Programming Self-Assembly of DNA Tiles

Marco Bellia and M. Eugenia Occhiuto

Dipartimento di Informatica, Universita di Pisa, Italy
{bellia,occhiuto}@di.unipi.it

Abstract. SKI* is a Turing complete, language for programming in the
aTAM model. A compilation technique provides a mapping from SKI#
into finite sets of DNA Tiles that self-assemble in the aTAM model.
Though such sets are always finite, the number of Tiles may be relevant,
the construction of the Tiles may be heavy and the self-assembly can pro-
duce wrong molecular growth. In this paper we discuss the construction
of a DNA Universal Machine as an aTAM interpreter for the entire Com-
binatory Logic, comparing it with the compiler based approach. Finally,
Consensus is considered as a case study in distributed programming in
the aTAM model and a further step in the design of SKI# and in the
expressivity of aTAM (Wang Tiling) compared to Combinatory Logic
and m-calculus.

1 Computing with DNA Tiles

The abstract Tile Assembly Model (aTAM) [1] is (together with its variants)
the basic model of DNA Tiles Self-Assembly which is that part of molecular
computing where Self-Assembly applies to DNA Tiles. DNA Tiles are molecules
of DNA that have a fixed 2D or 3D connection structure and according to this
connection structure, these molecules Self-Assemble to form structures which
may grow even, indefinitely. Moreover, aTAM is an extension of the Wang for-
malism of the grid tiling, hence the Tiles are 2D, 4-connection structures that
can be (graphically) represented by unit squares, as in Figure 1. Also aTAM Self-
Assembly matches the Wang tiling laws (Tiles cover a grid and adjacent Tiles
have touching sides of the same color) provided that the bio-chemical stability is
satisfied. The equivalence between the Wang formalism and the Turing formal-
ism, as shown in Figure 4, leads to the notions of program and of computation
in both aTAM and Wang formalism '. A program is a finite set of Tiles. A com-
putation is a grid tiling, i.e. a cover, without holes of the (infinite) plan, using
(infinitely) many copies of the Tiles of the program. Figure 3 shows (a part) of
a computation where each rectangle represents one sub(program)-computation
of the (main) program. Though TM is a milestone in computation, it is not
so good for programming because it is lacking of expressivity (for instance, for
the composition of functions and of independent computations). For this reason,

! extended in aTAM with the actual, bio-chemical structure of Tiles and with the
stability properties of the Self-Assembly of such molecules. In aTAM a program is
called system

2 M. Bellia, M. E. Occhiuto

other formalisms have been studied for providing languages for programming
Self-Assembly of DNA Tiles. Given any computable problem, these languages
must provide a development environment for formalizing a solution to the prob-
lem and obtaining an aTAM program that Self-Assembles the Tiles according
to such a solution. In [2] we considered these languages and proposed the new
language SKI#.

(al) (r,r,Lr)
rl
I’ Xr
1

(@2) ,)
f ", a1ty , o] ST

w() ’ ’ W)

Fig. 1. A (four sticky ends) DNA Tile is a molecule of DNA equipped with four single-stranded,
sticky ends which can be used to bind the Tile to other DNA Tiles having sticky ends that are
Watson-Crick complementary. (al) A quadruple of values encoding the sticky ends, and below, a
unit square whose sides are labeled (Wang Tiles) by such encodings, provide a linear representation
and a graphical 2D representation of a DNA Tile; (a2) A DNA Tile, consisting in a double-crossover
molecule in which the sticky ends (indicated by a full dot) are four short sequences of nucleotides
GACT, denoted by C(1’), C(r’), W(1), W(r); (b) Nine DNA Tiles, in the top, that self-assemble in
the structure, in the bottom.

