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Abstract. Non-interleaving semantics of concurrent systems is often expressed using posets, where
causally related events are ordered and concurrent events are unordered. Each causal poset describes
a unique concurrent history, i.e., a set of executions, expressed as sequences or step sequences, that
are consistent with it. Moreover, a poset captures all precedence-based invariant relationships be-
tween the events in the executions belonging to its concurrent history. However, concurrent histories
in general may be too intricate to be described solely in terms of causal posets. In this paper, we
introduce and investigate generalised mutex order structures which can capture the invariant causal
relationships in any concurrent history consisting of step sequence executions. Each such structure
comprises two relations, viz. interleaving/mutex and weak causality. As our main result we prove
that each generalised mutex order structure is the intersection of the step sequence executions which
are consistent with it.

Keywords: concurrent history, causal poset, weak causal order, mutex relation, interleaving, step
sequence, causality semantics.

1. Introduction

In order to design and validate complex concurrent systems, it is essential to understand the fundamental
relationships between the events occurring in their executions. However, sequential descriptions (speci-
fications or observations) of executions are not sufficient when it comes to providing faithful information
about causality and independence between events. To address this drawback, one may resort to using
partially ordered sets of events to provide explicit representation of causality in the executions of a con-
current system. The order in which independent events are specified or observed may be accidental and
those descriptions which only differ in the order of occurrences of independent events may be regarded as
belonging to the same (concurrent) history, underpinned by a causal poset [1, 17, 20, 21, 26]. Note that
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Figure 1. A safe Petri net (a), extended with an inhibitor arc implying that when c is executed the output place of
d must be empty (b), and extended with a mutex arc implying that ¢ and d cannot be executed simultaneously (c).

here executions are described as step sequences, i.e., sequences of finite sets (steps) of simultaneously
executed events.

In general, concurrent behaviours can be investigated at the level of individual executions as well as
at the level of order structures, like causal posets, capturing the essential invariant dependencies between
events. The key link between these two levels is the notion of a concurrent history [9], an invariant
closed set A (of descriptions) of executions. The latter means that A is fully determined by invariant
relationships over X, its set of events: causality (e <a f if, in all executions of A, e precedes f);
weak causality (e Ca f if, in all executions of A, e either precedes or is simultaneous with f); and
interleaving/mutex (e = f if, in all executions of A, e is not simultaneous with ). In the case of
safe Petri nets with sequential executions, <A is the only invariant we need (as then, e.g., <A = CA
and =A = <A U <£1). In particular, A is the set of all sequential executions corresponding to the
linearisations of <a. The soundness of this approach is validated by Szpilrajn’s Theorem [24] which
states that each poset is equal to the intersection of its linearisations.

As an example, consider the safe Petri net depicted in Figure 1(a) which generates three step se-
quences involving a, ¢ and d, viz. ¢ = {a}{c,d}, o’ = {a}{c}{d} and 0" = {a}{d}{c}. They can be
seen as forming a single concurrent history A = {¢, ¢, 0’} underpinned by a causal poset < satisfying
a <A cand a <A d . Moreover, this A adheres to the following true concurrency paradigm:

Given two events (c and d), they can be observed as simultaneous (in o)
<~
they can be observed in both orders (¢ before d in ¢/, and d before ¢ in o).
(TRUECON)

Histories adhering to TRUECON are underpinned by causal partial orders, i.e., each such history com-
prises all step sequence executions consistent with a unique causal poset on events involved in the history.

In [9] fundamental concurrency paradigms are identified, including (TRUECON). Another paradigm,
characterised by (TRUECON) with <= replaced by <=, has a natural interpretation provided by safe
Petri nets with inhibitor arcs. Figure 1(b) depicts such a net generating two step sequences involving a, ¢
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and d, viz. 0 = {a}{c,d} and o’ = {a}{c}{d}. They form a concurrent history A’ = {0, ¢’} adhering
to the paradigm that unorderedness implies simultaneity, but not to the true concurrency paradigm as A’
has no step sequence in which d precedes c although ¢ and d occur in a single step in o.

As a result, histories adhering to this weaker paradigm are not underpinned by causal partial orders,
but rather by causality structures (X, <, C) introduced in [7] — called stratified order structures (SO-
structures) — based on causality and an additional weak causality (‘not later than’) relation. A version of
Szpilrajn’s Theorem can be shown to hold also for SO-structures and the concurrent histories they gener-
ate. Stratified order structures were independently introduced in [3] (as ‘prossets’). Their comprehensive
theory was developed in e.g., [11, 12, 16, 19]. As shown in this paper, SO-structures are in a one-to-one
correspondence with mutex order structures, or MO-structures, (X, =, ) based on interleaving/mutex
and weak causality. The first, symmetric, relation describes the events that only occur ordered (never
simultaneously). Hence causality can be captured as a combination of mutex and weak causality.

This paper focuses on the least restrictive paradigm. i.e., there are no constraints imposed on concur-
rent histories. It admits all (invariant closed) concurrent histories comprising step sequence executions.
As shown in [9], it is now sufficient to consider only two invariant relations, viz. mutex and weak causal-
ity. Figure 1(c) depicts a safe Petri net with mutex arcs (see [14]) generating two step sequences involving
a, ¢ and d, viz. o' = {a}{c}{d} and 0" = {a}{d}{c}. We first observe that they form a concurrent
history A” = {¢’, 6"} in which the executions of ¢ and d interleave, and are both preceded by a; in other
words, ¢ =an d, a Car ¢, a Car d and ¢ =ar a =an d. That A” is a concurrent history (i.e., it is
invariant closed) then follows from the observation that A” contains all step sequences involving a, ¢ and
d which obey these invariant relationships. However, A” does not conform to the two earlier considered
paradigms as there is no step sequence in A” in which ¢ and d occur simultaneously. To summarise,
a nonempty set A of step sequence executions over a common set of events X, is a concurrent history iff
A consists of all step sequences o over X such that forall e, f € X: e =4 f implies that e and f are
not simultaneous in o, and e C A f implies that e precedes or is simultaneous with f in o.

