
On the Complexity of L-reachability∗

Balagopal Komarath∗ Jayalal Sarma∗ K. S. Sunil †

November 7, 2018

Abstract

We initiate a complexity theoretic study of the language based graph reachability
problem (L–Reach) : Fix a language L. Given a graph whose edges are labelled with
alphabet symbols of the language L and two special vertices s and t, test if there is path
P from s to t in the graph such that the concatenation of the symbols seen from s to t
in the path P forms a string in the language L. We study variants of this problem with
different graph classes and different language classes and obtain complexity theoretic
characterizations for all of them. Our main results are the following:

• Restricting the language using formal language theory we show that the complex-
ity of L–Reach increases with the power of the formal language class. We show
that there is a regular language for which the L–Reach is NL-complete even for
undirected graphs. In the case of linear languages, the complexity of L–Reach
does not go beyond the complexity of L itself. Further, there is a deterministic
context-free language L for which L–DagReach is LogCFL-complete.

• We use L–Reach as a lens to study structural complexity. In this direction
we show that there is a language A in TC0 for which A–DagReach is NP-
complete. Using this we show that P vs NP question is equivalent to P vs
DagReach−1(P)1 question. This leads to the intriguing possibility that by prov-
ing DagReach−1(P) is contained in some subclass of P, we can prove an upward
translation of separation of complexity classes. Note that we do not know a way
to upward translate the separation of complexity classes.

1 Introduction

Reachability problems in mathematical structures are a well-studied problem in space com-
plexity. An important example is the graph reachability problem where given a directed

∗A preliminary version of this work with a subset of results was presented at 16th International Workshop
on Descriptional Complexity of Formal Systems (DCFS 2014) and appears in [9].
†Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai –

36, India. Email : {baluks,jayalal,sunil}@cse.iitm.ac.in The first author was supported by the TCS
Ph.D. Fellowship.

1For any complexity class C, DagReach−1(C) = {L : L–DagReach ∈ C}.

1

ar
X

iv
:1

70
1.

03
25

5v
1

 [
cs

.C
C

]
 1

2
Ja

n
20

17

graph G and two special vertices s and t, is there a path2 from s to t in the graph G.
This problem exactly captures the space complexity of problems solvable in nondetermin-
istic logarithmic space. Various restrictions of the problem have been studied - reachabil-
ity in undirected graphs characterizes deterministic logspace [10], reachability in constant
width graphs (even undirected) characterizes NC1 [3], reachability in planar constant width
directed graphs characterizes ACC0 [5] and the version in upward planar constant width
directed graphs characterizes AC0 [4].

A natural extension of the problem using formal language theory is the L–Reach prob-
lem: Fix a language L defined over a finite alphabet Σ. Given a graph whose edges are
labelled by alphabet symbols and two special vertices s and t, test if there is path from s
to t in the graph such that the concatenation of the symbols seen from s to t forms a string
in the language L. Indeed, if L is Σ∗, then the string on any path from s to t will be in the
language. Hence the problem reduces to the graph reachability problem.

Although L–Reach problem has not been studied from a space complexity theory per-
spective, a lot is known about its complexity [11, 12, 16, 8, 2]. An immediate observation
is that the L–Reach problem is at least as hard as the membership problem of L. Indeed,
given a string x, to check for membership in L it suffices to test L–Reach in a simple path of
length |x| where the edges are labelled by the symbols in x in that sequence. The literature
on the problem is spread over two main themes. One is on restricting the language from the
formal language perspective, and the other is by restricting the family of graphs in terms of
structure.

An important special case of the problem that was studied is when the language is
restricted to be a context-free language (CFL). This is called the CFL–Reach. A primary
motivation to study this problem is their application in various practical situations like
inter-procedural slicing and inter-procedural data flow analysis [8, 11, 12]. These are used
in code optimization, vectorization and parallelization phases of compiler design where one
should have information about reaching definitions, available expressions, live variables, etc.
associated with the program elements. The goal of inter-procedural analysis is to perform
static examination of above properties of a program that consists of multiple procedures.
Once a program is represented by its program dependence graph [11], the slicing problem
is simply the CFL–Reach problem.