2 The calculus SKI# and its compilation into SKI-Tile

SKI# [2] is a Turing complete, language designed for programming in the aTAM
model and its fundamental characteristic is that it is a proper subset of Combi-
natory Logic (CL), hence it does not require variable symbols for dealing with
bound variables. As a consequence, it provides mechanisms for function def-
inition, application, composition without requiring support for variable scope,
binding and substitution. SKI# is the subset of CL consisting in all the combina-
tory terms that can be computed using only a finite set of different redexes. Let
Y = S|K|I|II|X]|X X be the monoid of Combinatory Logic. Let R = {Sabe, Kab,
Iala,b,c € X'}. A redex is any combinator u € R. The reductum of u is denoted
by r(u) and is defined by: r(Sabc) = ac(be), r(Kab) = a, r(Ia) = a. A redez-
reductum pair is any pair (u,r(u)) for u € R. A computation of a € X is any (pos-
sibly infinite, sequence) ag —vs, ... —s,_, an where: (1) a = ag; (2) s; € O(a;);
(3) a; | si € R; (4) air1 = a;[s; < r(a; | si)]. Each computation of a term a is
uniquely determined by the indexed sequence of paths to the selected redexes,
p=50,...,50_1, and is denoted by p or equally, by ag—*a,. Let dom(p) be the
range of the indices of p and for i € dom(p), p[i] be the i-th element of p. When
the computation is nonterminating, p is an infinite sequence and ¢ —*oco. Given

Programming Self-Assembly of DNA Tiles 3

a € ¥, the computation set is C(a) = {e}U{p1.p2 | a™5*b for b # a Aps € C(b)},
where € is the empty computation such that b-5*b for all b € X' and ”.” is the se-
quence concatenation. C(a) is the set of all the computations of a. Let p, € C(a)
for a € X. Then size(p,) = n if p, is a finite sequence of length n, size(p,) = oo
otherwise. Moreover, let U,, = {a;ls; | po[i] = s;} be the set of the selected
redexes in the computation p,. Then, rank(p,) is the cardinality of U, . Finally,
let C*#(a) = {p € C(a) | rank(p) < n € N}.

Introduction Tiles Terminal Tiles
a a,
a a) -
ay -
o
a, =% a,
Application Fold Tiles Application Unfold Tiles
a, a, a, '

a, Y N a, 4 Xa, 4 Xy
a; a, a, a3
a,a, —=>* a, a, =% aa, aa, >%*aa, a, —*a.a

2 3 1 344 414 384, N
Connections Tiles
o a a &
a Xa, a, - a, Xa, a Xa
L as 'y ay
a, =>*a, a, =% a, a, —>*a, a, =>*%a,

Fig. 2. SKI-Tile is a subclass of Wang Tiles where the colors are combinatory terms: Different
terms are different colors, # is a dummy color. The sides of a Tile may be colored with terms that
are used (in the program computation) as an application (right or left) part or as a computed value
or finally, as ”connection” terms for ”arranging together” independent parts of the computation.
Moreover, the terms in a Tile, must satisfy the law, if any, indicated below the Tile, where —* is
transitive closure of combinatory reduction, and * is marking an irreducible term.

Definition 1 (SKI#). SKI* is SKI restricted to the terms
Y#* ={aec X | (3pecC#a)) size(p) =00 V a’sa*}

Theorem 1 ([2]). SKI* is Turing Complete

Theorem 2 ([2]). The programs of SKI* have finite Tile sets of SKI-Tile.
Moreover a computable mapping from SKI# into SKI-Tile exists

SKI# leads to the definition of a language of Tile, SKI-Tile, that has the 5
kinds of Tiles of Figure 2, and each kind is designed to support the emulation of
combinatory reduction. In [2], we describe a compilation technique from SKI#
program SKI-Tile program and we apply it to the derivation of a finite Tile set
for computing applications of the factorial function. The computation (simula-
tion) in aTAM of the resulting SKI-Tile programs leads to computation grids
which grow as in Figure 3 and satisfy the grid computation property [2] which
states the condition to ensure that independent computations cannot overlap.

4 M. Bellia, M. E. Occhiuto

t2 | t2 2 |t2

51

t ta
b ta
)

Fig. 3. A Computation grid models the Self-Assembly of a program in SKI-Tile. It grows through
the generation of rectangular closed areas whose borders are colored by the dummy value spadesuit
(in figure represented by a bold line), except for the two Tiles at the top-left and bottom-right
corners. Each closed area represents a sub-computation. Areas cannot partially overlap. An area
include all the smaller areas that define its sub-computations. In figure, the outermost area is the
entire computation corresponding to tg —* t1ta —* t3ts. The 3 innermost areas are from left to
right, for the computation tog —* t1ta, t1 —* t3 and t1 —* t3ty

Roughly speaking, this condition requires that the grid must have each indepen-
dent computations enclosed in a region delimited by a special dummy color. The
kernel of the compilation process is the mapping of each pair (u, r(u)), defining a
redex-reductum pair of the program, into a Tile of SKI-Tile. The object Tile has
sides (resp. sticky ends) colored (resp. configured) by the pair n(u) and 7(r(u))
where 7 is an injection from the terms of SKI# into colors of Wang Tile (resp.
sticky ends of DNA Tiles).

