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TOLERANCES INDUCED BY IRREDUNDANT

COVERINGS

JOUNI JÄRVINEN AND SÁNDOR RADELECZKI

Abstract. In this paper, we consider tolerances induced by irredun-
dant coverings. Each tolerance R on U determines a quasiorder .R by
setting x .R y if and only if R(x) ⊆ R(y). We prove that for a tol-
erance R induced by a covering H of U , the covering H is irredundant
if and only if the quasiordered set (U,.R) is bounded by minimal ele-
ments and the tolerance R coincides with the product &R ◦.R. We also
show that in such a case H = {↑m | m is minimal in (U,.R)}, and for
each minimal m, we have R(m) = ↑m. Additionally, this irredundant
covering H inducing R consists of some blocks of the tolerance R. We
give necessary and sufficient conditions under which H and the set of
R-blocks coincide. These results are established by applying the notion
of Helly numbers of quasiordered sets.

1. Introduction and motivation

In this paper, we consider tolerances (reflexive and symmetric binary rela-
tions) and, in particular, tolerances induced by irredundant coverings. The
term tolerance relation was introduced in the context of visual perception
theory by E. C. Zeeman [17], motivated by the fact that indistinguishabil-
ity of “points” in the visual world is limited by the discreteness of retinal
receptors.

Let R be a tolerance on U and suppose that R is interpreted as a similarity
relation such that xR y means that x and y are similar in terms of the
knowledge we have about them. Of course, each object is similar to itself,
and if x is similar to y, it is natural to assume that y is similar to x. Similarity
relations are not necessarily transitive: we may have a finite sequence of
objects x1, x2, . . . , xn such that each two consecutive objects xi and xi+1 are
similar, but x1 and xn are very different from each other.

Next, we recall some elementary notions and facts about rough set theory
and formal concept analysis from [10] and [7], respectively. Let R be a
tolerance on U . The upper R-approximation of a set X ⊆ U is

XN = {x ∈ U | R(x) ∩X 6= ∅}

and the lower R-approximation of X is

XH = {x ∈ U | R(x) ⊆ X}.

Here R(x) = {y ∈ U | xR y} denotes the R-neighbourhood of the element
x. Then, XN can be viewed as the set of elements that possible are in X,
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because in X is at least one element similar to them. The set XH can be
considered as the set of elements certainly in X, because for these elements,
all elements similar to them are in X.

Let us denote ℘(U)H = {XH | X ⊆ U} and ℘(U)N = {XN | X ⊆ U}. The
complete lattices (℘(U)N,⊆) and (℘(U)H,⊆) are ortholattices. In ℘(U)N,
the orthocomplementation is ⊥ : XN 7→ XNcN, and the map ⊤ : XH 7→ XHcH

is the orthocomplementation operation of ℘(U)H, where for any A ⊆ U ,
Ac = U \ A is the set-theoretical complement of A.

A formal context K = (G,M, I) consists of two sets G and M , and a
relation I from G to M . The elements of G are called the objects and
the elements of M are called attributes of the context K. For A ⊆ G and
B ⊆ M , we define A′ = {m ∈ M | g I m for all g ∈ A} and B′ = {g ∈ G |
g I m for all m ∈ B}. A formal concept of the context (G,M, I) is a pair
(A,B) with A ⊆ G, B ⊆ M , A′ = B, and B′ = A. We call A the extent and
B the intent of the concept (A,B). The set of all concepts of the context
K = (G,M, I) is denoted by B(K). The set B(K) is ordered by

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

With respect to this order, B(K) forms a complete lattice, called the concept
lattice of the context K. If I ⊆ U×U is an irreflexive and symmetric relation,
then the concept lattice B(K) corresponding to the context K = (U,U, I) is
a complete ortholattice.

If R is a tolerance relation on U , then its complement Rc = U × U \ R

is irreflexive and symmetric. Thus, the concept lattice B(K) of the context
K = (U,U,Rc) is a complete ortholattice. We proved in [11] that

B(K) = {(A,A⊤) | A ∈ ℘(U)H},

where ⊤ is the orthocomplement defined in ℘(U)H. Additionally, for
(A,A⊤) ∈ B(K), its orthocomplement is (A⊤, A). As noted in [11], for
any tolerance R, the complete ortholattices ℘(U)H, ℘(U)N, and B(K) are
isomorphic.