The aim of this paper is to provide a structural characterisation of general concurrent histories (con-
sisting of step sequence executions). An early attempt to describe structures of this kind was made in [4].
The there proposed generalised stratified order structures (or GSO-structures) do however not always
capture all implied invariant relationships involving the mutex relation. Here, we will show that gener-
alised mutex order structures (or GMO-structures) describe exactly all general concurrent histories. Our
main result is a version of Szpilrajn’s Theorem for GMO-structures and concurrent histories. For this we
develop a notion of GMO-closure which corresponds to the transitive closure of an acyclic relation.

First, we recall key notions and notations used throughout the paper. In Section 3, we introduce
MoO-structures and establish their relationship with stratified order structures. Then, Section 4 introduces
GMO-structures and proves their main properties, including GMO-closure and the GMO-structure version
of Szpilrajn’s Theorem. Section 5 presents concluding remarks.

A preliminary version of this paper without proofs appeared in [6].

2. Basic definitions

We use the standard notions of set theory and formal language theory. The identity relation on a set X is
defined as idx = {(a,a) | a € X}, the index X may be omitted if it is clear from the context.
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2.1. Composing relations
The composition of two binary relations, R and @, over X is given by
RoQ ={(a,b) | 3c € X : aRc A cQb} .
Moreover, if P C X x X, then we define
Rop @ = {(a,b) | Iz,y) € P: aRzQb N aRyQb} .

Note that o = o,4. The diagram below illustrates the derivation of (a,b) € Rop Q:

Let RC X xX,RY=4idand R" = R" 'oR, forall n > 1. Then: Then: (2) the reflexive closure of
R is defined by R U id; (ii) the transitive closure by R = Ui>1 R?; (ii7) the reflexive transitive closure
by R* = id U R"; and (iv) the irreflexive transitive closure by R* = R* \ id = R*\ id. Moreover, the
inverse of R is given by R~ = {{a,b) | (b, a) € R}, and the symmetric closure by R*¥™ = RU R~1.

We will denote a; . ..aRb; ... b, whenever a;Rb;, for all 4, j. For example, aRbc()d means that
aRbQd and aRcQd.

2.2. Order relations

A relation R C X x X is: (i) symmetric if R = R™'; (44) asymmetric if RN R~! = @; (4i7) reflexive if
id C R; (iv) irreflexive if id N R = @; (v) transitive if Ro R C R; and (vi) total if RUR™' = X x X.

A relation R C X x X is: (¢) an equivalence relation if it is symmetric, transitive and reflexive; (%)
a pre-order if it is irreflexive and R U id is transitive; (¢4¢) a partial order if it is an asymmetric pre-order;
and (iv) a total order if it is a partial order and R U id is total; (v) a stratified order if it is a partial order
such that X x X \ R*Y™ is an equivalence relation.

An irreflexive R induces a least pre-order containing R defined by R*. Following Schroder [23],
R® = R*N(R*)™! = (R* N (R*)™1) W id is the largest equivalence relation contained in R*.

For a stratified order R we define two relations, = g and =g, such that, for all a,b € X: a Cg b iff
a#bA—(bRa),and a =g biff a # bA—(a TF b) (oriff aRbV bRa). If R represents a stratified order
execution, aRb means ‘a occurred earlier than b’, a C r b means ‘a occurred not later than b’, a =gr b
means ‘a did not occur simultaneously with b’, and a E% b means ‘a occurred simultaneously with b’.

Directly from definitions we obtain a number of useful properties.

e Let R be a binary relation over X. Then, for all a,b € X, we have:

(RU{a,b))" = R*U{{c,d) | cR*a NbR*d} (1)
-(bR*a) = (RU{a,b))® = R® )
R® = (R®)"! C R (3)
(RA)A — Rx (Rx)* — R* (R*)* — R* (RA)® — R® (4)
R*cR*=R¥* R'oR*=RYoR*"=R*oR*=R* 5)
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e Let R be a stratified order over X. Then =p is irreflexive and symmetric, and [, is a pre-order
such that:

Cr=Cjp\id =Cy and CH\id =CrnCy' . (6)

Moreover, for all distinct a,b € X:

—(a=pb) <= LCrbAbLCRra
-(aCrb) = bCgra

as well as
aRb <= a=prb A aCRrb (7

(thus ‘a occurred earlier than b’ iff ‘a and b were not simultaneous & a occurred not later than b’)
and exactly one of the following holds:

aﬁRb:RaERbiRa or a\ﬁRbﬁRaZRbERa )
or a#rb# raCrbCRra.

2.3. Relational structures

Atuple S = (X, Ry, Ro, ..., R,), where n > 1 and each R; C X x X is a binary relation on X, is an
(n-ary) relational structure. By the domain of a relational structure S we mean the set X. An extension
of S is any relational structure S = (X, R}, R),. .., R} satisfying R; C R}, for every 1 < i < n.
We denote this by S C S’. The intersection of a nonempty family R = {(X,R},...  R.) | i € I} of
relational structures with the same domain and arity is given by

(R =(X,\Ri,....[\R.)
el il

In what follows, we consider only relational structures that contain two relations and have finite domains.

A relational structure S = (X, Q, R) is separable if Q N R® = @, Q is symmetric and R is
irreflexive. An intersection of separable relational structures with the same domain is also separable.

A relational structure S = (X, Q), R) is saturated in a family of relational structures .2 if it belongs
to 2" and for every extension S’ € 2" of S, we have S = 5’.

A stratified order structure (SO-structures) as defined and analysed in [8, 11] is a relational structure
sos = (X, <, C), where < and [C are binary relations over X such that, for all a, b, c € X:

S1: alZa

S2: a<b = aCb

S8: aCbCcANa#c = alc
S{: aCb=<cVa<bCc = a<c.