Our Results: The results in this paper are in two flavors.
Results based on Chomsky Hierarchy and Graph Classes: Firstly we study re-
strictions of L–Reach problem when L is restricted using formal language hierarchy and the
graph is restricted to various natural graph classes. Our results on this front are listed in
Table 1 (for the sake of completeness, we include some known results too). Apart from the
results in Table 1, we show the following theorem for the language class DCFL.

Theorem 1. DCFL–DagReach is LogCFL-complete.

2We follow the convention that a path can have repeated vertices and edges.

2

Table 1: Formal language class restricted reachability
Language Class Tree-Reach DAG-Reach UReach/Reach
Regular L-complete[16] NL-complete[16] NL-complete

(Theorem 4/[16])
Linear NL-complete NL-complete NL-complete

(Theorem 5) (Theorem 5) (Theorem 5)
Context-free LogCFL-complete LogCFL-complete P-complete

(Prop. 2) (Prop. 2) (Theorem 7/[15])
Context-sensitive PSPACE-complete PSPACE-complete Undecidable

(Prop. 3) (Prop. 3) ([2])

Results on the Structural Complexity front: Now we take a complexity theoretic view,
where we study L–Reach as an operator on languages. It is shown in Barrett et. al. [2] that
even for languages in logspace, the languages L–Reach and L–UReach are undecidable.
Therefore in this section, we consider only DAGs. Note that for any language L, the language
L–DagReach is decidable.

It is natural to ask whether increasing the complexity of L increases the complexity of

L–DagReach. More concretely, does A ≤ L
m B =⇒ A–DagReach ≤ L

m B–DagReach?
The following theorem, along with the fact that there exists a language L (see Proposition 2)
that is LogCFL-complete for which L–DagReach remains LogCFL-complete shows that such
a result is highly unlikely.

Theorem 2. There exists a language A ∈ TC0 for which A–DagReach is NP-complete.

For any complexity class C, we consider the class of languages defined as,

DagReach−1(C) = {L : L–DagReach ∈ C}

Note that for any class C, we have DagReach−1(C) ⊆ C. We have the following theorems
for different choices of C.

Theorem : We show the following structural theorems:

1. (Theorem 9) DagReach−1(PSPACE) = PSPACE, DagReach−1(NP) = NP.

2. (Theorem 10) P 6= DagReach−1(P) ⇐⇒ P 6= NP.

3. (Theorem 11) DagReach−1(NL) 6= NL ⇐⇒ NP 6= NL.

The above theorem shows that separating DagReach−1(P) from P would separate P
from NP. This gives us an upward translation of lower bounds on complexity classes if we can
prove that DagReach−1(P) is contained in some subclass of P. Hence the question whether
we can identify some “natural” complexity class containing DagReach−1(P) becomes very
interesting. It is clear that DagReach−1(P) contains LogCFL-complete problems but is

3

highly unlikely to contain some problems in L. If DagReach−1(P) contains some P-complete
problem, then proving that DagReach−1(P) is contained in some subclass of P would be
very hard. In this connection, we show the following:

Theorem 3. If L is P-complete under syntactic read-once logspace reductions, then L–DagReach
is NP-complete.

If we are able to extend the above theorem to all types of reductions, then it implies
that, assuming NP is not contained in P, DagReach−1(P) is unlikely to contain P-complete
problems. In other words, the above theorem could be interpreted as evidence (albeit very
weak evidence) that DagReach−1(P) may indeed be contained in some subclass of P.

We also remark that Theorem 10 holds with NL instead of P. However, since DagReach−1(NL)
contains NL-complete (under logspace reductions) languages, Theorem 11 is not as promising
(as Theorem 10).

A preliminary version of this with a subset of results appears [9]. In [9], we proved that
there is a language A in logspace such that A–DagReach is NP-complete. In this extended
version, we improve this bound to TC0 (from logspace, see Theorem 2).