Let L = (L,≤) be a lattice with a least element 0. The lattice L is
atomistic, if any element of L is the join of atoms below it. We proved in
[11] that for any tolerance R on U , the following conditions are equivalent:

(C1) R is induced by an irredundant covering;
(C2) ℘(U)H and ℘(U)N are atomistic complete Boolean lattices;
(C3) B(K) is an atomistic complete Boolean lattice.

This means that knowing when R is induced by an irredundant covering is
important, because this fully characterises the case when the lattices ℘(U)H,
℘(U)N, and B(K) are atomistic complete Boolean lattices. Note also that
if R is a tolerance on U induced by an irredundant covering, then the set
of atoms of ℘(U)N is {R(x) | R(x) is a block}. Because the lattice-join in
℘(U)N is the set-theoretical union, each element of ℘(U)N can be given as
a union of some R-neighbourhoods forming a block. Notice that the basic
notions, such as coverings and blocks, related to tolerances are formally
defined in Section 2.

In this paper, we continue the study of tolerances induced by an irre-
dundant covering. Our current study is done in the setting of quasiordered
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sets. Clearly, each tolerance R on U defines a quasiorder by x .R y if and
only if R(x) ⊆ R(y). We show that for a tolerance R induced by a covering
H of U , the covering H is irredundant if and only if the quasiordered set
(U,.R) is bounded by minimal elements and the tolerance R coincides with
the product &R ◦ .R. We also characterise the case when this H and the
set of R-blocks coincide.

This paper is structured as follows. Section 2 recalls shortly the basic
facts about tolerances. In Section 3, we consider the relationship between
tolerances and quasiorders, and we characterise the case in which a tolerance
is induced by an irredundant covering in terms of minimal elements of a
quasiordered set. We adopt from combinatorics the notion of Helly numbers
in Section 4, and we connect Helly numbers of quasiordered sets and blocks
of a tolerance forming an irredundant covering. In particular, by using this
result for a tolerance R induced by an irredundant covering H, we give
necessary and sufficient conditions for H = B(R), that is, for normality of
the covering H. The section ends with a consideration of tolerances induced
by finite distributive lattices.

2. Preliminaries

Let us first recall some notions and basic results from [2, 15]. Let R be
a tolerance on U , that is, R is a reflexive and symmetric binary relation on
U . A nonempty subset X of U is an R-preblock if X2 ⊆ R. An R-block

is a maximal R-preblock, that is, an R-preblock B is an R-block if B ⊆ X

implies B = X for any R-preblock X. Thus, any subset ∅ 6= X ⊆ U is an
R-preblock if and only if it is contained in some R-block. The family of all
R-blocks is denoted by B(R). If there is no danger of confusion, we simply
call R-blocks as blocks. Each tolerance R is completely determined by its
blocks, that is, aR b if and only if there exists a block B ∈ B(R) such that
a, b ∈ B. This can be written in the form R =

⋃
{B2 | B ∈ B(R)}. It is also

known that B is a block if and only if

B = {x ∈ U | B ⊆ R(x)}.

We recall from [3,14] the following lemma combining some conditions for
an R-neighbourhood forming a block.

Lemma 2.1. Let R be a tolerance on U and x ∈ U . Then, the following

are equivalent:

(a) R(x) is a block;

(b) aR b for all a, b ∈ R(x);
(c) a ∈ R(x) implies R(x) ⊆ R(a);
(d) R(x) =

⋂
{R(a) | a ∈ R(x)}.

A collection H of nonempty subsets of U is called a covering of U if⋃
H = U . A covering H is irredundant if H \ {X} is not a covering for any

X ∈ H. Clearly, the blocks B(R) of a tolerance R form a covering, but this
covering is not generally irredundant. On the other hand, each covering H
of U defines a tolerance RH =

⋃
{X2 | X ∈ H}, called the tolerance induced

by H. Obviously, the sets in H are preblocks of RH.
Let R be a tolerance induced by a covering H of U . In [11, Proposi-

tion 3.7], we showed the equivalence of the following statements:
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(D1) H an irredundant covering of U ;
(D2) H ⊆ {R(x) | x ∈ U}.

