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Abstract. We present and study new definitions of universal and progralote universal unary functions and
consider a new simplicity criterion: almost decidabilifytioe halting set. A set of positive integefss almost
decidable if there exists a decidable and generic (i.e.af settural density one) set whose intersection \sitis
decidable. Every decidable set is almost decidable, buddheerse implication is false. We prove the existence
of infinitely many universal functions whose halting setsgeneric (negligible, i.e. have density zero) and (not)
almost decidable. One result—namely, the existence ofiiefjnmany universal functions whose halting sets
are generic (negligible) and not almost decidable—solnespan problem in]9]. We conclude with some open
problems.
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1. Universal Turing Machines and Functions

The first universal Turing machine was constructed by Tud®j(20]. In Turing’s words:

...asingle special machine of that type can be made to do thlk @ all. It could in fact be made to
work as a model of any other machine. The special machine maglted the universal machine.

Shannon([[18] proved that two symbols were sufficient for tmieting a universal Turing machine providing
enough states can be used. According to Margenstefn [124utfé Shannon raised the problem of what is now
called thedescriptional complexitypf Turing machines: how many states and letters are neederdar to get
universal machines?” Notable universal Turing machinetude the machines constructed by Minsky (7-state
4-symbol) [15], Rogozhin (4-state 6-symbdl) [17], Nearyedls (5-state 5-symbol) [16]. Herken’s book1[10]
celebrates the first 50 years of universality. Woods and We@asents a survey i [21]; Margenstern’s pager! [12,
p. 30-31] presents also a time line of the main results.
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Roughly speaking, a universal machine is a machine capéblenalating any other machine. There are a few
definitions of universality, the most important beimgiversality in Turing’s sensandprogrammable universality
in the sense of Algorithmic Information Theoiy [1, 7].

In the following we denote bf* the set of positive integefd., 2, ...}, andZ+ = Z+U{oo}. The cardinality of
a setS is denoted by#S. The domain of a partial functioR': ZT — Z+ isdom(F) = {z € Z* | F(z) # co}.
We assume familiarity with the basics of computability thef [13].

We define now universality for unary functions.

A partially computable functior : Z+ — Z* is called (Turing) universalif there exists a computable
function Cyy: Z+ x ZT — Z* such that for any partially computable functiéh Z+ — Z* there exists an
integergy, r (called aGddel numbenf F for U) such that for all: € Z* we have:U (Cy (gu.r,x)) = F ().

Following [14,[3] we say that a partially computable funotid: Z+ — Z* is programmable universaf for
every partially computable functioR: Z+ — Z7 there exists a constant;, r such that for every: € Z* there
existsy < ky g - x with U(y) = F(az)ﬂ

Theorem 1. A partially computable functio®: 7+t — 7% is programmable universal iff there exists a partially
computable functioy; : Z* x ZT — Z+ such that for any partially computable functiéh Z+ — Z+ there
exist two integergy, r, cy,r such that for alk: € Z* we have

U(Cv (gur,z)) = F(x) 1)

and
Cvu (gur,z) < cur - . (2

Proof:
First we construct a partially computable functin Z+ —s Z+ and a partially computable functiafi, : Zt x
7+ — 7+ such that for every partially computable functiéh (I) and [2) are satisfied. Indeed, the classical
Enumeration Theorem[6] shows the existence of a partiapetable functiol: Z* x Z+ — ZT such that for
every partial computable functioR: Z+ — Z+ there existe € Z* such thatF (z) = T'(e, ), for all z € Z*.
Consider the computable functigh Z* x Z* — Z* such that the binary expansion ffe, x) is obtained by
prefixing the binary expansion afwith the binary expansion dfe + 1. Thenq is injective because e . .. e,
andzixs ...z, are the binary expansions efandzx, respectively, them0e50...e,lz129 ... 2, IS the binary
expansion off (e, z) from which we can uniquely recoverandz. If fi, fo: ZT — Z* are computable partial
inverses off, i.e. f(fi(x), fa(z)) = z, forallz € f(Z* x Z*), then the functior/ (z) = T'(f1(z), f2(z)) has )
and [2) forCy = f

Let U be programmable universal, that is, for every partially patable functionF': Z+ —s Z+ there exists
a constant; p such that for every: € Z™ there existy < ky p - « with U(y) = F(x). We shall usé/ to prove
thatU satisfies the condition in the statement of the theorem.