Intuitively, a < b means ‘a occurred earlier than b’, a _ b means ‘a occurred not later than b’, and a C
b C a means ‘a occurred simultaneously with b’. Note that an order relation R is stratified iff (X, R, RU
((X x X)\(RUid))) is an SO-structure [8, 11]. Intuitively, stratified orders ‘are’ step sequences whereas
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stratified order structures can be saturated (extended) to define step sequences, similarly to extending
partial orders to linear (total) orders.

A generalized stratified order structure (GSO-structure) is defined in [4] as a relational structure
gsos = (X,=,C) such that = is irreflexive and symmetric, and (X,= N [, ) is an SO-structure.
A comprehensive treatment of GSO-structures can be found in [5].

3. Order structures

In the rest of this paper, we will be concerned with relational structures of the form S = (X, =,C).
Intuitively, X is a set of events involved in some history of a concurrent system, = is a ‘mutex’ (or
‘interleaving’) relation which relates pairs of events which cannot occur simultaneously, and [ is a ‘weak
precedence’ relation between events. The latter means, in particular, that if « — b C a then a and b must
occur simultaneously in any execution belonging to the history represented by .S; i.e., S must be separable
(= N C%®= ©) as separability means that simultaneous events cannot be in the mutex relation.

Definition 3.1. (order structure)
An order structure is any separable relational structure (X, =, C).

3.1. Mutex order structures

We now take a look at stratified order structures, in a way different from that of, e.g., [11, 16, 19]. More
precisely, we will provide a new representation with causal order being replaced by a mutex relation.
While So-structures allow for a more compact representation (strict precedence involves fewer pairs
of events than mutex), the new order structures are easier to generalise to cater for general interleav-
ing/mutex requirements and their properties.

Definition 3.2. (mutex order structure)
A mutex order structure (MO-structure) is a relational structure mos = (X, =, C), where = and [ are
binary relations on X such that, for all a,b,c € X:

Ml: a=b = b=a

M2: alZa

M3: a=b = aCbVbCa

Mj: aCbCecANa#c = alec

M5: aCbCcecA(a=bVb=c = a=c.

Axioms M3 — M$ are illustrated in Figure 2. Some properties of MO-structures are given below.
Proposition 3.1. Every MO-structure mos = (X, =, ) is separable and, for all a, b, ¢, d € X, we have:
(i) a# a;
(17) ifaC b T a= cthenb = c; and

(791) if a C ed C band ¢ = d then a = b.
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Figure 2. A visualisation of axioms M3, M/, and M5.

Proof:
Suppose that a« C* b C* a and a = b. Then a # b and using M4 we may assume that a C b C a.
By M5, we now have a = a, contradicting (i) proved below. Hence a C* b C* a implies a 7 b.
Moreover, = is symmetric by M1, and [ is irreflexive by M2.

To show (i), suppose that a = a. Then, by M3, we have a C a, contradicting M2. Hence a # a.

To show (i7), suppose that a — b T a and @ = ¢. From a = c and M3 it follows that a T c or
cCa IfaC cthendb C a C cand a = ¢, and so, by M5, we obtain b = c¢. Moreover, if ¢ C a then
cC aC band a = c, and so, by M5, we obtain ¢ = b. Together with M1 this yields b = c.

To show (4i7), suppose that a C ¢d C b and ¢ = d. From ¢ = d and M3 it follows that ¢ C d or
d C c. Without loss of generality, we can assume that ¢ C d. Then a C ¢ C d and ¢ = d, and so, by
M5, we obtain @ = d. Moreover, we have a C d C b, and so, also by M5, we obtain a = b. O

The next results demonstrate that MO-structures are in a one-to-one relationship with SO-structures.
Below, we use two mappings: so2mo(sos) = (X, <*¥™ ), for an sO-structure sos = (X, <, C); and
mo2so(mos) = (X,= N C,C), for an MO-structure mos = (X,=,C). Note that so2mo(sos) is
obtained from sos by symmetrically closing the ‘occurs earlier than’ relation < to reflect the fact that
mutex is symmetric. This does not lead to a loss of any precedence relationships as < is included in [,
by S2.

Theorem 3.1. The mappings mo2so and so2mo are inverse bijections.

Proof:
Suppose that mos = (X,=, ) is an MO-structure. We start from showing that (X, = N C,C) is
an SO-structure. Note that S1 = M2 and 53 = M/ because we use the same relation  in both cases.
Hence it remains to be shown that §2 and S4 hold. Let < denote = N .

S2 holds, since by < = = N [, we have that a < b implies a L b.

To show 54, assume that a — b < cor a < b C c. Suppose that o = ¢. Then, by Proposition 3.1(2),
we have a 7 c. Also, wehavea C b C aand a = bV b = a. Hence, by M5, we obtain a = c,
a contradiction. Hence a # c.
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Leta <bC c. Thena C b C cand a = b. By M5, we obtain a = c. Since, by M4, we also have
a C c, it follows that a < c.

Leta T b—<c Thena = b C cand b = c. By M5, we obtain a = ¢. Since, by M4, we also have
a C ¢, it follows that a < ¢. Hence mo2so(mos) is an SO-structure.

Assume that mos’ = (X', =’ ') is an MO-structure such that mo2so(mos) = mo2so(mos’). Then,
clearly, X = X’ and C = C’. Let a = b. Then, by M8 and without loss of generality, a — b. Hence
(a,b) € =N, andso (a,b) € =' N Z'. Thus a =’ b. Conversely, we may show that a =’ b implies
a = b. Hence mos = mos’, demonstrating that mo2so is injective.

Suppose now that sos = (X, <, C) is an SO-structure. We will show that (X, <*¥™ ) is an MO-
structure. Note that M2 = S1 and M/ = 53 because we use the same relation C in both cases. Hence
it remains to be shown that M1, M3 and M5 hold. Let = denote <Y,

MT1 clearly holds.

To show M3, we observe that a = b implies a < bV b < a. Hence, by 52, we obtaina C bV b C a.

To show M5, suppose thata C b C canda = bVb = c. Thena C b C cAa = bor
aC” bC ¢ANb= c. Hence, by = = <Y we obtaina C b C c and

a<bvb<aVvVb<cVe=<b.