3 A DNA Universal Machine for Combinatory Logic

In this section we describe the definition of a DNA Universal Machine for the
programs of the entire Combinatory Logic, including SKI#. The machine consists
in a Turing Machine that interprets combinatory programs, and is expressed as
an aTAM system (program).

The full machine is too complicated to be presented in this paper, hence we
show a simplified version in which the input combinatory term does not contain

Programming Self-Assembly of DNA Tiles 5

brackets. Such a simplification allows to understand the fundamentals of the
interpretation process, without getting lost in complicated details for dealing
with combinators having non atomic arguments. Following [3], a TM is a 7-tuple
(Q,I',#,Z,6, Start, F'), where @ is the finite set of states, I" is the finite set of
symbols, # is the blank symbol, Z = I'\ {#}, 6 = Q\ F xI' - Q@ x I' x {L, R}
is the function that defines the transition rules that describe the behavior of the
machine, Start € @ is the initial state. F' C @ is the set of final or halting states.
Moreover, we use u', u*, u" for a sequence of symbols of size n, of arbitrary
finite size and for an infinite denumerable sequence of symbols, respectively.

3.1 The Structure of SKI-TM

The machine M we define is such that I' = {S, K, I, JUXUITU{S$, |, 8, As, Dk, A1(,)},
F = {Halt},J is defined in Table 2,3,4,5,6. The other components can be de-
rived from Table 2,3,4,5,6, in particular the set of states (). The initial tape of
M is assumed to be constituted of blank symbols f except for a finite sequence.
The sequence is supposed to consist of the combinatory program to be reduced,
in left associative form, LAF, (without brackets) and delimited by symbol $ (on
both sides). Table 1 defines the tape syntax. C are the combinator symbols (we
consider only the main combinators), V are constant and variable symbols, D
are all SKI symbols and M are markers. Markers include the blank symbol £,
but do not include $ since this symbol cannot appear in the sequence? Initially
the machine is in Start and the head is pointing immediately after the leftmost
symbol $.

’ Table 1 : Tape Syntax ‘

T:=#"$(D| M)* $¢ (Tape)
Du:=C|V (SKI Symbols)
C:=S|K|I (Basic Combinators)
V=Xx|1I (Variable and constant symbols)
Mau=g] L (])]|Ds|Dx| L (Markers)

The notation for the rules resorts to the use of set expressions defining a finite
set of symbols. A set expression has the form e;...ex (K > 1), where e; is
either a single symbol of DU M U {$} or the letters ¢ or v. Each single symbol
stands for the singleton containing itself, while ¢ stands for the set {S, K, I'} and
v for V. Finally, the set expression e; ...e, stands for the set union of the sets
denoted by e; . ..ex. Hence rule (TK,cv) — (TKa, cv,R) in Table 3, is expressing
the set of rules {(TK,u) — (TKa,u,R) |Vu € D}. Set expressions are also used in
expressing set of states. For instance TSc:cv is expressing any state in the set
{TSu | u €D}. As a matter of fact the rule (TSc:cvy, cv() = (TSc:cvy, cv(,L), in
Table 5 stands for the set of rules:

(TSuy,u) = (TSus,u,L) Vu; e DAue DU{(}

2 Round brackets are included since though our assumption on the form of the input
program, non atomic arguments are introduced during reduction of combinator S.

6 M. Bellia, M. E. Occhiuto

Table 2 contains the rules for § relative to the initial state which looks for the
leftmost, outermost redex, if any. In effect, the interpreter emulates a leftmost,
outermost reduction strategy which is a complete strategy hence, the interpreter
always computes the irreducible term, if any. Otherwise, it runs forever.