2 Preliminaries

In this section, we define language restricted reachability problems and make some observa-
tions on their complexity. The definitions for standard complexity classes and their complete
problems that we are using in this paper can be found in standard complexity theory text-
books [1]. We use L and NL to stand for the complexity classes deterministic logspace and
nondeterministic logspace respectively. All reductions (even ones used for defining complete-
ness) in this paper are in logspace unless mentioned otherwise.

Definition 1. For any language L ⊆ Σ∗, we consider graph G where each edge in G is
labelled by an element from Σ. For any path in G we define the yield of the path as the
string formed by concatenating the symbols found in the path in that order. Then we define
the language L–Reach as the set of all (G, s, t) such that there exists a path from s to t in
G with yield in L.

By restricting the graph in Definition 1, we obtain similar definitions for L–DagReach
(DAGs), L–UReach (Undirected Graphs) and L–TreeReach (Orientations of Undirected
Trees).

Let Σ and Γ be finite alphabets. A function f from Σ∗ to Γ∗ is called a projection if for
all x ∈ Σ∗, the string f(x) = y is such that for all i ∈ [m], either yi = xj for some j ∈ [n] or
yi = 0 or yi = 1, where m = |y| and n = |x|. A language L over Σ is said to be projection
reducible to a language L′ over Γ if there is a projection f such that x ∈ L ⇐⇒ y = f(x) ∈
L′ and |y| is polynomial in |x|.

Observation 1. Any language L is projection reducible to L–TreeReach.

4

Clearly, the above observation holds for any reachability variant based on the graph.
This is because L–TreeReach is a restriction of the other reachability variants. In fact the
following observation shows that L–TreeReach is not much harder than L.

Observation 2. For any language L, the language L–TreeReach is logspace reducible to
L.

Observation 2 holds because in logspace we can find the unique path (and hence its yield)
from s to t in some tree and run the algorithm for L on the yield.

Next we define classes of languages based on language restricted reachability.

Definition 2. For any class of languages C, we define the set of languages C–Reach as the
class of all languages L–Reach where L is in C.

Again, by restricting graphs in Definition 2, we obtain similar definitions for C–DagReach,
C–UReach and C–TreeReach.

Definition 3. For a class of languages C and a complexity class D, we say that C–Reach
is complete for D if the following conditions are satisfied.

• For all L ∈ C, the language L–Reach is in D.

• There exists a language L in C such that the language L–Reach is hard for D.

Definition 4. For any complexity class C, we define Reach−1(C) as the set of all languages
L such that L–Reach is in C.

Again, by restricting graphs in Definition 4, we obtain similar definitions for DagReach−1(C),
UReach−1(C) and TreeReach−1(C).

Note that by Observation 1, for any class C the relations Reach−1(C) ⊆DagReach−1(C) ⊆
TreeReach−1(C) ⊆ C holds. In this paper, we will be mainly studying DagReach−1(C)
for many interesting complexity classes C.

Our motivation in studying DagReach−1(C) is that it seems that it may be helpful
in proving upward translation of separation of complexity classes. Note that we already
know, by a standard padding argument, how to translate separations of complexity classes
downwards. For example, we know that NEXP 6= EXP =⇒ P 6= NP. The central question
that we address is the following - For a class C, what is the complexity of DagReach−1(C)?
Clearly DagReach−1(C) is contained in C. But for many natural complexity classes C, D
and E, if we can show that if DagReach−1(C) is contained in some subclass D of C, then
separating C and D is equivalent to separating C from some complexity class E that contains
C.

We use REG, CFL and CSL to stand for well-known formal language classes of regular,
context-free and context-sensitive languages respectively[7]. The formal language class LIN,
called the set of all linear languages, is the set of all languages with a context-free grammar
where the right-hand side of each production consists of at most one non-terminal. The class

5

LIN can also be characterized as CFLs that can be decided by 1-turn PDAs (sub-family of
PDAs where for any computation, the stack height switches only once from non-decreasing
mode to non-increasing mode).