Since a C b implies (b < a) by 54,52, 51, we can exclude b < a and ¢ < b, and so we have that
aCb<cora<bLC c Hence, using 54, we get a < c¢. Once more using the definition of =, we
obtain a = ¢. Hence so2mo(sos) is an MO-structure.

Assume that sos’ = (X', </, ') is an SO-structure such that so2mo(sos) = so2mo(sos’). Then,
clearly, X = X’ and C=C". Let @ < b. Then, by S2, a C b and so a " b. Moreover, {(a,b) €<=
(=)™, If (a,b) € (<')~! then, by S4, a <’ a. In this way, we obtained a contradiction with S7
and S2. Thus a <’ b. Conversely, we may show that a <’ b implies a < b. Hence mos = mos’, and so
so2mo is injective.

To show that so2mo and mo2so are inverse mappings, we observe, forall a # b € X:

(a,b) e (=NDO)¥™" iff a=bA(aCbVbC a) iff(by M3) a=1b.
Thus
so2mo o mo2so(X,=,C) =so2mo(X,=NC,C) =(X,(=n0)"", C) =(X,=,C) .

Moreover,
(a,b)y e<*¥" NC iff a<bVb<aCb iff a<b

since, by S4,b < a C bimplies b < b, contradicting 57 and S2. Hence
mo2so o so2mo(X, <, C) = mo2so(X, <*" ) = (X, <¥" nC,C) = (X,<,0),

which completes the proof. O

3.2. Layered order structures

In general, order structures are not saturated and thus represent several executions just like a single
partial order may have several total order linearisations. We will now define order structures that are in
a one-to-one relationship with step sequences.
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Definition 3.3. A relational structure los = (X, =,) is a layered order structure (LO-structure) if
there exists a stratified order R over X such that = = =p and C = Cp.

First we show that LO-structures are MO-structures, and hence correspond to SO-structures.

Proposition 3.2. Every LO-structure los = (X, =, ) is an MO-structure.

Proof:
To show M1, we observe that since = is symmetric, we have a = b =— b = «a.

To show M2, we observe that by Definition 3.3, C is irreflexive. Hence a [Z a.

To show M3, suppose that a = b. Then, by (8), we getthata C bAb[Z aora iZ b A b a. Hence
aCborbC a.

To show M/, suppose that a — b = c and a # ¢. Then a C* ¢. Hence, by transitivity of C, we
obtain a [ c.

To show M5, let firsta © b C cand a = b. Suppose that a = ¢. Thena C b C a and a = b,
contradicting (8). Hence a # c. Thus, by M4, which we already proved, it follows from a C b ¢ that
a C c. Moreover, G2 implies that ¢ # b. In case ¢ C a, we have a C b C ¢ C «a and thus again by M4
a C b C a which in combination with ¢ = b leads to a contradiction with (8). Hence ¢ [Z a and thus,
by (8), a = ¢. Now assume a C b C c and b = c. As before, we must have a # ¢, a C b C ¢, and
b # c. If ¢ C a, then ¢ C b C ¢ holds which in combination with b = ¢ contradicts (8). Hence ¢ [Z a
and thus, by (8), also in this case a = ¢ which completes the proof. O

We can further show that LO-structures are indeed saturated.

Proposition 3.3. Every LO-structure is an order structure, and saturated in the set of all order structures.

Proof:
The first part follows from Propositions 3.2 and 3.1.

Let S = (X, @, R) be an order structure extending los. Suppose that a@Qb and a 7 b. Then, by (8),
we geta C band b C a. Hence aRb and bRa, and so aR®b. As a result, we obtain (a,b) € Q N R?
which contradicts the separability of S. This means that () is equal to =.
Suppose now that aRb and a IZ b. Then, by (8), we get b = a and b C a. Hence bQa and bRa which,
together with a Rb, gives aR®b. As a result, we obtain (a, b) € QN R® which contradicts the separability
of S. This means that R is equal to C, completing the proof. O

For an order structure os = (X, =, C), we will denote by os2los(0s) the set of all LO-structures [os
extending os, i.e., os C los. With this notation, a nonempty set LOS of LO-structures with the same
domain is a concurrent history if

LOS = os2|os(ﬂLOS) )

An MoO-structure is linked with LO-structures (step sequences) through the set os2los(mos) of all
LO-structures extending mos. Similarly, we can define so2los(sos) = os2los(so2mo(sos)), for every
SO-structure sos. It can then be seen ([11]) that so2los(sos) # & and (in the notation used in this paper)

508 = ﬂ mo2so(so2los(sos)) .

That result corresponds to Szpilrajn’s Theorem that every partial order is the intersection of its linearisa-
tions (see [5, 11]). This result extends to MO-structures and we obtain
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Figure 3. A visualisation of axioms G5 and G6.

Theorem 3.2. For every MO-structure mos,
o0s2los(mos) # & and mos = ﬂ os2los(mos) .

We can therefore conclude that the saturated extensions of an MO-structure mos form a concurrent
history represented by mos. It is then important to ask which concurrent histories can be derived in this
way; in other words, which concurrent histories can be represented by MO-structures.

Consider now a nonempty set LOS = {(X,=;,;) | ¢ € I'} of LO-structures forming a concurrent
history, and their intersection S = [ LOS = (X,=,C). Since every LO-structure is also an MO-
structure, we immediately obtain that S is an order structure satisfying axioms M1, M2, M4 and M5.
However, M3 in general does not hold although it holds for histories in which the possibility of executing
two events in either order implies also simultaneous execution, meaning that, for all distinct a,b € X,

(3@'6[: (a,b) e =;,NnC; A Jjel: (ba) e:jﬂzj> = Jkel: (ab) e’ .

One might now wonder what happens if we do not assume any special properties of a concurrent history.
As we will show in the rest of the paper, Proposition 3.1 in combination with the observation that it
always holds for S = (| LOS, yields a characterisation for the order structures underpinning general
histories.