‘ Table 2 : Looking for redexes ‘

Quintuples looking for a redex

(Start,v) — (Halt,v,L) (No redex found)
(Start,) — (Start,f,R) (Skip blanks)
(Start,$) — (Halt,$,R) (No redex found)
(Start,S) — (TS, As,R) (attempt for S)
(start,K) — (TK, Ax,R) (attempt for K)
(Start,I) — (TI,A1,R) (attempt for I)

Tables 3,4 contain the rules to find and reduce redexes with combinator K and
I respectively, which are quite easy and self explaining.

l Table 3 : K redex

Quintuples looking for a K redex
,$) — (FF,$,L)
T, £) — (TK, £, R)
TK cv) — (TKa, cv,R)
TKa, $) — (FF, $ L)

(TK
(
(
(
(TKa,) — (TKa, t,R)
(
(
(

Attempt fails)

Skip blanks)

1st arg has been read)
Attempt fails)

Skip blanks)

Reduction 2nd Atomic arg)
going back to N)

Marker Ak is deleted)

(
TKa, cv) — (TKaE 8,L)
TKaE, cvi)() — (TKaE, cvi)(,L)
TKaE, Ag) — (Start,,R)

NN N N N S S

‘ Table 4 : I redex

Quintuples looking for an I redex

(T1,$) — (FF,$,L) (attempt fails)

(TI f) — (TL,4,R) (Skip blanks)
(TI,cv) — (TIE,cv,L) (arg has been found)
((

((

TIE) (TIE,4,L) Skip blanks)
TIE, A1) — (Start,f,R) (Marker A; is deleted)

Programming Self-Assembly of DNA Tiles 7

’ Table 5 S redex

Blank insertion is omitted

((A redex is found)

((First argument found)

((Insert marker for third argument)
((Substitute second argument with()

((Rewrite second argument after()

((Third argument found)

(TSbel, #) — (TSbc2,),L) (Insert) after third argument)
((
((
((
((
((
((

._]
0
o2
3]
=
==
N
—
=]
9]
o
0
O
<
=
=

Go left to marker for the third argument)
Skip second argument and ()

Substitute marker with third argument)
Skip first argument)

Skip blank)

Delete marker for S combinator)

The rules in Table 5 deal with the S-redex. In this case, the redex is firstly
transformed (by inserting/shifting #) into a more convenient form, then the
reduction applies to that form. Let #~ $ u* Ag # a #7 b #* ¢ 4™ u™ $ #* be
a the tape and Ag #° a #/ b §* ¢ be the leftmost S-redex to be reduced. The
transformation modifies the tape into §* $ @* Ag a4 b4 ct @™ $ 1, where the
arguments of the S-redex are separated by exactly 1 blank symbol and @* and
u® are the same sequence provided that f symbols are ignored. State BKstart
starts the transformation which ends in state BKend (if a S-redex is effectively
found. Otherwise, it ends in the state FF to deal with failure). Eventually, Table
5 contains the rules for computing the S-redex of the transformed form and omit
the rules of the transformation. The rules in Table 6 are concerned with the
state FF that deals with failures in the search of a redex and is responsible for
elimination of markers introduced in the attempt of reduction.

‘ Table 6 : Failure of the last attempt ‘

Go backwards for failure
(FF,cvl) — (FF,cvi,L) (Skip variables, constants and blanks)

(FF,As) — (Halt,S,R) (Substitute Ag with S)
(FF, Ax) — (Halt,K,R) (Substitute Ax with K)
(FF, A1) — (Halt,I,R) (Substitute A; with I)

3.2 Compiling SKI-TM into aTAM

To use M, we need to compile it into a program (i.e. a DNA Tile system) for
aTAM. It can be accomplished (at least in principle) by using the technique
introduced in [4, 5] which provide the stable, bio-chemical conditions for Tile
Self-Assembly (salt concentration, temperature thresholds), a robust structure
for constructing the Tiles (double, triple crossover) and the right content of the

8 M. Bellia, M. E. Occhiuto

finite Tile set to be used in the Self-Assembly process. Such a content consists
in the 4 values of the sticky ends of each Tile of the set. The content is obtained
by the mapping introduced in [6], where a TM-rule is compiled into two pairs of
Wang Tiles which emulate the rule application on a tape which is represented by
a row of the computation grid, where the sequence of rows emulates the sequence
of changes in the tape while the machine is running. The mapping is shown in
Fig.4 where (a),(b),(c) and (d) are all the possible combinations.

a a a a
o . - qo o u)] |a X ao
[I(w)] |a [I(w)]] | a0, [1(w)]
Qo,Q qo,a qo,a qo,a
qo,a qo,d qo,Q q0,a
[r(w]|, qi [r(w)] - q [r(W] | g [r(WI| ar
b b b b
() u=(av2)-> (abR) () u= (qoa)-> (@bR) () u= (qn:2)-> (rb.L) () u=(qo2)-> (a1b.L)
arriving in qo from right arriving in qo from left arriving in qo from right arriving in qo from left.
$ a
[go] | a Dtar [a]|)Xo
a
(e) Seed tile (f) Symbol tile