Leth: Z* x Z+ — Z* be a computable bijection arbgl, b the components of its inverse.

We define the partially computable functioh; as follows. We consider first the s&(z, z) = {y € dom(U) |
y <bi(z) z,U(y) = V(Cy(ba(z),x))} and then we defin€;(z, x) to be the first element & (z, ) according
to some computable enumerationdefm (U). Formally, letE' be a computable one-one enumeratiorlah (U)
and define

Cu(z,2) = E (inf{y | E(y) < bu(2) - « andU(E(y)) = V(Cy (ba(2),2))})

For the programming-oriented reader we note that the prpfy@rogrammable universal” corresponds to being able tibever compiler.
2This construction suggests that the functi@n may be taken to be computable.



C. S. Calude, D. Desfontaines / Universality and Almost Beduility 1003

We now prove thaly satisfies the condition in the statement of the theoremCyjia To this aim letF be a
partially computable function and let, 7, cy, r be the constants associatedt@nd F.

Putgy r = b(ku,r, gv,r) andcy,r = ku,F.

We have:

Culgur,z) = E(inf{y|E(y) <
= E(inf{y|E(y) <
= E(inf{y|E(y) <
< kyrp-x=cyr-x,

bi(gu,r) -z andU(E(y)) = V(Cv (b2(gu,r), x))})
vr-randU(E(y)) = V(Cy(gv,r,®))})
vr - zandU(E(y)) = F(z)})

k
k

~—_ —

andU(CU(gU,F, 1‘)) = F(I‘)
Conversely, ifV satisfies[(ll) and{2) with the partially computable function, thenV is programmable
universal: given a partially computable functiéhandz € Z*, y = Cy (gv.p, z) andky,r = cy p. O

Universal and programmable universal functions exist amoe effectively constructed. Every programmable
universal function is universal, but the converse impiaats false.

2. The Halting Set and Almost Decidability

Interesting classes of Turing machines have decidablenpalets: for example, Turing machines with two letters
and two states [12]. In contrast, the most (in)famous résaidmputability theory is thahe halting set Haltl) =
dom(U) of a universal functiorl/ is undecidable.

However, the halting set H&lY') is computably enumerable (sée [6] 13]). How “undecidabdeHal{U)?
To answer this question we formalise the following notiorseasS is “almost decidable” if there exists a “large”
decidable set whose intersection withs also decidable. In other words, the undecidabilitysafan be located to
a “small” set.

To define “large” sets we can employ measure theoretical mrlégical tools adapted to the set of positive
integers (see[1]). In what follows we will work with th@atural) densityon P (Z*). Its motivation is the
following. If a positive integer is “randomly” selected frothe set{1,2,..., N}, then the probability that it
belongs to a given set C Z" is

pN(A):#({l,..;]\}N}mA).

If limy_,oo pnv (A) exists, then the set C Z* hasdensity

<z <
d(A):Nh_H)lOO#{l_x_NN‘xGA}'

Definition 2. A set isgenericif it has density one; a set of density zero is calhegligible A setS c Z™ is almost
decidableif there exists a generic decidable $&tC Z* such thatk N S is decidable.

Every decidable set is almost decidable, but, as we shabbelew, there exist almost decidable sets which are
not decidable. A set which is not almost decidable contammgeneric decidable subset; of course, this result is
non-trivial if the set itself is generic.

Theorem 3. ([9], Theorem 1.1)
There exists a universal Turing machine whose halting setgéigible and almost decidable (in polynomial time).
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A single semi-infinite tape, single halt state, binary almtauniversal Turing machine satisfies Theofdm 3;
other examples are provided iA [9].

Negligibility reduces to some extent the power of almostdi#uility in Theoreni B. This deficiency is overcome
in the next result: the price paid is in the redundancy of thigarsal function.