4. Generalised order structures

In this section, we provide a complete characterisation of general concurrent histories where executions
are represented by layered order structures; i.e., a characterisation of concurrent histories comprising step
sequence executions. We achieve this by retaining all those MO-structure axioms which hold in general,
and then replacing the only dropped axiom M3 by Proposition 3.1.

Definition 4.1. (generalised mutex order structure)
A generalised mutex order structure (GMO-structure) is a relational structure gmos = (X, =, ), where
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Figure 4. The set of axioms in Definition 4.1 is minimal: each S; satisfies all the axioms except for Gi.

= and [C are binary relations on X such that, for all a, b, c,d € X:

Gl : a=b = b=a M1
G2 : alla AN a7#a M2 & Prop.3.1(i)
G3 : aCbCcANa#c = alCc My
Gj) : aCbCcA(a=bVb=c = a=c M5
G5 : aCbCaANa=c = b=c Prop.3.1(i7)
G6 : aCcCbANaCdCbAc=d = a=b Prop.3.1(iii)

Axioms G5 and G6 are illustrated in Figure 3. We also note that the set of axioms in Definition 4.1
is minimal (see Figure 4). In fact, it remains minimal even if one splits G2 into two axioms (a suitable
example here would be a structure with a single element a satisfying only a  a). Moreover, we have
the following.

Proposition 4.1. Let gmos = (X,=,C) be a GMO-structure. Then gmos is separable and, for all
a,be X:

(i) a =* bimplies a C b; and

(ii) a C b C aimplies a 7 b.
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Proof:
By (i, i) proved below and axiom G2, we get = N C®= &. The irreflexivity of  follows from axiom
G2, while symmetry of = from axiom G1.

If @ C* b then there exists a sequence c¢1,...,¢, such that a = ¢; and b = ¢, and, for i =
1,...,n—1,wehavec; C cj1. Letcy, ..., ¢, be the shortest such sequence. Then ¢ # j implies ¢; # c;.
Hence we can n — 2 times use axiom G3 and obtain ¢ T b. Moreover, each GMO-structure satisfies
axioms G4 and G2. Hence, as in the proof of Proposition 3.1, we obtaina b C a = a # b. O

Proposition 4.2. Every MO-structure is a GMO-structure.

Proof:
Note that axioms M1, M4 and M5 are equivalent to axioms G1, G3 and G4, respectively. Moreover,
by Proposition 3.1 and axiom M2, every MO-structure satisfies also axioms G2, G5 and G6. O

The converse of Proposition 4.2 does not hold; e.g., as M3 does not hold, ({a, b}, {{a,b), (b,a)}, @)
is a GMO-structure but not an MO-structure.

Proposition 4.3. If gmos = (X, =, ) is a GMO-structure, then (X, = N [, C) is an SO-structure.

Proof:

Let < denote = N . Only 54 is not obvious. Assume a C— b < ¢. From G4 we have a = c¢. Thus
a # ¢, and so from G3 we have a C ¢. Hence a < ¢. Now assume a < b C c. fa=c,thena T bC a
and a = b. So a = a by G4, a contradiction with G2. Hence a # ¢. Froma C b C c and a = b it now
follows that a = ¢ which together with a C ¢ implies that a < c. O

Proposition 4.3 states that every GMO-structure is a GSO-structure. We observe that the converse is
not true, with suitable counterexamples provided by the GSO-structures S5 and Sgg in Figure 4.

4.1. Closure operator for generalised mutex order structures

We will now provide a method for deriving valid GMO-structures from other relational structures.

Definition 4.2. (GMO-closure)
Let S = (X,Q, R) be a relational structure and QU = R® o (Q U (R* og R*)*¥™) o R®. Then the
GMO-closure of .S is given by

S*=(x, Q" R").

The GMO-closure operator can be seen as related to the transitive closure operator of acyclic reflexive
binary relations, as well as to the closure of acyclic relational structures investigated in [10] in order to
obtain SO-structures, and also to the closure operator introduced in [13] in order to obtain GSO-structures.

The property we need is that whenever S = (X, Q, R) is separable, S* is a GMO-structure. Fur-
thermore, if S is already a GMO-structure, then we want S ¢ — 5. The form of Q[R} follows from the
requirement that S* should be a GMO-structure and the axioms for GMO-structures (see also Figure 5).
In particular the factor (R* og R*)*Y™ follows from axioms G4 and G6, while the factor R® og R®
corresponds to G9.
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Figure 5. A visualisation of the three cases of (a,b) € Q.

The next set of results correspond to saying that: the transitive closure of an acyclic relation is also
acyclic (Proposition 4.4(7)); GMO-closure is a closure operation in the usual sense (Proposition 4.4(i7));
the transitive closure of an acyclic relation yields a poset (Proposition 4.4(i47)); and posets are transitively
closed (Proposition 4.4(i%)). First, we give a technical lemma.

Lemma 4.1. If S = (X, @, R) is a relational structure, then
R* OQ[R] R* g R* OQ R* .

Proof:
Suppose (a,b) € R* ogr) R*. Then there is (c,d) € Q¥ such that aR*cdR*b. This is equivalent to
saying that there are ¢, d, e, f € X such that aR*cdR*b and cR®eZ f R®d, where

Z=QU(R*og R*)U(R*og R*)™".

Thus, by (3) and (5), aR*cdef R*b (). We then consider three cases corresponding to three parts of Z
from which the relationship between e and f has been derived (see Figures 5 and 6).

Case 1: (e, f) € Q. Then, by (f), aR*efR*b. Hence (a,b) € R* og R*.

Case 2: (e, f) € R* og R*. Then there is (g, h) € @ such that eR*ghR* f. Thus, by (f) and (5), we
have aR*ghR*b. Hence (a,b) € R* og R*.

Case 3: (e, f) € (R* og R*)~!. Then there is (g,h) € Q such that f R*ghR*e. Thus, by (1) and
(5), we have aR*ghR*b. Hence (a,b) € R* og R*. 0

Proposition 4.4. Let S = (X, @, R) be an order structure. then:
(i) S* is an order structure.
(i) S C S*and (S*)* = S*.