Example 2.2. Let us consider the following setting modified from an ex-
ample appearing in [15]. Let N = {1, 2, 3, . . .}. We define a tolerance R on
U = ℘(N) \ {∅} by setting for any nonempty subsets B,C ⊆ N:

(B,C) ∈ R ⇐⇒ B ∩ C 6= ∅.

Let n ∈ N and define Kn = {B ∈ U | n ∈ B}. Clearly, R({n}) = Kn. Each
R({n}) = Kn is also a tolerance block, because all sets in Kn contain n, and
hence they are R-related (cf. Lemma 2.1).

Let H = {Kn | n ∈ N}. Then,
⋃

H = ℘(N) \ {∅}, that is, H is a covering
of U . The tolerance RH induced by H is R, because if (B,C) ∈ R, then
there exists n ∈ B ∩ C and so B,C ∈ Kn. Conversely, if B,C ∈ Kn, then
(B,C) ∈ R, because Kn is a block. Since each set in H is of the from
Kn = R({n}), n ∈ N, the covering H is irredundant by the equivalence of
(D1) and (D2).

Lemma 2.3. If R is a tolerance induced by an irredundant covering H, then

H ⊆ B(R).

Proof. Because conditions (D1) and (D2) are equivalent, there exists Y ⊆ U

such that H = {R(y) | y ∈ Y }. Since R is induced by H, then for each
y ∈ Y , we have aR b for any a, b ∈ R(y). Thus, by Lemma 2.1, R(y) is a
block for any y in Y , and H ⊆ B(R). �

Let R be a tolerance induced by an irredundant covering H. The inclusion
H ⊆ B(R) presented in Lemma 2.3 can be proper (see Example 4.5). In
Section 4, we give a characterisation for the case H = B(R).

Example 2.4. Tolerances can be considered as simple graphs (and vice
versa). A simple graph is an undirected graph that has no loops (edges
connected at both ends to the same vertex) and no multiple edges. Any
tolerance R on U determines a graph G = (U,R), where U is interpreted as
the set of vertices and R as the set of edges. There is a line connecting x

and y if and only if xR y. Because each point is R-related to itself, loops
connecting a point to itself are not drawn/permitted. Note that [18] contains
some elementary connections between tolerances and undirected graphs.

A nonempty set X ⊆ U is a preblock if and only if X is a clique of G,
that is, all points in X are connected by an edge of G. A block of R is
thus a maximal clique. For any x ∈ U , the neighbourhood R(x) is the set of
points connected to x. If this set forms a clique, then by Lemma 2.1, R(x) is
necessarily a block, that is, a maximal clique. In general, listing all maximal
cliques may require exponential time as there exist graphs with exponentially
many maximal cliques. The article [1] presents an improved version of the
fundamental Harary–Ross algorithm [9] enumerating all cliques of a graph.

Note also that blocks (or maximal cliques) have several applications. For
instance, in [12] are studied tolerances on lattices and their block description,
and in [13] blocks of compatible relations on error algebras are considered.
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3. Tolerances induced by quasiorders

Let . be a quasiorder on U , that is, . is a reflexive and transitive binary
relation on U . The pair (U,.) is called a quasiordered set. An element x is
a minimal element of (U,.), if y . x implies y & x, where & denotes the
inverse relation of .. Note that this definition coincides with the definition
of minimality in partially ordered sets, because of the antisymmetry of a
partial order ≤. We say that (U,.) is bounded by minimal elements if for
any x ∈ U , there exists a minimal m ∈ U such that m . x.

The relation &◦. is a tolerance on U and it is denoted simply by ≈. The
upset .(x) = {y | x . y} is written as ↑x. Note that for any x ∈ U , ↑x is a
preblock of ≈, because a, b ∈ ↑x is equivalent to a & x . b, that is, a ≈ b.

Lemma 3.1. Let . be a quasiorder on U .

(a) If m is a minimal element, then ≈(m) = ↑m and ↑m is a block of ≈.

(b) If (U,.) is bounded by minimal elements, then H = {↑m |
m is minimal } is an irredundant covering of U , and the tolerance in-

duced by H is ≈.

Proof. (a) We first show that m ≈ x if and only if x ∈ ↑m. If x ≈ m, then
x & a . m for some a ∈ U . But since m is minimal, a . m gives m . a . x

and x ∈ ↑m. Conversely, x,m ∈ ↑m implies x ≈ m since ↑m is a preblock
of ≈. Thus, ≈(m) = ↑m.