We now state a known result with its proof idea which will be used later in the paper.

Proposition 1 ([12]). CFL–Reach is in P.

Proof. (Sketch) The proof is a dynamic programming algorithm. The algorithm maintains
for each pair of vertices u and v a table entry Y [u, v] such that Y [u, v] is the set of all non-
terminals V in the grammar such that there is a path from u to v with yield that can be
derived from V . The algorithm can be modified to output the derivation for x where x ∈ L
is the yield of a path from s to t. Note that this implies that for all “yes” instances there
exists a string with length of the derivation at most polynomial in the size of the graph.

Sudborough [14] studied the class of languages logspace reducible to a CFL. This class is
called LogCFL. Sudborough [14] also showed that LogCFL can be characterized as the set of
all languages accepted by an AuxPDA(poly). An AuxPDA(poly) is an NTM with a read-only
input tape and a logspace read-write work tape. It also has a pushdown stack available for
auxiliary storage. The machine is allowed to run only for a polynomial number (in the input
length) of steps. It is also known that the language NBC(D2) (Nondeterministic block choice
Dyck2) is complete for the class LogCFL. The language NBC(D2) consists of all strings of the
form x1[x2#x3][x4#x5] . . . [xk#xk+1] where each xi is a string of two types of parentheses.
The string between “[” and “]” is called a block and the symbol # separates choices in a
block. A string is in the language NBC(D2) if and only if there is a choice of xi’s from each
block such that the final string (after all choices have been made) is in D2.

3 Formal Language Class restricted Reachability

We know that REG–Reach is in NL [16]. The algorithm works by constructing the product
automata of the input graph and the DFA for the regular language. The problem then reduces
to the reachability problem on the product automata. One problem with this approach is
that even if the input graph is an undirected graph, the product automata will be a directed
graph. We know that reachability in directed graphs is harder than reachability in undirected
graphs. The following theorem shows that for regular languages, restricted directed and
undirected reachability are equivalent.

Theorem 4. If L is the regular language L((ab)∗) over the alphabet {a, b} then L–UReach
is NL-complete.

Proof. To show that L–UReach is NL-hard, we give a logspace reduction from REACH.
Given an instance (G, s, t) of REACH we construct an instance (G′, s, t) of L–UReach where
G′ is a labelled undirected graph where each edge is labelled either a or b. The vertex set
of G′ is given by V (G′) = V (G) ∪ {muv : (u, v) ∈ E(G)}. For each edge (u, v) ∈ E(G), we
add two undirected edges {u,muv} labelled a and {muv, v} labelled b to E(G′). It is easy to

6

see that any directed path from s to t corresponds to a path from s to t in G′ labelled by a
string in L and vice versa.

So we know that REG–Reach is NL-complete and CFL–Reach is at least as hard as
LogCFL. So it is interesting to consider the complexity of LIN–Reach. We know that
REG ⊆ LIN ⊆ CFL in the formal language theory setting. The following theorem shows that
LIN–Reach is equivalent to REG–Reach.

Theorem 5. LIN–TreeReach, LIN–DagReach, LIN–UReach and LIN–Reach are all
NL-complete.

Proof. There is an NL-complete language in LIN [13]. The hardness follows from this fact and
Observation 1. Now we show that all these problems are in NL. The Dynamic Programming
algorithm for CFL–Reach from Proposition 1 runs in poly-time and produces a polynomial
length derivation for the output string (string yielded by the path). For any language in
LIN, a polynomial length derivation can only produce a polynomial length string (and hence
polynomial length path). Let us say that the length of the path is bounded by nk where n is
the size of the graph and k is a constant. Then our algorithm will search for a path of length
at most nk by nondeterministically guessing the next vertex at each step and simultaneously
parsing the string at each step (using a 1-turn PDA.). This can be implemented by a 1-turn
AuxPDA that runs in time nk and takes log(n) space. Sudborough [13] proved that this class
is exactly the same as NL.

The following theorem shows that for solving reachability for DCFLs (which are nonde-
terministic), some nondeterminism is unavoidable.