(4ii) S* is a GMO-structure.

Proof:
To show (i) we prove separability. We first note that R® is symmetric. Since a composition of symmetric
relations is symmetric, we have that Q) is symmetric. Moreover, R* is irreflexive by definition.
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Figure 6. A visualisation of the proof of Lemma 4.1.

To prove that Q] N (R*)® = @, by (R*)® = R¥, it suffices to show that Q] N R® = &,
Suppose that (a,b) € Q) N R®. By (a b) € QU there are ¢,d € X such that aR®cZdR®b, where
Z=QU(R*og R*)U(R*og R*)~1. We cons1der three cases (see Figure 7).

Case 1 Case 2
/’——-—~\\\ /” \\\
, \\ , . . \\
(e PN PRt e o Y
- - TR
CLRF_’C dﬁ_r,b CLKF_’C\\ >7d,< b R*(assumed) : - - >
AN 7 AN > f -7 -, R* (induced) :
~e . _- \\\ ”/ Q:

Figure 7. A visualisation of the proof of Proposition 4.4(z).

Case 1: {c,d) € Q. Then cR®*aR®*bR¥d, so by (5), (¢, d) € R®, contradicting the separability of S.
Case 2: (c,d) € R* og R*. Then there is (e, f) € @ such that cR*efR*d. Hence (e, f) € R®, by

eR*dR®bR®aR*cR* fR*dR*bR®aR®cR*e

This, however, contradicts the separability of S.

Case 3: {c,d) € (R* og R*)~L. Similar to Case 2.

To show (i7), we observe that the first part follows from the reflexivity of R® and the irreflexivity of
R. From (4) it follows that to prove the second part, it suffices to establish that (Q[R])[R*] = Q!fl. Note
that QU1 C (QIFNHE* by § C S* and by (ii) both just proved. To prove the converse inclusion we
proceed as follows.

We have (QUF)I#'] = R® o (QIR) U (R* oym R*)*¥™) o R, by definition.
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Then, from the definition of Q¥ and (5) we obtain:

R® o (Q[R} U (R* OQ[R] R*)sym) o R®
— R® o ((R® o (QU (R* oq R*)*™) 0 R*) U (R oguss R*)*™) o R®
:R®OR®OQOR®OR® U RC*)OR@O(R*OQR*)symOR@OR@
U R¥o (R* OQIR] R*)sY™ o R®
=R¥Y0QoR® U R¥o (R* oQ R*)s¥™ o R®¥ U R¥o (R* OQIR] R*)%¥™ o R

®

Next, by Lemma 4.1 and again the definition of Q¥ and (5), we conclude

R¥0QoR® U R¥0(R*oq R*)™"oR¥ U R¥ o (R ogr) R*)*¥™ o R®
C R®0QoR® U R® o (R* og R*)™™ o R® UR® o (R* og R*)*¥™ o R®
=R¥0QoR® U R¥ o (R*og R*)*¥™ o R®
= Q.

Hence (QU)E] € QB and so (QIENIE] = Al

To show (iii), by (i) and (4i), it suffices to show that S* satisfies all the axioms in Definition 4.1 in
the case that S* = S, i.e., Q = QU and R = R*.
To show G1, we observe that, by (i), () is symmetric.
To show G2, we first observe that, by definition, {(a,a) ¢ R* = R. Suppose that (a,a) € Q. Then,
since (a,a) € R®, we have (a,a) € Q1 N (R*)®, contradicting (7).
To show G3, suppose that aRbRc and a # c. Then (a,c) € R* = R.
To show G/, suppose that aRbRc and aQb. If a = c then, by the separability of S, (a,b) ¢ Q,
a contradiction. Hence, by G3 (already shown), we have aRc. Thus aR*abR*c, and so (a,c) € R* og
R* C QW) = Q. If aRbRc and bQc, we proceed similarly using a R*beR*c.
To show G5, suppose that aRbRa and aQc. Since {(c,c) € R®, we obtain (b, c) € R* o Q o R®, and so
<b7 C) S Q[R} = Q.
To show G6, suppose aRcdRb and cQd. Then (a,b) € R* og R* C QW = Q. O

Proposition 4.5. If gmos = (X, =, ) is a GMO-structure, then gmos® = gmos.

Proof:

By Proposition 4.1 we get that gmos is separable. Moreover, C C C* anda C® biffa CbC a V a = b.
To show that = is equal to =[], we first observe that, by Definition 4.2 and the reflexivity of =%,

we have that = is contained in =[*). To show that ==/ is contained in =, suppose that « =[=! b, which

means that there are ¢, d € X such that:

(i) aCcCaVa=candbT dC bVb=d;
and one of the following is satisfied:
(i) aC® c=dC® b; or

(i13) a C® ¢(C* o C°*)d C°® b; or
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(iv) a C® ¢(C* o C¥)1d ¥ b,

If (i) holds then, by (¢) and G5, we get a = d. Hence, by G1, d = a. Therefore, by (i) and G5,
b = a. Hence, by G'1, we obtain a = b.

If (4i7) holds, then there are e = f such that ¢ C* ef C* d. Hence a C* ef C* b. By Propo-
sition 4.1, we need to consider sixteen different cases, as x C* y is equivalenttoz C y V x = y.
Most of them may be excluded, as the roles of e and f are symmetric and, by G2, we have e # f.
Moreover, a # b follows from the fact that gmos* is a GMO-structure by Proposition 4.4(i3i) and G2.
Hence, together with e = f, we get a contradiction with the separability of gmos. As a result we have
to consider only four cases.

Case l: a=eand b= f. Thena = b.

Case2: a=cand b # f. Thena C f C band a = f. Hence, by G4, a = b.

Case 3: a #eand b= f. Thena C e C band e = b. Hence, by G4, a = b.

Case 4: a,b,e and f are all distinct. Then a C ef C b. Hence, by G6, a = b.