If x, y ∈ ↑m, then m . x and m . y give x ≈ y. By Lemma 2.1 this
means that ↑m is a block of ≈.

(b) Let x ∈ U . Because U is bounded by minimal elements, there exists
a minimal m such that m . x and x ∈ ↑m. Hence,

⋃
H = U .

Next, we prove that the tolerance RH induced by H equals ≈. If (x, y) ∈
RH, then there exists a minimal m such that x, y ∈ ↑m. Then, x & m . y

gives x ≈ y. Conversely, x ≈ y means that there exists an element a such
that x & a . y. Thus, a . x, y. Since U is bounded by minimal elements,
there exists a minimal m such that m . a . x, y. Therefore, x, y ∈ ↑m and
(x, y) ∈ RH.

Because each element of H is of the form RH(m) = ≈(m) = ↑m, H is
irredundant, since (D1) and (D2) are equivalent. �

Corollary 3.2. Let (U,.) be bounded by minimal elements and x, y ∈ U .

Then, x ≈ y if and only if there exists a minimal m such that x, y ∈ ↑m.

Let R be a tolerance on U . It is clear that the relation .R defined by

x .R y ⇐⇒ R(x) ⊆ R(y)

is a quasiorder on U . In addition, we denote by ≈R the relation &R ◦ .R.
It is easy to observe that

x ≈R y ⇐⇒ (∃a)R(a) ⊆ R(x) ∩R(y).

Lemma 3.3. If R is a tolerance on U induced by an irredundant covering H,

then (U,.R) is bounded by the minimal elements {d ∈ U | R(d) is a block}.

Proof. Let R(d) be a block. As noted in Section 1, R(d) is an atom of ℘(U)N.
Suppose that x .R d. Then, ∅ 6= R(x) ⊆ R(d), and because R(x) ∈ ℘(U)N

and R(d) is an atom of ℘(U)N, we have R(d) = R(x). This gives x &R d,
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and thus d is minimal. On the other hand, if m is a minimal element, then
for all x ∈ U , x .R m implies x &R m, that is, R(x) ⊆ R(m) implies
R(x) = R(m). Because R(m) ∈ ℘(U)N, there exists an atom R(d) of ℘(U)N

such that R(d) ⊆ R(m). By the minimality of m, we have R(m) = R(d).
Since R(d) is a block, also R(m) is a block. Therefore, the set of minimal
elements of (U,.R) is {d ∈ U | R(d) is a block}.

Let x ∈ U . Since R(x) ∈ ℘(U)N, there exists R(d) such that R(d) is a
block and R(d) ⊆ R(x). But R(d) ⊆ R(x) means d .R x and since d is
minimal by the above, U is bounded by the minimal elements. �

Theorem 3.4. For a tolerance R on U , the following are equivalent:

(a) R is induced by an irredundant covering.

(b) (U,.R) is bounded by minimal elements and R equals ≈R.

Proof. (a)⇒(b): By Lemma 3.3, (U,.R) is bounded by minimal elements.
Thus, it suffices to show that R equals ≈R. If aR b, then by Lemma 2.3
and the equivalence of (D1) and (D2), there exists d such that R(d) is a
block of R and a, b ∈ R(d). By Lemma 2.1, we have R(d) ⊆ R(a) ∩ R(b),
and hence a ≈R b. Conversely, if a ≈R b, then by Corollary 3.2, there exists
a .R-minimal element d such that a, b ∈ ↑d, that is, R(d) ⊆ R(a), R(b).
Notice that by Lemma 3.3, d is an element such that R(d) is a block. Then,
R(d) ⊆ R(a), R(b) implies a, b ∈ R(d), and since R(d) is a block, we have
aR b.

(b)⇒(a): If (U,.R) is bounded by minimal elements, then by
Lemma 3.1(b), the tolerance R = ≈R is induced by the irredundant cov-
ering H = {↑m | m is minimal }. �

Example 3.5. For a given tolerance R on U , the minimal elements x in
(U,.R) are such that R(x) is a block, as is shown in the proof of Lemma 3.3.
In Example 2.4, we noted that R(x) is a block if and only if R(x) is a clique.