Fig. 4. Wang’s encoding of rules with Tiles, where a € T,q; € Q. In addition to tape and state
symbols, tile colors contain a distinct color g.a for each pair (g, a), head of a rule u € 4. (a)-(d) Each
rule is encoded with two distinct tile pairs: The use of one or of the other pair depends on the (left
or right) side on which the simulation of the MDT head shift is arriving. The two tiles, in each pair,
are labeled [1(u)], resp. [r(u)] since encode the left, resp. right, part of the rule u. (e) The initial state
and head position is encoded by the tile labeled [go] which is part of the seed of each computation
grid. (f) Each tape symbol a, including #, is encoded by a tile labeled [a] as in the figure. These
tiles allow to form the tiles representing the combinatory program to be evaluated, they are part of
the seed and may be reproduced inside the grid, when needed.

Fig.5 shows the computation grid resulting from the use of M in the evalua-
tion of a combinatory program that begins with the sequence KIS. The first
row represents the input contained initially in the tape. The seed tile appears
under the invariant tile of the leftmost $, representing the initial position. The
sequence of row contains the Tiles that emulate the machine M that reduces the
combinatory term.

#] $ (K] (1 [S] $ | #

| [go] | [I(u1)] (1 [S] $ |

| $ | D] | 0wl | (8] s | # ul=(StartK)->(TK, Ag, R)

$ [Ax] [r(u2)] | 1(u3) $ | # u2= (TK,)->(TKa, I, R)

$ [Ax] [I(u4)] | r(u3) $ | # u3= (TKa,S)->(TKaE, #, L)

$ [1(u5)] | [r(ud)] # $ | # u4= (TKaE,I)->(TKaE, I, L)

$ [r(u5)] # $ | # u5= (TKaE, Ag)->(Start, #, R)
$

Fig. 5. Each element containing a symbol in I', represents an invariant tile with that symbol. The
other elements represent tiles for the left or right part of the rule which is applied. The rules applied
are shown at the end of the row containing the tile encoding the right part of the rule.

Programming Self-Assembly of DNA Tiles 9

We conclude this section noting that a different way exists for implementing
SKI-TM in aTAM. It consists in compiling a Universal Turing Machine and then
provide for the encoding of SKI-TM into the program representation of such a
machine. This way is particularly interesting in view of [7].

3.3 Pros and Cons of M compared with SKI# and its compiler

Even if the compiler for SKI# has some remarkable aspects, its use has also,
some practical limitations which include:

— Deterministic growth. Since M uses a specific (complete) reduction strategy,
the grid grows deterministically using M. The same does not hold for the use
of the compiler. Even limiting the set of the redex-reductum pairs to those
of the outermost redexes we may have a pair that applies to a non-outermost
redex of an intermediate reduced term;

— Construction in aTAM, of all the Tiles in the object finite set. M requires
always the same set of Tiles. In SKI#, the number of different Tiles depends
on the specific program.

— Reuse and/or modification of programs. M requires always to change the
Tiles of the first row of the grid. SKI# programs are function applications
hence when the input changes the program must be re-compiled. However
the new Tile set may have a relevant set intersection with the previous
application.

— Errors due to the violation of the grid property. The computation grids of
M do not need grid property.

— Control of the shape of the computation grid. The computation grid, in M,
is very far from the source program and contains symbols of the emulator.
In the computation grids of SKI# the Tiles contain only terms of the source
programs.

— Expressivity. M has the expressivity of CL, whilst SKI# of a subset of CL.

4 Consensus in DNA Tile Self-Assembly

Starting from the definition of Consensus in DNA Tile Self-Assembly, we con-
sider distributed computation, extend our approach mixing SKI calculus with
process algebras, introduce an alternative compilation of SKI# into SKI-Tile.
We introduce and discuss it through the example of the algorithm of consensus
[8]. We show how it could be expressed in the extended SKI calculus and then,
compiled into an aTAM system.