Finally, if (iv) holds, then (b,a) € C® o(C* o C*)o C®, as C® is symmetric. Hence, by (7i7), we
get b = a. Thus, by G1, we obtain a = b. O

As layered order structures and mutex order structures are special cases of generalised mutex order
structures, we obtain an immediate

Corollary 4.1. If los is an LO-structure and mos an MO-structure, then los* = los and mos® = mos.

The following technical lemma describes a single stage of the saturation process for a GMO-structure
leading to a set of LO-structures. In this process, we may add an arbitrary link between two elements that
do not yet satisfy (8). We only need to remember that in the case of extending the relation (), together
with (a, b) we have to add (b, a). After this addition, we get an order structure that may be closed. As
a result, we obtain one of the possible extensions of an initial gmos. The above process terminates after
obtaining an LO-structure and it is central to the proof of the main Theorem 4.1.

In what follows, we denote R,,, = RU {(z,y)} and Quy = Q U {(z,y), (y, z)}.

Lemma 4.2. Let gmos = (X, @, R) be a GMO-structure, a,b € X and a # b.
(i) If {a,b) ¢ Rand (b,a) ¢ R then (X,Q, Ry)* is a GMO-structure.
(i4) If (a,b) ¢ R and (a,b) ¢ Q then (X, Q, Ry)* is a GMO-structure.

(iii) If (a,b) ¢ Rand (a,b) ¢ Q then (X, Qupq, R)* is a GMO-structure.

Proof:
By Proposition 4.5, gmos* = gmos, hence R = R* and Q = Q!f]. To obtain the thesis, it suffices to
prove the separability of enriched structures:

(i) (a,b) ¢ RA (b,a) ¢ Rimplies Q@ N RY, = o;
(i7') {(a,b) ¢ RA (a,b) ¢ Q implies Q N RS, = &; and
(13i") (a,b) ¢ R A {(a,b) ¢ Q implies Qup, N R® = @.
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To show (i), by (2), we have R, = R®, andso QN RY, = QN R® = @.

To show (i7'), if (b, a) ¢ R, then we have case (¢'). Hence, we can assume that (b, a) € R. Suppose
that (c,d) € QN (RS, \ R®). Then, without loss of generality, we may assume that (c, d) ¢ R*. Hence,
by (1), we get (c,a) € R* and (b,d) € R*. We now consider two cases (see Figure 8).

Case 1 Case 2
‘,—,c,r » ,’_,C(\‘\ Y
- - ~ *
at ’ b a ?\ ) R* (assumed) : - ->
- . S~ - . * .
" dv ’, ~ B RN , R, (assumed) : >
AN L A e Q (assumed) : —

__________ Q (induced) :

Figure 8. A visualisation of the proof of Lemma 4.2.

Case I: (d,c) € R*. Then bR*cdR*a, and so (a,b) € Q) = Q, a contradiction.

Case 2: (d,c) ¢ R*. Then, by (d,c) € R, we have dR*a and bR*c. Hence bR*cdR*a, and so
(a,b) € QI = Q, a contradiction.

Asaresult, @ N RY, = @ since Q N R¥ = &.

To show (i7i’), suppose that (¢, d) € Qup, N R® # @. Since Q N R® = &, (c, d) can only be (a, b)
or (b, a). Without loss of generality, let {¢,d) = (a,b). Then (a,b) € R® implies (a,b) € R* N (R*)71,
which implies (a, b) € R by Proposition 4.1, a contradiction. a

To complete the properties of the saturation process described in Lemma 4.2 and used in the proof of
Theorem 4.1, we formulate the following

Lemma 4.3. Let gmos = (X, Q, R) be a GMO-structure such that a,b € X, a # b, (a,b) ¢ R and
(a,b) ¢ Q and
§'=(X,Q,Rap)* = (X, Q',Ryy) .

Then {(a,b) ¢ Q'

Proof:

We first observe that, by Lemma 4.2, S’ is GMO-structure. Suppose that (a,b) € Q'. If (b,a) € R,
then (a,b) € RS, contradicting the separability of S”. Hence (b,a) ¢ R/, and so (b, a) ¢ R. The latter
means that be = R®. We then consider three cases:

(i) {(a,b) € R¥ o Q o R®;

it) {(a,b) € R® o o o R¥; an
(i) {a,b) € R® o (R, o Riy) 0 B and
(i) (b,a) € R® o (R, 0q R2y) o R®.

If () holds then, since gmos is a GMO-structure, we have (a, b) € @, a contradiction.
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Figure 9. A visualisation of the proof of Lemma 4.3.

If (ii) holds, then there exists (c,d) € @ such that aR} cdR’,b. Since (a,b) ¢ Q and gmos is
a GMoO-structure, aR*cdR*b does not hold. Hence, by the symmetry of ¢ and d, we consider two cases
(see Figure 9).

Case I: {(a,c) ¢ R*. Then, by (1), (b,c) € R*. Hence (b,c) € RY = R®. As aresult, by G5, we
obtain (b, d) € Q.
If {a,d) ¢ R* then, similarly as in the case of (a,c) ¢ R*, we have (b,d) € R®, which contradicts the
separability of gmos. Hence (a,d) € R*.
Now, if (d,b) € R* then aRdRb and dQb. Hence, by G4, we have aQb, which contradicts our initial
assumption. As aresult, (d,b) ¢ R*. Thus, by (1), (d,a) € R*.
Hence (a,d) € R%, = R®, and so by G5 we obtain (a,b) € @, yielding a contradiction with our initial
assumption.

Case 2: (d,b) ¢ R*. Then similarly (a,d) € R® and (b,c) € R®, and so (a,b) € Q. Summing up,
(7i) implies (a, b) € @ and we obtain a contradiction.

If (i77) holds, then (b, a) € R, and we obtain a contradiction with (b, a) ¢ Ry,. 0

In Lemmas 4.2 and 4.3 we have captured a method of saturating GMO-structures that are not LO-
structures. It moreover allows us to formulate an immediate

Corollary 4.2. Every relational structure saturated among all separable relational structures is a layered
order structure.