Consider the graph G defined by the tolerance R on U = {a, b, c, d} de-
picted in Figure 1. Note that this graph originates from Example 1.3 in [14].
The R-neighbourhood of the elements a, b, and d forms a clique. Thus, they
are minimal in (U,.R). Note that the elements a and b are such that a .R b

Figure 1.

and b .R a, but a 6= b. This is expressed in the diagram of (U,.R) by the
dashed segment, and the solid lines depict the “natural” partial order be-
tween the elements. Because U is bounded by minimal elements and ≈R
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is equal to R, the family {{a, b, c}, {c, d}} of the R-neighbourhoods of the
minimal elements form an irredundant covering inducing R by Theorem 3.4.

Remark 3.6. Let R be a tolerance induced by an irredundant covering H.
Since the sets in H are of the form ↑m = R(m), where m is a minimal
element of (U,.R), we have that xR y if and only if there exists a minimal
element element m in (U,.R) such that xRm and y Rm. Thus, the minimal
elements can be considered as a “model” of the tolerance R, because R is
completely determined by the R-neighbourhoods of the minimal elements.
In [11], we called these elements complete. We also know that H ⊆ B(R)
and this inclusion can be proper. Thus, there can be such blocks of R that
are not determined by a complete element. In Section 4, we will concentrate
on characterising the case in which H = B(R).

We end this section considering shortly the notion of a canonical base
introduced in [15]. Let R be a tolerance on U . A subset K ⊆ B(R) is called
a canonical base of R if K induces R, but for any X ∈ K, the family K\{X}
does not induce R.

If R is induced by an irredundant covering of H, then H ⊆ B(R), as
we noted already. In addition, H consists of the upsets ↑m of the minimal
elements of (U,.R). This implies that H is a canonical base, because if we
remove ↑m from H, then the pair (m,m) does not belong to the relation
induced by the family H \ {↑m}, but trivially (m,m) ∈ R.

Proposition 3.7. Let R be a tolerance induced by a family H ⊆ B(R).
Then, the following assertions are equivalent:

(a) H is an irredundant covering of U ;

(b) H is the unique canonical base and H ⊆ {R(x) | x ∈ U}.

Proof. (a)⇒(b): If H is an irredundant covering of U , then H ⊆ {R(x) | x ∈
U} and H is a canonical base. Let K ⊆ B(R) be an arbitrary canonical base
of R. Then, K is also a covering of U , and hence for any minimal element
m of (U,.R), there exists a block B ∈ K such that m ∈ B. Because B is a
block, B ⊆ R(m) ∈ H. Since R(m) is also a block of R, we get R(m) = B.
Thus H ⊆ K, and we get H = K, because K is a canonical base.

(b)⇒(a): The reflexivity of R implies that any canonical base is a covering
of U . Because the covering H satisfies condition (D2), it is irredundant. �

Example 3.8. In Proposition 3.7, we showed that if R is a tolerance induced
by an irredundant covering, then this covering is also the unique canonical
base. In this example, we show that unique bases do not necessarily form
irredundant coverings. Consider the tolerance R on {a, b, c, d} such that
R(a) = {a, b}, R(b) = {a, b, c}, R(c) = {b, c, d}, and R(d) = {c, d}. The
family B(R) = {{a, b}, {b, c}, {c, d}} of the blocks of R is the unique canoni-
cal base of R, but B(R) does not form an irredundant covering of U , because
the block {b, c} can be removed and we still have a covering of U .

4. Helly number and irredundant coverings

The Helly number of a family of sets H is k, if for any subfamily S of H,
any k members of S have a common point, then the sets in S have a common
point. This number is named after Edward Helly (1884–1943). Let us now
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define a similar notion in quasiordered sets. Let (U,.) be a quasiordered
set. We say that (U,.) has the Helly number k, if for any subset A ⊆ U ,
any k elements of A have a common lower bound, then A has a common
lower bound. In particular, the Helly number of (U,.) is 2 if and only if
every preblock of ≈ has a lower bound.

Theorem 4.1. Let (U,.) be a quasiordered set. Then, the following asser-

tions are equivalent:

(a) The Helly number of (U,.) is 2;

(b) B(≈) = {↑m | m is minimal};
(c) B(≈) is an irredundant covering and (U,.) is bounded by minimal ele-

ments.

