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Abstract. We present and study new definitions of universal and programmable universal unary functions and
consider a new simplicity criterion: almost decidability of the halting set. A set of positive integersS is almost
decidable if there exists a decidable and generic (i.e. a setof natural density one) set whose intersection withS is
decidable. Every decidable set is almost decidable, but theconverse implication is false. We prove the existence
of infinitely many universal functions whose halting sets are generic (negligible, i.e. have density zero) and (not)
almost decidable. One result—namely, the existence of infinitely many universal functions whose halting sets
are generic (negligible) and not almost decidable—solves an open problem in [9]. We conclude with some open
problems.
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1. Universal Turing Machines and Functions

The first universal Turing machine was constructed by Turing[19, 20]. In Turing’s words:

. . . a single special machine of that type can be made to do the work of all. It could in fact be made to
work as a model of any other machine. The special machine may be called the universal machine.

Shannon [18] proved that two symbols were sufficient for constructing a universal Turing machine providing
enough states can be used. According to Margenstern [12]: “Claude Shannon raised the problem of what is now
called thedescriptional complexityof Turing machines: how many states and letters are needed inorder to get
universal machines?” Notable universal Turing machines include the machines constructed by Minsky (7-state
4-symbol) [15], Rogozhin (4-state 6-symbol) [17], Neary–Woods (5-state 5-symbol) [16]. Herken’s book [10]
celebrates the first 50 years of universality. Woods and Neary presents a survey in [21]; Margenstern’s paper [12,
p. 30–31] presents also a time line of the main results.

http://arxiv.org/abs/1505.01340v1
www.cs.auckland.ac.nz/~cristian
desfontain.es/serious.html
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Roughly speaking, a universal machine is a machine capable of simulating any other machine. There are a few
definitions of universality, the most important beinguniversality in Turing’s senseandprogrammable universality
in the sense of Algorithmic Information Theory [1, 7].

In the following we denote byZ+ the set of positive integers{1, 2, . . .}, andZ+ = Z
+∪{∞}. The cardinality of

a setS is denoted by#S. The domain of a partial functionF : Z+ −→ Z+ is dom(F ) = {x ∈ Z
+ | F (x) 6= ∞}.

We assume familiarity with the basics of computability theory [6, 13].

We define now universality for unary functions.
A partially computable functionU : Z+ −→ Z+ is called (Turing) universalif there exists a computable

functionCU : Z+ × Z
+ −→ Z

+ such that for any partially computable functionF : Z+ −→ Z+ there exists an
integergU,F (called aGödel numberof F for U ) such that for allx ∈ Z

+ we have:U (CU (gU,F , x)) = F (x).
Following [14, 3] we say that a partially computable function U : Z+ −→ Z+ is programmable universalif for

every partially computable functionF : Z+ −→ Z+ there exists a constantkU,F such that for everyx ∈ Z
+ there

existsy ≤ kU,F · x with U(y) = F (x).1

Theorem 1. A partially computable functionU : Z+ −→ Z+ is programmable universal iff there exists a partially
computable functionCU : Z+ × Z

+ −→ Z+ such that for any partially computable functionF : Z+ −→ Z+ there
exist two integersgU,F , cU,F such that for allx ∈ Z

+ we have

U (CU (gU,F , x)) = F (x) (1)

and
CU (gU,F , x) ≤ cU,F · x. (2)

Proof:
First we construct a partially computable functionV : Z+ −→ Z+ and a partially computable functionCV : Z+ ×
Z
+ −→ Z+ such that for every partially computable functionF , (1) and (2) are satisfied. Indeed, the classical

Enumeration Theorem [6] shows the existence of a partial computable functionΓ: Z+ ×Z
+ −→ Z+ such that for

every partial computable functionF : Z+ −→ Z+ there existse ∈ Z
+ such thatF (x) = Γ(e, x), for all x ∈ Z

+.
Consider the computable functionf : Z+ × Z

+ −→ Z
+ such that the binary expansion off(e, x) is obtained by

prefixing the binary expansion ofx with the binary expansion of2e+ 1. Thenα is injective because ife1e2 . . . en
andx1x2 . . . xm are the binary expansions ofe andx, respectively, thene10e20 . . . en1x1x2 . . . xm is the binary
expansion off(e, x) from which we can uniquely recovere andx. If f1, f2 : Z+ −→ Z

+ are computable partial
inverses off , i.e.f(f1(x), f2(x)) = x, for all x ∈ f(Z+×Z

+), then the functionV (x) = Γ(f1(x), f2(x)) has (1)
and (2) forCV = f .2

Let U be programmable universal, that is, for every partially computable functionF : Z+ −→ Z+ there exists
a constantkU,F such that for everyx ∈ Z

+ there existsy ≤ kU,F · x with U(y) = F (x). We shall useV to prove
thatU satisfies the condition in the statement of the theorem.