In distributed computing, Consensus is the well known problem in which a
fixed number of agents require to agree on 1 among a finite set S of values.
In the version of [8,9], it consists in a 3-state (one-way) population protocol
in which S={p,n,u} is the agent state set and agents cannot crash. Agents can
communicate in pairs for letting know the current value of their own state and
possibly, changing it according to the protocol rules. The rules state that two

10 M. Bellia, M. E. Occhiuto

communicating agents having: (1) same state, maintain such a state; (2) one
state p (for positive opinion), the other state n (for negative o.), both pass in
state u (undecided o.); (3) one state p (resp. N), the other state u, both pass
in state p (resp. N). We give below, two algebraic formulations of the protocol
using Milner’s m-calculus [10].

P(c) :=¢p.c(x).P'(c,x) + c(x).cp.P'(c, %)

P/(c,x) = [x = pJP(c) + [x = nlU(c) + [x = wP(c)
N(c) :=<n.c(x).N'(c,x) + c(x).en.N (¢, x)
V(6) = [x = pJU(S) + x = nlN(c) + [x = wN(c)

U(c) := Eu.c(x).[;(c,x) + c(x).cu.U/(c,x)
U(c,x) = [x = pIP(c) + [x = a]N(c) + x = u]U(c)
Alc):=P(c) | ... | P(c) [N(c) | ... | N(c) |U(c) | ... |U(c)

where, capital case symbols {P,P’ N,N’, U, U’} are names for process definitions,
all lower case symbols {p,n,u} are names for process links/channels, finally x is
the only variable symbol. P+Q is the choice operator, P|Q is distributed operator,
[x=y|P is match operator, P:=Q is recursive process definition. Since it uses a
finite set of values, a re-formulation of A(c) in the system B below, can be ob-
tained. System B consists in a syntactic transliteration of A(c) which introduces
3 distinct channels for sending and receiving, and can execute without resorting
to the variable substitution mechanism.

P :=pp.P +ap.U+ap.P + p(x).P +n(x)U+ u(x)P
N :=pn.U+ an.N + @n.N + p(x).U + n(x)N + u(x)N
U :=pu.P +nu.N + .U+ p(x).P + n(x)N + u(x)U
B:=P|...|P|N|...|N|U|...|U

The use of distinct channels allows an instantaneous state transition of both
the agents at each communication of an agent pair (the formulation B required
two distinct communications in sequence). Figure 6 contains a first (uncom-
pleted) formulation in DNA Tile of system B. Each process is expressed by 6
different Tiles, one for each of the 6 terms occurring in the +_expression defining
a process in system B. In Figure 6, the east side of the tile is assumed to be used
for receiving whilst the west side for sending. This results into an asymmetry
in the communication of the agent pairs (which is not present in the latter -
formulation), in addition the computation grid of the aTAM model is too rigid
in ”selecting” the tiles to be considered for the grid growth (in contrast to the
terms of a |_expression which can be coupled in any way). Figure 7 contains the
additional Tiles that a process requires to get in contact with any process in the
system and arbitrarily positioned in a column of the computation grid.

Proving equivalence between the m-calculus formulation of system B and its
formulation in aTAM is out of the scope of the paper. However, we have shown
lines along which we can pass from algebraic formulations of some distributed
systems to the DNA Tiles for the execution of such systems by self-assembly in

Programming Self-Assembly of DNA Tiles 11

P P P
a P a Xnhp a Xup
a P U P
I’y a ®) ®,) (Py)
P 3 p 3
®) pp X & np X a up X a
P U P

®) (Ps) (Pg)

P:=p*p.P + n*p.P +u*p.U + p(x).P + n(x).U + u(x).P
N :=p*n.U+n*n.N + u*n.N + p(x).U + n(x).N + u(x).N
U :=p*uP+n*uN +u*u.U+ p(x).P + n(x).N + u(x).U

B=PI...IPINI..INIUI...IU

Fig. 6. P, N, U are the positive, negative and undecided kind of agent resp. The tiles for an agent
of kind P are in the top (those for the other two, look similarly). Each tile has the current state of
the agent in the north side, the current communication channel either in the east or in west side, the
action to do in the south side. An algebraic formulation of consensus system is given in the bottom,
in m-calculus: One row for each kind of agent (for typographical reasons an output channel p is here,
denoted by p* instead of p). The last row is the full system and consists of a fixed number of agents
of each of the three kinds: Agents can interact in pairs in any oder, provided that the corresponding
tiles have the communication side of the same name/color.

the aTAM model. Figure 7 shows on its right part, the behavior of 3 contiguous
agents in a computation grid of the consensus system.