Proposition 4. There exist infinitely many universal functions whose Ingjtsets are generic and almost decidable
(in polynomial time).

Proof:
Let V be a universal function and defibeby the formula:

Ulz) = { Viy), ifz= y.2, for somey € Z7,
0, otherwise

Clearly, U is universal, Hal/) is generic, the se§ = {y € ZT | y # 2% for everyz € Z*} is generic and
decidable (in polynomial time) anfl N Halt(U') is generic and decidable (in polynomial time). O

Corollary 5. There exist infinitely many almost decidable but not dediel@lets.

Does there exist a universal functibhwhose halting set is not almost decidable? This problem gfagpen
in [9]: here we answer it in the affirmative.

Theorem 6. There exist infinitely many universal functions whose Ingjtsets are not negligible and not almost
decidable.

Proof:
We start with an arbitrary universal functid®hand construct a new universal functibrwhose halting set Hglt/)
is not almost decidable.

First we define the computable functign Z+ — Z* by ¢(n) = max{k € Z* | 2¢~! dividesn}.

The functiony has the following properties:

(@ (2™ 1(2k + 1)) = m, for everym, k € Z*, sop outputs every positive integer infinitely many times.
(b) o= (n) = {k € Z* | 27! dividesk but 2" does not divide:}.
() d(p~t(n)) =277, foralln c Z*.

(d) If S C ZT andd(S) = 1, then for everyn € Z+, =1 (n) N S # 0.

For (d) we note that i~ (n) N S = 0, thend (S) < 1 — 27", a contradiction.

Next we definel/ (z) = V(¢(x)) and prove that/ is universal. We consider the partially computable func-
tion Cy(z,xz) = inf{s € Z* | p(s) = Cy(z,2)} and note that: 1) by (aflom(Cy) = dom(Cy ), and 2)
o(Cy(z,z)) = Cy(z,z), for all (z,z) € dom(Cy). Consequently, for every partially computable function
F:7ZT — 7" we haveF(ac) = V(Cv(g\/,F,x)) = V(cp(CU(guF,x))), SOgu,F = gv,F-

Let us assume by absurdity that there exists a generic deeidatS C Z* such thatS nHalt(U) is decidable.
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Define the partial functioft: Z+ — Z+ by 6(n) = inf{k € S | ¢ (k) = n}.

As S is decidableg is partially computable; by (a)Ais surjective) and by (d) (a&(S) = 1, foralln € Z*,
o Y (n)N S # ) it follows thatd is computable. Furthermore, the computable functidras the following two
properties: for alh € Z*, p(6(n)) = n andf(n) € S.

We next prove that for alb € ZT,

n € Halt(V) iff 8(n) € SN Halt(U). (3)
Indeed,
n e Halt(V) «<— V(n) <o
= V(p(0(n))) < oo (¢(0(n)) = n)
< U(f(n)) < o (definition of U)
<= 6(n) € Halt(U)
<= 6(n) € SNHaltU). (O(n) € S)

From [3) it follows that HalV") is decidable becausgn Halt(U) is decidable, a contradiction.

Finally, d(Halt(U)) > 0 because Hall7) = ¢! (Halt(V")).
By varying the universal functiol” we get infinitely many examples of universal functidins O

Corollary 7. There exist infinitely many universal functiobssuch that for any generic computably enumerable
setS C Z*, S NHalt(U) is not decidable.

Proof:

Assumes' is computable enumerable andS) = 1. If replace the computable functighwith the computable
functionT'(n) = E(min{k € Z* | (E(i)) = n}), whereE: ZT — Z+ is a computable injective function such
that E(Z") = S (S is infinite) in the proof of Theoreifl 6, then we prove tisat Halt (U) is not decidable. O

There are six possible relations between the notions ofgiklg, generic and almost decidable sets. The above
results looked at three of them: here we show that the renmathiree possibilities can be realised too. First, it is
clear that there exist non-negligible and decidable setsgéinon-negligible and almost decidable sets.

The next result is a stronger form of Theorem 6: its proof delgeon a sefd and works for other interesting
sets as well.