Let b : Z+ × Z
+ −→ Z

+ be a computable bijection andb1, b2 the components of its inverse.
We define the partially computable functionCU as follows. We consider first the setS(z, x) = {y ∈ dom(U) |

y ≤ b1(z) · x,U(y) = V (CV (b2(z), x))} and then we defineCU (z, x) to be the first element ofS(z, x) according
to some computable enumeration ofdom(U). Formally, letE be a computable one-one enumeration ofdom(U)
and define

CU (z, x) = E (inf{y |E(y) ≤ b1(z) · x andU(E(y)) = V (CV (b2(z), x))}) .

1For the programming-oriented reader we note that the property “programmable universal” corresponds to being able to write a compiler.
2This construction suggests that the functionCU may be taken to be computable.
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We now prove thatU satisfies the condition in the statement of the theorem viaCU . To this aim letF be a
partially computable function and letgV,F , cV,F be the constants associated toV andF .

PutgU,F = b(kU,F , gV,F ) andcU,F = kU,F .

We have:

CU (gU,F , x) = E (inf{y | E(y) ≤ b1(gU,F ) · x andU(E(y)) = V (CV (b2(gU,F ), x))})

= E (inf{y | E(y) ≤ kU,F · x andU(E(y)) = V (CV (gV,F , x))})

= E (inf{y | E(y) ≤ kU,F · x andU(E(y)) = F (x)})

≤ kU,F · x = cU,F · x,

andU(CU (gU,F , x)) = F (x).
Conversely, ifV satisfies (1) and (2) with the partially computable functionCV , thenV is programmable

universal: given a partially computable functionF andx ∈ Z
+, y = CV (gV,F , x) andkV,F = cV,F . ⊓⊔

Universal and programmable universal functions exist and can be effectively constructed. Every programmable
universal function is universal, but the converse implication is false.

2. The Halting Set and Almost Decidability

Interesting classes of Turing machines have decidable halting sets: for example, Turing machines with two letters
and two states [12]. In contrast, the most (in)famous resultin computability theory is thatthe halting set Halt(U) =
dom(U) of a universal functionU is undecidable.

However, the halting set Halt(U) is computably enumerable (see [6, 13]). How “undecidable” is Halt(U)?
To answer this question we formalise the following notion: asetS is “almost decidable” if there exists a “large”
decidable set whose intersection withS is also decidable. In other words, the undecidability ofS can be located to
a “small” set.

To define “large” sets we can employ measure theoretical or topological tools adapted to the set of positive
integers (see [1]). In what follows we will work with the(natural) densityon P (Z+). Its motivation is the
following. If a positive integer is “randomly” selected from the set{1, 2, . . . , N}, then the probability that it
belongs to a given setA ⊂ Z

+ is

pN (A) =
# ({1, . . . , N} ∩A)

N
.

If limN−→∞ pN (A) exists, then the setA ⊂ Z
+ hasdensity:

d (A) = lim
N−→∞

# {1 ≤ x ≤ N | x ∈ A}

N
.

Definition 2. A set isgenericif it has density one; a set of density zero is callednegligible. A setS ⊂ Z
+ is almost

decidableif there exists a generic decidable setR ⊂ Z
+ such thatR ∩ S is decidable.

Every decidable set is almost decidable, but, as we shall seebelow, there exist almost decidable sets which are
not decidable. A set which is not almost decidable contains no generic decidable subset; of course, this result is
non-trivial if the set itself is generic.

Theorem 3. ([9], Theorem 1.1)
There exists a universal Turing machine whose halting set isnegligible and almost decidable (in polynomial time).
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A single semi-infinite tape, single halt state, binary alphabet universal Turing machine satisfies Theorem 3;
other examples are provided in [9].

Negligibility reduces to some extent the power of almost decidability in Theorem 3. This deficiency is overcome
in the next result: the price paid is in the redundancy of the universal function.

Proposition 4. There exist infinitely many universal functions whose halting sets are generic and almost decidable
(in polynomial time).

Proof:
Let V be a universal function and defineU by the formula:

U(x) =

{

V (y), if x = y2, for somey ∈ Z
+,

0, otherwise.