Proof. (a)⇒(b): Let B be a block of ≈. Because U has the Helly number
2, B has a lower bound m. Thus, B ⊆ ↑m, and because B is a block and
↑m is a preblock, we have B = ↑m. This element m is minimal, because
if a . m, then ↑m ⊆ ↑a. Since ↑m is a block and ↑a is a preblock, we
have ↑m = ↑a. Thus, a ∈ ↑m gives m . a and m is minimal. On the
other hand, if m is minimal, then ↑m is a block by Lemma 3.1(a). Thus,
B(≈) = {↑m | m is a minimal}.

(b)⇒(c): If B(≈) = {↑m | m is minimal}, then for all x ∈ U , there exists
a minimal mx such that x ∈ ↑mx and mx . x. Thus, (U,.) is bounded by
minimal elements. By Lemma 3.1(b), the covering B(≈) is irredundant.

(c)⇒(a): Assume that B(≈) is an irredundant covering and (U,.) is
bounded by minimal elements. Then, by Lemma 3.1(b), H = {↑m |
m is minimal} is an irredundant covering inducing ≈. Lemma 2.3 implies
H ⊆ B(≈). But since also B(≈) is irredundant, we must have H = B(≈).
Suppose P is a ≈-preblock. Then, there exists a block B of ≈ such that
P ⊆ B ∈ H. Because H consists of such upsets ↑m that m is minimal, there
exists a minimal m such that B = ↑ m. Thus, m is a lower bound of B and
P , and the Helly number of (U,.) is 2. �

In the following, we characterise for finite quasiordered sets the cases in
which their Helly number is 2. If (U,.) is a finite quasiordered set, then
(U,.) has at least one minimal element. This can be seen as follows. Let
a1 be any element of U . If a1 is not minimal, then there exists an element
a2 such that a2 . a1, but a2 6& a1. If a2 is minimal, then we are finished.
If a2 is not minimal, then there is a3 such that a3 . a2 and a3 6& a2. If a3
is not minimal, continue this procedure. Since A is finite, this process must
terminate.

Proposition 4.2. Let (U,.) be a finite quasiordered set. The following are

equivalent:

(a) The Helly number of (U,.) is 2.

(b) If for some minimal elements a1, a2, a3 ∈ U , the intersections ↑a1∩↑a2,
↑a1 ∩ ↑a3, ↑a2 ∩ ↑a3 are nonempty, then there exists a minimal element

a ∈ U such that

(↑a1 ∩ ↑a2) ∪ (↑a1 ∩ ↑a3) ∪ (↑a2 ∩ ↑a3) ⊆ ↑a.

Proof. (a)⇒(b): Let a1, a2, a3 be minimal elements and let H = (↑a1 ∩
↑a2) ∪ (↑a1 ∩ ↑a3) ∪ (↑a2 ∩ ↑a3). If x, y ∈ H, then there exists ai for some
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1 ≤ i ≤ 3 such that x & ai . y and x ≈ y. This means that H is a preblock,
and since (a) holds, H has a lower bound b. Because (U,.) is finite, there
exists a minimal element a such that a . b. Hence, H ⊆ ↑a.

(b)⇒(a): We show by induction that each preblock X of ≈ has a lower
bound. Let X be a preblock. If |X| = 1, then the only element in X is
trivially a lower bound of X. If |X| = 2, then X = {x, y} for some x, y ∈ U ,
and x ≈ y means that there is a ∈ U such that a . x, y. Thus, a is a lower
bound for X. As an induction hypothesis, we assume that each preblock
X of ≈ such that |X| ≤ n has a lower bound. Let us consider a preblock
X such that |X| = n + 1. Since X has now at least three elements, X can
be partitioned into three disjoint nonempty sets X1, X2, X3. It is obvious
that the sets X1 ∪ X2, X1 ∪ X3, X2 ∪ X3 are preblocks having at most n

elements. By the induction hypothesis, these preblocks have lower bounds.
Since (U,.) is finite, there exists minimal elements a1, a2, a3 ∈ U such that
a1 . x1 for all x1 ∈ X1 ∪X2, a2 . x2 for all x2 ∈ X1 ∪X3, and a3 . x3 for
all x3 ∈ X2 ∪X3. This implies that

X1 ⊆ (↑a1 ∩ ↑a2), X2 ⊆ (↑a1 ∩ ↑a3), X3 ⊆ (↑a2 ∩ ↑a3)

Because the intersections ↑a1 ∩ ↑a2, ↑a1 ∩ ↑a3, ↑a2 ∩ ↑a3 are nonempty and
(b) holds, there exists a minimal element a such that

X = X1 ∪X2 ∪X3 ⊆ (↑a1 ∩ ↑a2) ∪ (↑a1 ∩ ↑a3) ∪ (↑a2 ∩ ↑a3) ⊆ ↑a.