Theorem 6. DCFL–DagReach is LogCFL-complete.

Proof. Let L ∈ DCFL. We will describe an AuxPDA(poly) that decides the language L–DagReach.
The machine starts with the source vertex s as the current vertex. At each step it nonde-
terministically moves to an out-neighbor of the current vertex. When the machine takes the
edge (u, v) it executes one step of the DPDA for L, using the stack and finite control, with
the label on (u, v) as the current input symbol. The machine accepts iff it reaches t and the
DPDA accepts.

For hardness, we reduce NBC(D2) to DCFL–DagReach. The reduction results in a
series-parallel graph as shown in Figure 1. In the figure, a dashed arrow represents a simple
path labelled by the given string. Note that the language D2 is in DCFL.

Proposition 2. CFL–TreeReach and CFL–DagReach are LogCFL-complete.

Proof. Sudborough [13] defines a context-free language that is complete for the class LogCFL.
This shows the hardness. To show membership in LogCFL consider an AuxPDA(poly) that
starts with s as the current vertex and at each step guesses the next vertex while simul-
taneously using the stack to simulate the parsing of the CFL. This machine accepts iff the
current vertex is t at some point and the PDA is in an accepting state at the same time. It
is easy to see that this AuxPDA(poly) decides these languages.

7

x1[x2#x3][x4#x5]

x1

x2

x3

x4

x5

s t

Figure 1: Reducing NBC(D2) to DCFL–DagReach

We now give a simplified presentation of a known result that says that CFL–Reach is
P-complete. Also observe that

Theorem 7 ([15]). Let D2 (ε-free Dyck2) be the CFL given by the grammar

S → (S) | [S] | SS | () | [].

D2–Reach is P-complete.

Proof. This theorem has been proved in [15] using a different terminology. Here we give a
simplified presentation of the proof using our terminology for the hardness of this language.
We show the P hardness for D2 by reducing a P-complete problem MCVP (Monotone Circuit
Value Problem where fan-out and fan-in of each gate is at most 2) to D2–Reach. We may
assume without loss of generality that each gate in the input circuit has fan-out at most 2.
The reduction works by replacing each gate by a gadget as shown in Figure 2. Each gadget in
the construction has an input vertex and an output vertex. The gadgets for input gates are
straightforward. For an AND gate we add 3 new vertices and connect them to the gadgets
for two gates feeding input to the AND gate. Suppose that the left input to the AND gate
comes from the 2nd (1st) output wire of the left input gate. Then the first and second edges
are labelled by “[” (“(” resp.) and “]” (“)” resp.) respectively.

We use proof by induction on the level of the output gate of the circuit to prove the
correctness of this reduction. The inductive hypothesis is that there is a valid path from the
input vertex to the output vertex of a gadget iff the output of the gate is 1 and any path
that enters a gadget through its input gate and leaves it from some vertex other than its
output vertex will be invalid. This holds trivially for gadgets for the input gates. Now any
valid path from the input vertex to the output vertex of the AND gadget must consist of
valid subpaths within the gadgets for the gates feeding input to this AND gate. The only
exception is when some path leaves this gadget for the AND gate from some vertex other
than its output vertex. Note that by the induction hypothesis such a path can only leave
from vertex w or z of the gadget. But the vertex w (also z) has out-degree at most 2 and
the other edge will be labelled by a closing bracket that does not match the type of bracket
on the edge (u, v). This mismatch invalidates the path. A similar argument holds for OR
gates. This completes the induction.

Now we prove a theorem similar in spirit to Theorem 4 for CFLs. The proof uses the
same idea to make the undirected version as hard as the directed one.

8

Input gate with value 1

()
input output

(or [

(or [

(or [) or] (or [) or]

) or]

) or]

Gadget for left input

Gadget for right input

Gadget for right inputGadget for left input

input output

AND gate

OR gate

w zinput output

Input gate with value 0

input output

Figure 2: Reducing MCVP to D2–Reach

Theorem 8. Let DD2 be the CFL given by the grammar

S → (aSb) | [cSd] | SS | (a b) | [c d].