Clearly,U is universal, Halt(U) is generic, the setS = {y ∈ Z
+ | y 6= x2 for everyx ∈ Z

+} is generic and
decidable (in polynomial time) andS ∩ Halt(U) is generic and decidable (in polynomial time). ⊓⊔

Corollary 5. There exist infinitely many almost decidable but not decidable sets.

Does there exist a universal functionU whose halting set is not almost decidable? This problem was left open
in [9]: here we answer it in the affirmative.

Theorem 6. There exist infinitely many universal functions whose halting sets are not negligible and not almost
decidable.

Proof:
We start with an arbitrary universal functionV and construct a new universal functionU whose halting set Halt(U)
is not almost decidable.

First we define the computable functionϕ : Z+ −→ Z
+ by ϕ(n) = max{k ∈ Z

+ | 2k−1 dividesn}.

The functionϕ has the following properties:

(a) ϕ(2m−1(2k + 1)) = m, for everym,k ∈ Z
+, soϕ outputs every positive integer infinitely many times.

(b) ϕ−1(n) = {k ∈ Z
+ | 2n−1 dividesk but 2n does not dividek}.

(c) d(ϕ−1(n)) = 2−n, for all n ∈ Z
+.

(d) If S ⊆ Z
+ andd(S) = 1, then for everyn ∈ Z

+, ϕ−1 (n) ∩ S 6= ∅.

For (d) we note that ifϕ−1 (n) ∩ S = ∅, thend (S) ≤ 1− 2−n, a contradiction.

Next we defineU(x) = V (ϕ(x)) and prove thatU is universal. We consider the partially computable func-
tion CU (z, x) = inf{s ∈ Z

+ | ϕ(s) = CV (z, x)} and note that: 1) by (a),dom(CU ) = dom(CV ), and 2)
ϕ(CU (z, x)) = CV (z, x), for all (z, x) ∈ dom(CV ). Consequently, for every partially computable function
F : Z+ −→ Z+ we haveF (x) = V (CV (gV,F , x)) = V (ϕ(CU (gV,F , x))), sogU,F = gV,F .

Let us assume by absurdity that there exists a generic decidable setS ⊆ Z
+ such thatS ∩Halt(U) is decidable.
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Define the partial functionθ : Z+ −→ Z+ by θ(n) = inf{k ∈ S | ϕ (k) = n}.

As S is decidable,θ is partially computable; by (a) (ϕ is surjective) and by (d) (asd(S) = 1, for all n ∈ Z
+,

ϕ−1(n) ∩ S 6= ∅) it follows thatθ is computable. Furthermore, the computable functionθ has the following two
properties: for alln ∈ Z

+, ϕ(θ(n)) = n andθ(n) ∈ S.

We next prove that for alln ∈ Z
+,

n ∈ Halt(V ) iff θ(n) ∈ S ∩ Halt(U). (3)

Indeed,

n ∈ Halt(V ) ⇐⇒ V (n) < ∞

⇐⇒ V (ϕ(θ(n))) < ∞ (ϕ(θ(n)) = n)

⇐⇒ U(θ(n)) < ∞ (definition ofU)

⇐⇒ θ(n) ∈ Halt(U)

⇐⇒ θ(n) ∈ S ∩ Halt(U). (θ(n) ∈ S)

From (3) it follows that Halt(V ) is decidable becauseS ∩ Halt(U) is decidable, a contradiction.

Finally, d(Halt(U)) > 0 because Halt(U) = ϕ−1(Halt(V )).
By varying the universal functionV we get infinitely many examples of universal functionsU . ⊓⊔

Corollary 7. There exist infinitely many universal functionsU such that for any generic computably enumerable
setS ⊆ Z

+, S ∩ Halt (U) is not decidable.

Proof:
AssumeS is computable enumerable andd(S) = 1. If replace the computable functionθ with the computable
functionΓ(n) = E(min{k ∈ Z

+ | ϕ(E(i)) = n}), whereE : Z+ −→ Z+ is a computable injective function such
thatE(Z+) = S (S is infinite) in the proof of Theorem 6, then we prove thatS ∩ Halt (U) is not decidable. ⊓⊔

There are six possible relations between the notions of negligible, generic and almost decidable sets. The above
results looked at three of them: here we show that the remaining three possibilities can be realised too. First, it is
clear that there exist non-negligible and decidable sets, hence non-negligible and almost decidable sets.

