
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3.1 Tree isomorphy

The isomorphy to a tree results from the assumption that the value ofσi is reciprocal to the preceding

dimensionality [13]. Therefore, a bigger dimensionalitydim(Ui+1) results in a smaller valueσi, and vice

versa. We can express this relation by

const ·σi =
1

dim(Ui+1)
. (59)

The value ofconst is dependent on the data set and its norm. The value ofσi is reciprocal to the

preceding dimensionalitydim(Ui+1) (Equation 59), and the computing costs are expressed by

costs ≈ 1/const ·
(

dim(U0)

dim(U1)
+

dim(U1)

dim(U2)
+ . . .+

dim(Un−1)

dim(Ut)

)

+dim(Ut) · s. (60)

Supposingd = dim(Ut) andn = dim(U0)

costs ≈ 1/const ·d · logd(n−d)+d · s. (61)

For a dimensiond, the metric index trees operate efficiently with a nearly logarithmic search time. For

the bound withσ0 < d, the value 1/const ≪ s

costs ≈ 1/const ·d · (logd(n)−1)+d · logd(s). (62)

It follows that the lower bound of the computational cost is

Ω(log(n)+ log(s)). (63)

4 Examples of ε similarity

Theε range queries depends on the adequate value ofε . A method for the estimation of such a value is

described in [12]. LetDB be a database ofs multimedia objectsx(i) represented by vectors of dimen-

sionalityn in which the indexi is an explicit key identifying each object

{x(i) ∈ DB|i ∈ {1..s}}. (64)
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For a query objecty, all objectsx(i) are searched that areε-similar

‖x(i)−y‖p < ε . (65)

For high dimensional vector space such a set can be determined by a list matching over the whole data

set.

4.1 Computational procedure

For the databaseDB that is projected into the subspaceUk,

{Uk(x)(i) ∈Uk(DB)|i ∈ {1..s}}. (66)

The algorithm to determine allε-similar objects is composed of two loops. The first loop iterates over the

elements of the databaseDB, and the second iterates over their representation1. We can easily parallelize

the algorithm over the first loop; different parts of the database can be processed by different processors,

kernels, or computers.

Algorithm to determine NN

forall {x(i) ∈ DB|i ∈ {1..s}}

{

f or(k = t;k 6= 0,k−−)

{

load(Uk(x)(i));

/* 1-Lipschitz property */

i f (‖Uk(x)(i)−Uk(y))‖p >= ε)

break :;

i f (k = 0) print x(i) is NN of y

}

}

1An implementation can be obtained upon request from the author
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Each call of the 1-Lipschitz property costsdim(Uk). The cost according to Equation 57 correspond to

the number of 1-Lipschitz property calls, corresponding tothe valueσk.

4.2 960-dimensional vector space

We apply computational procedure on high-dimensional dataset of 100000 vectors of dimensionality

960. The vectors represent the GIST global descriptor of an image and are composed by concatenated

orientation image histograms [9]. The vectorx of dimensionality 960 is split into 480 distinct sub-

vectors of dimensionality 2. The data points are described by 480 covariance matricesCi for each

subspace. For all points, the covariance matrices are computed iteratively.

x = x1,x2
︸ ︷︷ ︸

C1

,x3,x4
︸ ︷︷ ︸

C2

, · · · · · · ,x479,x959
︸ ︷︷ ︸

C480

. (67)

The resulting 480 projections,zi · z⊤i , define the adaptive projectionA : R960 7→ R480. We apply the

adaptive projection and the determination of the adaptive projection recursively. The resulting family of

projections,

A1 : U0 7→U1;A2 : U1 7→U2; . . . ;A7 : U6 7→U7 (68)

defines the dimensionalities of the subspaces.

dim(U0) = 960> dim(U1) = 480> dim(U2) = 240> dim(U3) = 120

> dim(U4) = 60> dim(U5) = 30> dim(U6) = 10> dim(U7) = 5.

In Table 1, we indicate the mean costs according to Equation 57 using thel2 norm.

projection ε for ≈ 52 NN mean cost ratio

orthogonal 6300 4584277 21.38
adaptive 6300 4393127 22.31

Table 1: Mean ratio of list matching to the mean computation costs according to Equation 57. The
values were determined over a disjunct sample ofS ⊆ DB with size|S|= 400. The adaptive projection

gives only a slight improvement. The diversion from them-secting line according to Equation 34 is
always≪ 0.0001.
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4.3 12288-dimensional vector space

The 12288-dimensional vector space corresponds to an imagedatabase that consists of 9.876 3-band

RGB (Red, Green, Blue) images of size 128× 96. Each color is represented by 8 bits [12]. Each of

the tree bands of size 128×96 is tiled with rectangular windowsW of size 4×4. The data points are

described by 32× 24 covariance matricesCi for each subspace, for each band. The resulting 768=

32×24 projectionszi · z⊤i define the adaptive projectionA : R12288 7→ R768 for each band (Red, Green,

Blue). We apply the adaptive projection and the determination of the adaptive projection recursively.

The resulting family of projections,

A1 : U0 7→U1;A2 : U1 7→U2;A3 : U2 7→U3 (69)

defines the dimensionalities of the subspaces for each band

dim(U0) = 12288> dim(U1) = 768> dim(U2) = 48= 8×6> dim(U3) = 12= 4×3.

For an orthogonal projection, the sequence of subspacesU0 ⊃U1 ⊃U2 ⊃U3 corresponds to the “image

pyramid” [3], [6], which has a base that contains an image with a high-resolution and an apex that is

the low-resolution approximation of the image. In Table 2, we indicate the mean costs according to

Equation 57. Thel1 norm gives the best results.

projection lp ε for ≈ 52 NN cost ratio

orthogonal l1 1240000 8571752 42.47
adaptive l2 8500 10343766 35.20

orthogonal l2 8500 10386043 35.05
orthogonal l4 825 12464281 29.32
orthogonal l∞ 161 39639239 9.19

Table 2: Mean ratio of list matching to the mean computation costs according to Equation 57. The
values were determined over a disjunct sample ofS ⊆ DB with size|S|= 400. The diversion from the

m-secting line, according to Equation 34, is always≪ 0.0001.

5 Conclusion

An adaptive projection that satisfies the 1-Lipschitz property defined by the first principal component

was introduced. We indicated the behavior of the projections for thelp norms. The Manhattan distance
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l1 loses the least information, followed by Euclidean distance function. Most information is lost when

using the Chebyshev distance function. Motivated by the tree structure, we indicated a family of pro-

jections that defines a mapping that satisfies the 1-Lipschitz property. It is composed of orthogonal or

adaptive projections in thelp space. Each projection is applied recursively in a low-dimensional space,

where “the curse of dimensionality” conjecture does not apply.
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