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Abstract. Though graph grammars have been widely investigated for 40 years, few learning results
exist for them. The main reasons come from complexity issues that are inherent when graphs, and a
fortiori graph grammars, are considered. The picture is however different if one considers drawings
of graphs, rather than the graphs themselves. E.g., it has recently been proved that the isomorphism
and pattern searching problems could be solved in polynomial time for plane graphs, that is, planar
embedding of planar graphs. In this paper, we introduce the Plane Graph Grammars (PGG) and de-
tail how they differ to usual graph grammar formalisms while at the same time they share important
properties with string context-free grammars. In particular, the parsing of a graph with a given PGG
is polynomial for languages with appropriate restrictions. We demonstrate that PGG are well-shaped
for learning: we show how recent results on string grammars can be extended to PGG by providing
a learning algorithm that identifies in the limit the class of substitutable plane graph languages. Our
algorithm runs in polynomial time assuming the same restriction used for polynomial parsing, and
the amount of data needed for convergence is comparable to the one required in the case of strings.

1. Introduction

Graph Grammars have been defined and studied for four decades from a language-theoretical standpoint
(see [29] for an overview), but the learning of these formalisms is known to be intricate and has hardly
been investigated in the literature yet. Most contributions concern heuristics tailored for graphs involved
in restricted application domains. This is the case of both most famous algorithms, Subdue [5] and
FFSM [21], and their extensions [27, 23, 25].
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On the theoretical side, it appears that learnability results are even rarer and often provide us with pre-
liminary results, rather than effective learning procedures. For instance, E. Jeltsch and H.-K. Kreowski
[22] give an algorithm that generates the set of grammars consistent with a given set of graphs. R. Brijder
and H. Blockheel [2] investigate the inference of a grammar consisting of a single production rule, given
a graph and a distinguished pattern with many occurrences. Few necessary conditions for the learning of
graph grammars have also been established under unrestricted Gold’s paradigm [6]. Also note that new
learnability results are anticipated in the framework of recognizable series of (hyper-)graphs [1]. The
situation is a bit different in other branches of Machine Learning: several techniques have been proposed
to tackle classification problems over graphs in the scope of social network analysis, biological network
analysis or image analysis [18]. However, they generally hide the complexity of the graph structures into
abstract numerical structures such as graph kernels [32].

There are many reasons for this, ranging from the profusion of incomparable graph grammar for-
malisms to the hardness of the model itself. Concerning the latter, many basic problems, such as the
search for a subgraph in a graph, and thus the possibility to parse a graph with a grammar, are generally
NP-complete [15]. Nevertheless, the main reason for this absence of positive learning results is probably
that no kind of graph grammars was designed with the aim of learning. Indeed, two main characteristics
have to be shared by the representation formalism if one wants to use it as a model for inference. On the
one hand, the graph isomorphism problem needs to be efficiently solvable: the key point to learn graph
grammars is to extract knowledge about the structure of the graphs in the learning sample, and thus the
names of the vertices are irrelevant for instance. If less importance is given to the understanding of the
structure, general machine learning methods can be applied to graph data with great success [32].

The second important characteristics is that the grammar formalism has to capture properties that are
observable in a set of data. The most obvious kind of observable properties concerns sub-structures, e.g.
the frequency or the relative positions of the subgraphs in the graphs of the sample. But standard graph
grammars of different types are not designed for the inference from the observation of properties of sub-
structures. For instance, in the framework of Hyperedge-Replacement Grammars (HRG) [8], we can
compute from a sample the set of external nodes for each sub-hypergraph. However, this set of vertices
must be transformed into a sequence during the inference stage of a HRG, as this sequence is necessary
for the embedding mechanism that is used when a rule is applied to rewrite a hypergraph. In other words,
an essential piece of information for the inference of a HRG is not observable in the sample.

From a general standpoint, one way to tackle the difficulties raised by the learning of generative
devices (grammars) consists in restricting the languages. That is, the successful approach in Grammat-
ical Inference is often to determine features that are learnable, which usually correspond to observable
properties in any set of examples, and then to focus only on the languages that share these characteristics.

Hence, in the case of graph languages, we should first determine which kind of graphs are likely to
be learnable, and then choose the kind of grammars to use. For reasons that will be developed in this
paper, a promising candidate is the class of plane graphs, that is, planar graphs embedded in the plane
(see Fig. 1 for an example). Note that a planar graph has a setX of vertices and a setE of edges as usual,
but as soon as this graph is embedded in the plane, it also has a set F of faces. A planar graph may have
several incomparable drawings, so we define a plane graph by fixing the embedding. More formally,
a plane graph stands for an isotopy class of planar embeddings for a given planar graph [14]. A plane
graph is thus a planar graph that is embedded in the plane without edge-crossing and up to continuous
deformations. Given a planar embedding of a planar graph, Fáry [13] proved that it is always possible to
move the vertices, within the same isotopy class, so that the edges are drawn with straight-line segments.
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We shall use such straight-line drawings in the following.
Now, as no common graph grammar formalism captures the specificities of such plane graphs,

we choose not to use existing general graph-grammar formalisms, but propose in this paper a new
type of grammar, called the Plane Graph Grammars (PGG). These grammars can be seen as face-
replacement grammars, thus constitute an interesting alternative to standard node-replacement or
hyperedge-replacement grammars. Indeed, their rules replace one face by a new plane graph, which
is sewn in the mother graph using a syntactic gluing law. We provide theoretical results about these
grammars regarding the possibility to efficiently parse a plane graph, and compare them with other types
of graph grammars.