Thus, the preblock X has a lower bound a. �

We will call a covering H of a set U normal if it satisfies the conditions
(ii) and (iv) from page 19 of the book [3], that is,

(N1) H is an antichain with respect to ⊆.
(N2) If M ⊆ U is a set such that M * B for all B ∈ H, then there exists

at least one two-element set {a, b} ⊆ M such that {a, b} * B for all
B ∈ H.

Theorem 2.9 of [3] (see also [4–6, 8]) states that a covering H of U is
normal if and only if there is a tolerance R on U such that H = B(R). For a
normal covering H, this R is just the tolerance induced by H. Thus, there is
a one-to-one correspondence between tolerances on U and normal coverings
on U . Note also that in [19], normal coverings, and their relationship to
cliques of a graph, are studied under the name τ -coverings. As an immediate
consequence of [3] and [19], we obtain:

Remark 4.3. Let H be a normal covering of U . If for some B1, B2, B3 ∈ H,
the intersections B1 ∩ B2, B1 ∩ B3, and B2 ∩ B3 are nonempty, then there
exists B ∈ H that includes these intersections. Indeed, let C = (B1 ∩B2) ∪
(B1 ∩ B3) ∪ (B2 ∩ B3). Then, for any {a, b} ⊆ C, we have {a, b} ⊆ Bi for
some i ∈ {1, 2, 3}. Since H is a normal covering of U , C * B for all B ∈ H
is not possible. Therefore, there exists B ∈ H that includes C.

In Lemma 2.3, we showed that if R is a tolerance induced by an irredun-
dant covering H, then H ⊆ B(R). The natural question then is, when such
a H coincides with B(R)? An obvious answer is that exactly in the case
the covering H is normal. Next we present a theorem that connects normal
coverings, Helly numbers of 2, and the condition given in Remark 4.3 for
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tolerances induced by an irredundant finite covering. For that, we need to
introduce some notation. Let R be a tolerance on U . We denote by

N = {R(x) | x ∈ U}

the set of all R-neighbourhoods of the elements of U . This set can be ordered
by the set-inclusion ⊆. Thus, (N ,⊆) is a partially ordered set. Observe that
x .R y in U if and only if R(x) ⊆ R(y) in N . The following conditions are
now obvious:

• The element m ∈ U is a minimal element of (U,.R) if and only if
R(m) is a minimal element of (N ,⊆).

• The Helly number of (U,.R) is 2 if and only if the Helly number of
(N ,⊆) is 2.

If R is a tolerance induced by a finite irredundant covering H of U , then
N is finite. Indeed,

H = {R(m) | m is minimal} = {R(m) | R(m) is an atom of ℘(U)N}

and hence ℘(U)N is finite, because it is generated by a finite set H of atoms.
Therefore, N ⊆ ℘(U)N must be finite.

Proposition 4.4. Let R be a tolerance induced by a finite irredundant cov-

ering H of U . Then, the following assertions are equivalent:

(i) H = B(R).
(ii) H is a normal covering.

(iii) If for some B1, B2, B3 ∈ H, the intersections B1 ∩ B2, B1 ∩ B3, and

B2 ∩ B3 are nonempty, then there exists B ∈ H that includes these

intersections.

(iv) The Helly number of (U,.R) is 2.

Proof. The equivalence (i)⇔(ii) is an immediate consequence of [3, The-
orem 2.9] as we already noted, and the implication (ii)⇒(iii) is clear by
Remark 4.3.