DD2–UReach is P-complete.

Proof. CFL–UReach is in P by [15]. We prove hardness by reducing from D2–Reach.
The reduction works by replacing each edge of the D2–Reach instance by an undirected
path of length two. If for two vertices a, b, the directed edge from a to b is labelled “(”
(respectively “)”,“[” and “]”) then replace it by an undirected path of length two with yield
“(a”(respectively “b)”,“[c” and “d]”) when read from vertex a to vertex b. The correctness
of the reduction is easy to see.

We state the following proposition, which follows from Theorem 9.

Proposition 3. CSL–TreeReach and CSL–DagReach are PSPACE-complete.

4 Complexity Class restricted Reachability

Now we consider the complexity of L–Reach and its variants when L is chosen from com-
plexity classes. Barrett et. al. [2] has shown that even for languages in L, the languages
L–Reach and L–UReach are undecidable. But note that for any decidable L, the language
L–DagReach is decidable. So we restrict our study only to L–DagReach in this section.

We have seen that moving up in the Chomsky hierarchy increases the complexity of reach-
ability. It is natural to ask whether such an observation also holds with respect to the com-
plexity classes, i.e., increasing the complexity of L increases the complexity of L–DagReach.

More concretely, does A ≤ L
m B imply A–DagReach ≤ L

m B–DagReach. The following the-
orem (which we restate from the introduction) shows that this is very unlikely.

Theorem 2: There is an A ∈ TC0 for which A–DagReach is NP-complete.

9

Proof. The language A can be thought of as an encoding of vertex cover. Each string w
in A consists of 3 parts, say w1, w2 and w3. w1 is a string of the form 1k0n−k and encodes
k, the size of vertex cover, in unary. w2 consists

(
n
2

)
bits which is the adjacency matrix

representation of the input graph. w3 consists n bits which encodes the vertex cover by the
characteristic vector. The strings w1, w2 and w3 are separated by a # and each of the n bits
in w3 is separated by a #.

Let n1(x) be the number of 1’s in the string x. A string w is in the language A iff the
following conditions hold.

1. The size of the vertex cover must be at most the size given in the first part of w.
ie., n1(w3) ≤ n1(w1), and

2. If the edge {i, j} is present in the graph, then either the ith or the jth vertex must be
present in the vertex cover.
ie., (w2(i, j) = 1) =⇒ ((w3(i) = 1) ∨ (w3(j) = 1).

Any string w ∈ A can be expressed as

(∀i,j(w2(i, j) = 1) =⇒ (w3(i) = 1 ∨ w3(j) = 1)) ∧
∃k ≤ n, ((n1(w1) = k) ∧ (n1(w3) ≤ k))

An AC0 circuit is enough to check the conditions (∀i,j(w2(i, j) = 1) =⇒ (w3(i) =
1 ∨ w3(j) = 1)) and ∃k ≤ n, (n1(w1) = k) but a TC0 circuit is necessary to check whether
n1(w3) ≤ k.

A sketch of the structure of the circuit is given in Fig 3.

∨
∧ ∧
· · ·

· · ·
· · ·

n1(w1) = 1? n1(w3) ≤ 1? n1(w3) ≤ n?n1(w1) = n? (i, j) = 0?

∨
∨

j = 1?i = 1?

Figure 3: Circuit for A

To show NP-hardness, we reduce VERTEX–COVER to A–DagReach.
The language A–DagReach is in NP as the non-deterministic Turing machine guesses

the path and verifies whether the yield of the path is in A.
The reduction is given in Fig 4. The DAG contains three parts. The first part, path

from s to t1 encodes the size of the vertex cover and the second part, from t1 to t2 encodes
the graph while the third part, from t2 to t represents the actual vertex cover.

For every w ∈ A we construct a valid path in DAG as follows. Take the edges labelled
by 1, corresponding to the 1′s in the third part of w (it is same as the vertices in the vertex
cover). For the remaining vertices, the edges labelled 0 will be taken in the path.