The next result is a stronger form of Theorem 6: its proof depends on a setA and works for other interesting
sets as well.

Theorem 8. There exist infinitely many universal functions whose halting sets are generic and not almost decid-
able.

Proof:
We use a computably enumerable generic setA which has no generic decidable subset (see Theorem 2.22 in [11])
to construct a universal function as in the statement above.

AssumeA = Halt(F ) for some partially computable functionF . Let V be an arbitrary universal function and
defineU by:

U(x) =

{

V (y), if x = y2, for somey ∈ Z
+,

F (x), otherwise.
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Clearly Halt(U) is universal and generic.
For the sake of a contradiction assume that Halt(U) is almost decidable byS, i.e.S is a generic decidable set

such that Halt(U) ∩ S is decidable.
We now prove that Halt(F ) is almost decidable byS′ = S ∩ P , whereP is the set of square positive integers

(note thatP is decidable and negligible) andP is the complement ofP . It is clear thatS′ is generic and decidable,
so we need only to show that Halt(F)∩ S

′

= Halt(F)∩ S ∩ P is decidable.
We note that Halt(U) is a disjoint union of the sets{x ∈ Z

+ | x = y2, for somey ∈ Halt(V )} and Halt(F )∩P ,
and the first set is a subset ofP . To test whetherx is in Halt(F)∩ S

′

we proceed as follows: a) ifx ∈ P , then
x 6∈ Halt(F )∩S

′

, b) if x 6∈ P , thenx ∈ Halt(F)∩S
′

iff x ∈ Halt(U)∩S. Hence, Halt(F)∩S
′

is decidable because
Halt(U) ∩ S is decidable, so Halt(U) is almost decidable.

We have obtained a contradiction because Halt(F)∩S
′

is a generic decidable subset ofA, hence Halt(U) is not
almost decidable. ⊓⊔

Let r ∈ (0, 1]. We say that a setS ⊂ Z
+ is r-decidableif there exists a decidable setR ⊂ Z

+ such that
d(R) = r andR ∩ S is decidable; a setS ⊂ Z

+ is weakly decidableif S is r-decidable for somer ∈ (0, 1). With
this terminology, generic sets coincide with1-decidable sets.

Theorem 3.18 of [8] states that there is a computably enumerable generic set that has no decidable subset of
density in(0, 1). Using this set in the proof of Theorem 8 we get the following stronger result:

Theorem 9. There exist infinitely many universal functions whose halting sets are generic and not weakly decid-
able.

A simple set is a co-infinite computably enumerable set whosecomplement has no decidable subset; the exis-
tence of a negligible simple set is shown in the proof of Proposition 2.15 in [11]. If in the proof of Theorem 8 we
use a negligible simple set instead of the computably enumerable generic set which has no generic decidable subset
we obtain the following result:

Theorem 10. There exist infinitely many universal functions whose halting sets are negligible and not almost
decidable.

3. A Simplicity Criterion for Universal Functions and Open Problems

Universality is one of the most important concepts in computability theory. However, not all universal machines
are made equal. The most popular criterion for distinguishing between universal Turing machines is the number of
states/symbols. Other three other criteria of simplicity for universal prefix-free Turing machines have been studied
in [2]. The property of almost decidability is another criterion of simplicity for universal functions.

The universal functionU constructed in the proof of Theorem 6 isnot programmable universal. Theorems 2
and 8 in [4] show that the halting sets of programmable universal string functions (plain or prefix-free) are never
negligible.Are there programmable universal functions not almost decidable?

The notion of almost decidability suggests the possibilityof an approximate (probabilistic) solution for the
halting problem (see also [5, 3]). Assume that the halting set is Halt(U) is almost decidable via the generic
decidable setS and we wish to test whether an arbitraryx ∈ Z

+ is in Halt(U). If x ∈ S, thenx ∈ Halt(U) iff
x ∈ S ∩ Halt(U). If x 6∈ S, then we don’t know whetherx ∈ Halt(U) or x 6∈ Halt(U) (the undecidability is
located inS ∩ Halt(U)). Should we conclude thatx ∈ Halt(U) or x 6∈ Halt(U)? Density does not help because
d(S ∩ Halt(U)) = d(S ∩ Halt(U)) = 0. It is an open problem to find a solution.
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The notion of almost decidability can be refined in differentways, e.g. by looking at the computational com-
plexity of the decidable sets appearing in Theorem 6. Also, it will be interesting to study the property ofalmost
decidabilitytopologically or for other densities.
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