Theorem 8. There exist infinitely many universal functions whose Ingltsets are generic and not almost decid-
able.

Proof:
We use a computably enumerable genericsethich has no generic decidable subset (see Theorem 2.22]in [1
to construct a universal function as in the statement above.
AssumeA = Halt(F') for some partially computable functiafi. Let V' be an arbitrary universal function and
defineU by:
) { Viy), ifx= 3{2, for somey € Z*,
F(z), otherwise
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Clearly Hal{U) is universal and generic.

For the sake of a contradiction assume that {&ltis almost decidable by, i.e. S is a generic decidable set
such that Halt) N S is decidable.

We now prove that Ha(") is almost decidable bg’ = S N P, whereP is the set of square positive integers
(note thatP is decidable and negligible) afelis the complement aP. It is clear thatS’ is generic and decidable,
so we need only to show that Halt(F)S" = Halt(F)n S N P is decidable.

We note that Ha[t) is a disjoint union of the setsr € Z* | z = y2, for somey € Halt(V')} and Hal{ )N P,
and the first set is a subset Bf To test whether is in Halt(F)n S we proceed as follows: a) if € P, then
x ¢ Halt(F)n S, b)if x ¢ P, thenz € Halt(F)n S iff 2 € Halt(U') N S. Hence, Halt(FN S is decidable because
Halt(U') N S is decidable, so Halt/) is almost decidable.

We have obtained a contradiction because Haft(F) is a generic decidable subset4fhence Haltl) is not
almost decidable. O

Letr € (0,1]. We say that a sef C Z* is r-decidableif there exists a decidable s& c Z* such that
d(R) = randR N S is decidable; a sef C Z* is weakly decidabléf S is r-decidable for some € (0, 1). With
this terminology, generic sets coincide witfdecidable sets.

Theorem 3.18 of [8] states that there is a computably enusteegeneric set that has no decidable subset of
density in(0, 1). Using this set in the proof of Theordrh 8 we get the followitrgrsger result:

Theorem 9. There exist infinitely many universal functions whose ngltsets are generic and not weakly decid-
able.

A simple set is a co-infinite computably enumerable set witoseplement has no decidable subset; the exis-
tence of a negligible simple set is shown in the proof of Psitian 2.15 in[11]. If in the proof of Theorefd 8 we
use a negligible simple set instead of the computably enainleegeneric set which has no generic decidable subset
we obtain the following result:

Theorem 10. There exist infinitely many universal functions whose Imgitsets are negligible and not almost
decidable.

3. A Simplicity Criterion for Universal Functions and Open Problems

Universality is one of the most important concepts in corapility theory. However, not all universal machines
are made equal. The most popular criterion for distinguaigtietween universal Turing machines is the number of
states/symbols. Other three other criteria of simpliatyudniversal prefix-free Turing machines have been studied
in [2]. The property of almost decidability is another crité of simplicity for universal functions.

The universal functior/ constructed in the proof of Theordm 6rist programmable universal. Theorems 2
and 8 in [4] show that the halting sets of programmable usalestring functions (plain or prefix-free) are never
negligible. Are there programmable universal functions not almost didalie?

The notion of almost decidability suggests the possibiityan approximate (probabilistic) solution for the
halting problem (see als@|[5] 3]). Assume that the haltingisédalt(U) is almost decidable via the generic
decidable set and we wish to test whether an arbitrarye Z* is in Halt(U). If z € S, thenz € Halt(U) iff
x € SNHaltlU). If z ¢ S, then we don’'t know whether € Halt(U) or x ¢ Halt(U) (the undecidability is
located inS N Halt(U)). Should we conclude that € Halt(U') or z ¢ Halt(U)? Density does not help because
d(S NHalt(U)) = d(S NnHalt(U)) = 0. Itis an open problem to find a solution.
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The notion of almost decidability can be refined in differertys, e.g. by looking at the computational com-
plexity of the decidable sets appearing in Theofém 6. Alswijli be interesting to study the property afmost
decidabilitytopologically or for other densities.
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