10

enc(2) # enc(G) # 0

1

0

1

0

1

#

#

#

#

#

#

0

1

0

1

#

#

#

#

v1

v2

v3

v4

v5

V C = {v2, v4}

s
t1 t2

t

{0, 1}251203 # #

Figure 4: Reducing VERTEX COVER to A–DagReach

Every valid path in the DAG corresponds to a vertex cover in G. Let w be the yield of

the path and let w3 be its third part. Then include i in the vertex cover iff the (2i − 1)th

symbol of w3 is 1.

We are now going to see how the above result can be used for translating separations of
complexity classes upwards (Theorem 10). For any complexity class C, we consider the class
of languages defined as DagReach−1(C) = {L : L–DagReach ∈ C}. We have the following
theorems for natural choices of C. Note that for any class C, we have DagReach−1(C) ⊆ C.

Theorem 9. DagReach−1(PSPACE) = PSPACE and DagReach−1(NP) = NP.

Proof. Let L ∈ PSPACE, then given an instance of L–DagReach we enumerate all paths
from s to t and run the PSPACE algorithm for L on the yield. This is a PSPACE algorithm
for L–DagReach. Similarly if L ∈ NP, then a path from s to t along with the certificate for
the yield on that path is a poly-time verifiable certificate for the L–DagReach problem.

Theorem 10. P 6= DagReach−1(P) ⇐⇒ P 6= NP.

Proof. Suppose P 6= DagReach−1(P) and let L ∈ P\DagReach−1(P). Now L–DagReach
is in NP by Theorem 9. By the choice of L we also have L–DagReach is not in P.

For the other direction: suppose DagReach−1(P) = P. We know that there is a language
L ∈ P for which L–DagReach is NP-complete. Hence, P = NP.

Theorem 10 shows that separating DagReach−1(P) from P would separate P from NP.
This gives us an upward translation of lower bounds on complexity classes provided we can
prove that DagReach−1(P) is contained in some subclass of P. The interesting question is
whether we can identify some “natural” complexity class containing DagReach−1(P).

By using similar arguments, we also have

Theorem 11. DagReach−1(NL) 6= NL ⇐⇒ NP 6= NL.

However DagReach−1(NL) contains NL-complete languages (See Theorem 5). So prov-
ing that DagReach−1(NL) is separate from NL could be very hard.

The following theorem can be viewed as an evidence that DagReach−1(P) could be
separate from P. A language L is syntactic read-once logspace (this notion was considered

11

by Hartmanis et. al. in [6]) reducible to another language L′ iff there is a logspace reduction
from L to L′ and in the configuration graph for this reduction all paths from the start config-
uration to the accepting configuration reads each input variable at most once. It shows that
if we restrict our attention to syntactic read-once logspace reductions, then L–DagReach
for a P-complete problem L is NP-complete. Note that many natural P-complete problems
such as CVP (Circuit Value Problem) remains P-complete even under syntactic read-once
logspace reductions.

Theorem 3: If L is P-complete under syntactic read-once logspace reductions, then L–DagReach
is NP-complete.

Proof. Let V ∈ NP via a poly-time verifier N. Let W be the witness language for V. i.e.,
W = {(x,w) : N(x,w) = 1 and |w| = |x|k for some k}. Since L is P-complete W is read-once
logspace reducible to L via M. We reduce V to L–DagReach. Let x be our input. Take the
configuration graph G of M on length |x|+ |x|k inputs (after fixing the value of x) and label
each edge by the symbol output by the machine M in that step. This graph H is considered as
an input to the language L–DagReach. First we prove that H ∈ L–DagReach implies that
x ∈ V. Consider a path from s to t in H labelled by a string in L. This path corresponds
to a witness string for x. Therefore there exists a string w for which (x,w) in W which
implies x ∈ V. For the other direction let x ∈ V. Therefore there exists a string w such that
(x,w) ∈ W. Now take the path in G that corresponds to this w. The yield of this path is a
member of the language L since M outputs this yield when given (x,w) as input.