4.2. General concurrent histories

‘We now return to our original goal to provide a structural characterisation of all histories comprising step
sequence executions. Recalling that os2los(gmos) are the LO-structures associated with a GMO-structure
gmos, we obtain a new version of Szpilrajn’s Theorem:

Theorem 4.1. For every GMO-structure gmos,

os2los(gmos) # @ and gmos = m052|os(gmos) .
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Proof:
Let .# = os2los(gmos). The first part is nothing but Corollary 4.2. Let gmos = (X,=,C). We will
denote S = (X, =g, Cg), for any layered extension S of gmos.

Since % is the set of all layered extensions of gmos, we know that gmos C S, forall S € .%. Hence
gmos C [\ge.z S. We need to show the reverse inclusion.

We start by proving that (\g.» Cs is included in C. Suppose that a [Z b. We will now define
two auxiliary GMO-structures, gmos’ and gmos”, in the following way. If @ = b then gmos’ = gmos.
Otherwise,

ngS/ = <X7 “aba; E>’ = <X7 ‘:\([fbll’ E>

is a GMO-structure, by Lemma 4.2. If b C a then gmos” = gmos’. Otherwise,

gmos” = (X, :5}1, Cpa)?
is a GMO-structure, by Lemma 4.2. Let gmos” = (X, =",C").

We have a =" b =" a. As a result, for every layered extension S of gmos”, we geta =g b Cg a.
Hence, by (8) and Proposition 4.3, we have that a [Z g b. Moreover, by gmos C gmos’ C gmos”, each
layered extension of gmos” is also a layered extension of gmos. Consequently, (a, b) is not included in
(Nse.z T and so the latter is a subset of .

Next we show that (4. » =g is included in =. Suppose that a # b. We will again define two
auxiliary GMO-structures, gmos’ and gmos”, in the following way. If a C b then gmos’ = gmos.
Otherwise, by Lemma 4.2,

gmos’ = (X, = Cap)?
is a GMO-structure. Let gmos’ = (X, =',"). We observe that, by Lemma 4.3, (a,b) ¢ =’, hence also
(b,a) ¢ ='.If b ' a then gmos” = gmos’. Otherwise,

gmos” = (X, =, Ega>’

is a GMO-structure, by Lemma 4.2. Let gmos” = (X, =",C").

We have a =" b =" a. As a result, for every layered extension S of gmos”, we geta Cg b Cg a.
Hence, by (8), we have that a 725 b. Moreover, by gmos C gmos’ C gmos”, each layered extension of
gmos” is also a layered extension of gmos. Consequently, (a, b) is not included in (\g. » =g, and so
the latter is a subset of =. O

As () LOS is a GMO-structure, for every nonempty set LOS of LO-structures with the same domain,
we can now conclude that all concurrent histories are represented by GMO-structures. Figure 10 shows
an example of GMO-closure of an order structure, as well as the set of all the LO-structures extending the
resulting GMO-structure.

5. Concluding remarks

We can finally clarify the relationship between GSO-structures and GMO-structures. In general, in order
to accept an order structure os = (X, =, [C) as an invariant representation of a concurrent history, we
require that

os2los(os) # & and os = ﬂos2|os(os) .
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a b a b
A A A
1 A
1 1
v . v
-———— -
¢ d os ¢ d gmos
a—> ) a—>) a «<—— )
A A A
1 1 1
l 1 1 1
v v v
— > — > — >
¢ d losy ¢ d loso ¢ d loss
a—>) a—>) a «<—— )
o A A A
1 7’ 1 7’ 1
: : ¢ | ¢ :
\4 \f ¥ A Ve A
e <---> <--->
¢ d losy ¢ d loss ¢ d losg
E D <i— rcCcnc <>

Figure 10. An order structure os; its GMO-closure gmos = 0s*: and the six LO-structures los1—losg extending
gmos, i.e., 0s2los(gmos) = {losy, ..., loss}). Note that los; corresponds to the step sequence {a}{c}{b,d}, loss
to {c}H{a}{b,d}, loss to {c}{b,d}{a}, los4 to {a,c}{b,d}, loss to {a}{b,c,d}, and loss to {b, c,d}{a}.

We demonstrated that this property holds whenever os is a GMO-structure, and that it may fail to hold for
a GSO-structure. We have further shown that GMO-structures are GSO-structures, but that the converse
does not hold. However, each GSO-structure gsos is separable, and so its GMO-closure gsos® is a GMO-
structure satisfying os2los(gsos*) = os2los(gsos). In other words, concurrent histories described by
order structures and their GMO-closures are the same. The importance of GSO-structures comes from
the fact that they paved the way for GMO-structures, by exposing the fundamental property that causal
ordering is a combination of mutex and weak ordering.

A key motivation for the research presented in this paper comes from concurrent behaviours as ex-
hibited by safe Petri nets with mutex arcs. The resulting semantical approach — which has been metic-
ulously worked out above — is based on GMO-structures which characterise all concurrent histories
comprising step sequence executions. A natural direction for further work is to provide a compati-
ble language-theoretic representation of concurrent histories, by generalising Mazurkiewicz traces [17]
which correspond to causal posets, and comtraces [10] which correspond to SO-structures (i.e., MO-struc-
tures). This development would also allow to link the dynamic notions of mutex and weak causality with
the static properties of Petri nets with mutex arcs. The resulting semantics can be regarded as a promising
condition for developing more efficient verification techniques [2, 18, 22].

While step sequences (i.e., stratified orders) provide an expressive operational semantics, they still
do not represent the most general case. It was argued in [25], and analysed in detail in [9], that the most
general observational semantics can be represented by entities equivalent to interval orders. Structures
corresponding to stratified order structures that use interval orders instead of step sequences to represent
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observations have been proposed in [7, 15], and analysed in detail in [11]; however, their extension with
a relationship similar to the mutex relationship from this paper is still an open research problem.
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