P P P [U |N
N X1 N XUl Py [Ui [Ny
N U P Ul P 6 N, 0
P, Py a XA P, | P, |Ns
P, |U, |U,
P P - =
nxpxX uxpX a 0
N U
(Py) (Py)

Fig. 7. A possible behavior of three agents of the Consensus protocol in the aTAM model. The
m-formulation of system B, given in Fig.6, is for distributed (possibly concurrent) computation. To
run in the sequential aTAM model, each agent must be enriched by a stand-by behavior in which
the agent is not communicating. This behavior is expressed, for agents of kind P, by the Tile labelled
Py (where both east and west sides are #). In addition, to guarantee that agents can communicate
in arbitrary pairs, each agent must be able to exchange its position with a contiguous agent, in a
row of the grid. This is allowed, for agents of kind P, by the four Tiles that are labelled P7-Pig.
The grid, in the right part of the figure, shows the behavior of the 3 contiguous agents, in the first
row. In the second row, the first and the second agent exchange the respective positions and then
communicate (in the third row). As a consequence, the undecided agent, in first column, becomes a
positive agent and enters in stand-by in the next step (shown in the next row) whilst the other two
agents, one positive and one negative, communicate in between and both become, in the last row,
undecided agents.

We conclude the paragraph, recalling that concurrent computation is a mix of
distributed and parallel computation. Since the structure of programs (namely,
finite sets of DNA Tiles) and the properties of the basic computation mechanism
(namely, Tile self-assembly in a grid), the aTAM model copes with distributed
computation but it is a sequential computation model. This limitation is the
result of various considerations on some bio-chemical aspects of DNA molecular

12 M. Bellia, M. E. Occhiuto

interactions [11,4]. Hence, the definition of a parallel, computation model for
DNA Tile self-assembly should reconsider such aspects. This is an interesting line
of investigations to allow concurrent computations in DNA Tile self-assembly.

5 Conclusions

The paper introduced an aTAM Universal Machine for CL. Apart from the
interest in itself, its use is compared with the one of the language SKI# and of its
interpreter [2]. SKI# is a Turing complete, language designed for programming
in the aTAM model and is a proper subset of CL. The comparison shows that
the use of the Universal Machine appears more convenient than the use of SKI
and its compiler, when the number of the required Tiles is considered. Moreover
the use of the Universal Machine does not require any checking for the grid
property. The paper discusses a formalization of the Consensus protocol in the
aTAM model. It should be interesting to compare it with the one given in [9] for
Strand Displacement Systems. Finally we note that the given formalization was
obtained by simplifying a previous one given in 7-calculus and using variables.
The simplification was based on the removal of the variables that were ranging
on finite sets of values. This can lead to an integration of SKI# with operators
of a process algebra with variables ranging on finite sets of values.

References

1. Rothemund, P.W.K., Winfree, E.: The Program Size Complexity of Self-Assembled
Squares - [revised may 20 - 2000]. In: ACM Symposium on Theory of Computing
(as Extended Abstract). (2000) 459-468

2. Belia, M., Occhiuto, M.E.: DNA Tiles, Wang Tiles and Combinators. In: Proc. of
CS&P’2013. CEUR vol.1032 (2013) 114

3. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. 2nd edn. AddisonWesley, Higher Education (2003)

4. Winfree, E.: Simulations of Computing by Self-Assembly. In: 4t* DIMACS Meeting
on DNA Based Computer. (June 1998)

5. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and Self-Assembly of
Two-Dimensional DNA Crystals. Nature 394 (1998) 539-544

6. Wang, H.: Dominoes and the AEA case of the Decision Problem. In: Symp. on
Mathematical Theory of Automata. (1963) 23-55

7. Neary, T., Woods, D.: Four Small Universal Turing Mchines. In: Proc. of 5th.
MCU. LNCS 4664 (2007) 242-254

8. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21 (2008) 87-102

9. Chen, Y.J., et al: Programmable chemical controllers made from dna. PNAS 97(3)
(2000) 984-989

10. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I-1I. Informa-
tion and Computation 100 (1992) 1-77

11. Winfree, E., Yang, X., Seeman, N.: Universal Computation via Self-Assembly of
DNA: Some Theory and Experiments. In: 2* DIMACS Meeting on DNA Based
Computers. (June 1996)