5 Discussion and Open Problems

The main result of our work is the observation that if we can prove that the class DagReach−1(P)
is contained in some complexity class that is a subclass of P, then we can translate separation
of complexity classes upwards. We propose the following open problem.

Open Problem 1: Prove that DagReach−1(P) ⊆ NC.

It would be interesting to study the behavior of DagReach−1(.) operator on com-
plexity classes below NL. AC0 is the class of all languages computable by poly-size, con-
stant depth uniform Boolean circuits. Can we say anything about the set of languages
DagReach−1(AC0)? The only languages L for which we know that L–DagReach is in AC0

are finite languages. Recall that DAGREACH is NL-complete and we know that NL 6= AC0.
Therefore, for any language L such that L–DagReach is in AC0, the L–DagReach problem
is strictly easier than DAGREACH. This leads us to our second open problem.

Open Problem 2: Prove that if L–DagReach ∈ AC0 then L is finite.

12

References

[1] Arora, S., Barak, B.: Computational Complexity: A Modern Approach, Cambridge
University Press, 2009, ISBN 9780521424264.

[2] Barrett, C. L., Jacob, R., Marathe, M. V.: Formal-Language-Constrained Path Prob-
lems, SIAM Journal of Computing, 30(3), 2000, 809–837.

[3] Barrington, D. A. M.: Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1, Journal of Computer and System Sciences, 38(1),
1989, 150–164.

[4] Barrington, D. A. M., Lu, C.-J., Miltersen, P. B., Skyum, S.: Searching constant width
mazes captures the AC0 hierarchy, In Proceedings of the 15th Annual Symposium on
Theoretical Aspects of Computer Science, Springer-Verlag, 1998.

[5] Hansen, K. A.: Constant Width Planar Computation Characterizes ACC0, Proceedings
of the 21st Annual Symposium on Theoretical Aspects of Computer Science, 2004.

[6] Hartmanis, J., Immerman, N., Mahaney, S. R.: One-Way Log-Tape Reductions, Pro-
ceedings of 19th Annual Symposium on Foundations of Computer Science, 1978.

[7] Hopcroft, J. E., Motwani, R., Ullman, J. D.: Introduction to automata theory, languages,
and computation - international edition (2. ed), Addison-Wesley, 2003, ISBN 978-0-
321-21029-6.

[8] Horwitz, S., Reps, T. W., Binkley, D.: Interprocedural Slicing Using Dependence
Graphs, ACM Transactions on Programming Languages and Systems, 12(1), 1990,
26–60.

[9] Komarath, B., Sarma, J., Sunil, K. S.: On the Complexity of L-reachability, De-
scriptional Complexity of Formal Systems - 16th International Workshop, DCFS 2014,
Turku, Finland, August 5-8, 2014. Proceedings, 2014.

[10] Reingold, O.: Undirected connectivity in log-space, Journal of the ACM, 55(4), 2008.

[11] Reps, T. W.: On the Sequential Nature of Interprocedural Program-Analysis Problems,
Acta Informatica, 33(8), 1996, 739–757.

[12] Reps, T. W.: Program analysis via graph reachability, Information & Software Tech-
nology, 40(11-12), 1998, 701–726.

[13] Sudborough, I. H.: A Note on Tape-Bounded Complexity Classes and Linear Context-
Free languages, Journal of the ACM, 22(4), 1975, 499–500.

[14] Sudborough, I. H.: On the Tape Complexity of Deterministic Context-Free Languages,
Journal of the ACM, 25(3), 1978, 405–414.

13

[15] Ullman, J. D., van Gelder, A.: Parallel Complexity of Logical Query Programs, Algo-
rithmica, 3, 1988, 5–42.

[16] Yannakakis, M.: Graph-Theoretic Methods in Database Theory, Proceedings of the 9th
ACM Symposium on Principles of Database Systems, 1990.

14

	1 Introduction
	2 Preliminaries
	3 Formal Language Class restricted Reachability
	4 Complexity Class restricted Reachability
	5 Discussion and Open Problems