(iii)⇒(iv): Let R(a1), R(a2), and R(a3) be minimal elements in N such
that the intersections R(a1) ∩R(a2), R(a1) ∩R(a3), and R(a2) ∩R(a3) are
nonempty. Then, the elements a1, a2, and a3 are minimal in (U,.R) and
↑a1, ↑a2, and ↑a3 belong to H, since H is an irredundant covering. We have
that the intersections ↑a1 ∩ ↑a2, ↑a1 ∩ ↑a3, and ↑a2 ∩ ↑a3 are nonempty,
which by assumption (iii) implies that there exists a minimal a in (U,.R)
such that ↑a ∈ H includes the intersections ↑a1∩↑a2, ↑a1∩↑a3, and ↑a2∩↑a3.
Therefore, by Proposition 4.2, the Helly number of (U,.R) is two.
(iv)⇒(i). Assume that (iv) holds. Then, by Theorem 4.1, the blocks of
the tolerance ≈R form an irredundant covering of U and B(≈R) = {↑m |
m is minimal}. Since by assumption, R is induced by an irredundant cov-
ering H, Theorem 3.4 implies that R equals ≈R. By Lemma 2.3, we have
H ⊆ B(R) = B(≈R). Because both H and B(≈R) are irredundant coverings
inducing R, we get H = B(R). �

Example 4.5. Let us consider the tolerance on U = {a, b, c, d, e, f, g} given
in Figure 2. The corresponding quasiordered set (U,.R) is bounded by min-
imal elements a, c, g. In addition, the tolerance R coincides with the relation
≈R and thus R is induced by an irredundant covering H = {↑a, ↑c, ↑g}.
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Figure 2.

We have that the following intersections of elements in H are nonempty:

↑a ∩ ↑c = {b, d}, ↑a ∩ ↑g = {d, e}, and ↑c ∩ ↑g = {d, f}.

Obviously, there is no B ∈ H that includes the union {b, d, e, f} of the above
intersections. By Proposition 4.4, we have H ⊂ B(R). In fact, {b, d, e, f} is
the only block of R not belonging to H.

It is also interesting to notice that the quasiordered set (U,.R) of Figure 2
is almost isomorphic to the Boolean lattice 23 except that the least element
is missing. Next we consider the tolerances induced by finite distributive
lattices. Let L = (L,≤) be a lattice with a least element 0. We denote the
set L \ {0} by L+. We say that the Helly number of the lattice L is k, if the
partially ordered set (L+,≤) has the Helly number k.

Corollary 4.6. If L = (L,≤) is a finite distributive lattice, then the Helly

number of L is 2 if and only if L has at most two different atoms.

Proof. Because L is finite, it has a least element 0, and its atoms are pre-
cisely the minimal elements of (L+,≤). If their number is one or two, then
condition (b) of Proposition 4.2 is trivially satisfied, and hence the Helly
number of (L+,≤) and L is 2.

Conversely, suppose that the Helly number of L is 2. Let us first recall
the well-known facts that for any x, y ∈ L, ↑x ∩ ↑y = ↑(x ∨ y), and x ≥ y if
and only if ↑x ⊆ ↑y.

Let a1, a2, a3 ∈ L be three distinct atoms of L. First notice that they
are minimal elements in (L+,≤) and that the upsets corresponding to these
atoms can not be disjoint, because each of them contains the greatest el-
ement 1 of the finite lattice L. By applying Proposition 4.2, we get that
there exists an atom a ∈ L such that ↑(a1 ∨ a2) ⊆ ↑a, ↑(a1 ∨ a3) ⊆ ↑a, and
↑(a2 ∨ a3) ⊆ ↑a. Since L is distributive and a1, a2, a3 are atoms, this implies

a ≤ (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3) = (a1 ∧ a2) ∨ (a1 ∧ a3) ∨ (a2 ∧ a3) = 0,

a contradiction. �

We may now conclude that each finite distributive lattice L = (L,≤) in-
duces a tolerance (≥◦≤) on L+. Let us denote this tolerance by ⊲⊳. Because
L+ is finite, it is trivially bounded by minimal elements. By Lemma 3.1,
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H = {↑m | m is minimal} is an irredundant covering of L+, and the toler-
ance induced by H is ⊲⊳. By Corollary 4.6, the Helly number of L is 2 if and
only if L has at most two different atoms. Finally, we obtain that B(⊲⊳) = H
if and only if L has at most two different atoms by Proposition 4.4.
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