We then investigate the learning of PGG, and prove that one can get formal learnability results in this
setting. We believe that this is quite an interesting improvement w.r.t. the state of the art. Concerning the
difficulties, notice that when one is trying to learn from graphs, negative data are usually not available.
We know since the work by E. M. Gold [17] that it is not possible to identify in the limit any superfinite
class1 of languages from positive data, and thus need to restrict ourselves to a subclass of plane graph
languages. The recent successes of distributional learning for string grammars [3] and tree grammars [24]
motivate us to define an analogue of substitutable context-free languages [4] for plane graph languages.

Notice that a preliminary version of this paper appeared in the Proceedings of ICGI’12 [12], but the
present paper is substantially different: in [12] we tackled the problem of learning Binary Plane Graph
grammars, a restricted type of PGG where the production rules had binary right hand-sides and were thus
similar to Chomsky normal forms. Moreover, we omitted the study of their properties. In this paper, we
consider general PGG, improve the definition of the rewriting mechanism and propose new conditions
for the parsing problem to be achievable in polynomial time. We also improve the learning algorithm
and thus establish a more general learnability result for substitutable plane-graph languages.

Preliminaries about plane graphs are given in Section 2. The definition of Plane-Graph Grammars
as well as the rewriting mechanism is detailed in Section 3, where we also compare them with node-
replacement grammars and hyperedge-replacement grammars. We prove formal properties of these
grammars in Section 4, in the scope of the parsing problem. Next Section 5 is devoted to the learn-
ing of PGG, and is thus the core of the paper: the substitutability property is first adapted, then the
learning procedure is described, and a learnability result is finally proved for substitutable plane graph
language. We conclude the paper with a discussion in Section 6.

2. On Plane Graphs

We have introduced the plane graphs using the notion of embeddings, i.e., functions that map vertices
to points, and edges to curves. However, this mathematical approach is quite unsuitable for designing
algorithms. As the set of faces is the corner stone to describe plane graphs, we introduce plane graph
systems [20] below, which allow us to describe any connected plane graph through its faces.

Let X ⊂ N be the alphabet of vertices. Let X∗ be the set of all strings over X , and ε the empty
string. Given a string x = a1 . . . an, we denote |x| = n its length and xR the reverse string of x, that is to
say xR = an . . . a1. We also define first(x) to be a1. A circular string is intuitively a string in which
the last symbol is followed by the first; more precisely, there is neither a first nor a last symbol but a
mapping associating to each symbol the next one. We denote a circular string by [u], with the convention

1A class is superfinite if it contains all possible finite languages and at least one infinite language
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that if u and v are two strings, then [uv] = [vu]. The set of all circular strings over X is denoted by X>.
We set [x]R = [xR]. Finally, given an alphabet X , we can extend any function φ : X → X to strings:
∀x = a1 . . . an ∈ X∗, φ̂(x) = φ(a1) . . . φ(an), to circular strings: φ̂([x]) = [φ̂(x)], to sets of strings:
φ̂(S) = {φ̂(x) : x ∈ S}, and to sets of pairs of strings: φ̂(C) = {(φ̂(x), φ̂(x′)) : (x, x′) ∈ C}.

Now consider the plane graph of Figure 1. The outer face is f1 and bounded (inner) faces are f2 and
f3. Each face has only one boundary since the graph is connected. Such a boundary can be described by
a circular string of vertices in which two consecutive vertices and the last and first vertices are linked by
an edge. Conventionally, we follow a boundary by leaving it to the right. In other words, the bounded
face is on the left of the walk. Hence, the boundary of face f3 is [53634], or equivalently [63453], by
circular permutation.

Figure 1. A plane graph with 3 faces.

We now introduce the following description system for connected plane graphs:

Definition 2.1. (Plane Graph System [20])
A plane graph system (PGS for short) is a tuple S = 〈X,E, F, o,D〉 such that (1) 〈X,E〉 is a connected
planar simple graph [16], (2) F is a finite nonempty set of symbols called the faces, (3) o ∈ F is a special
face called the outer face and (4) D : F → X> is a function, called the boundary descriptor, that maps
any face to its boundary. For sake of readability, we shall make no distinction between a face f and the
description of its boundaryD(f). In consequence, functionD will be kept implicit and we simply denote
by 〈X,E, F, o〉 the plane graph system S.

Note that every plane graph can be described with a plane graph system, but the converse does not
hold in general. We thus introduce further conditions below:

Definition 2.2. (Valid PGS)
A PGS S = 〈X,E, F, o,D〉 is said valid if:

1. For all f ∈ F and x, y ∈ X and u ∈ X∗, if D(f) = [xyu] then {x, y} ∈ E;

2. For all e = {x, y} ∈ E, there exist a unique face f ∈ F such that D(f) = [xyu], and an unique
face f ′ ∈ F such that D(f ′) = [yxv], for some u, v ∈ X∗;

3. For all f ∈ F and x, y, z, z′ ∈ X and u, v ∈ X∗, if D(f) = [xyzuxyz′v] or D(f) = [zxyuz′xyv]
then z = z′;

4. Euler’s formula holds, that is, |X| − |E|+ |F | = 2.
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Following result establishes that a valid PGS denotes a plane graph. As the problem is a bit far from
the core of this paper, the interested reader may consult its proof in Appendix A:

Theorem 2.3. Any valid PGS describes a plane graph.

Let G be the set of all plane graph systems. The size of a PGS G = 〈X,E, F, o〉 is |G| =
∑

f∈F |f |.
Given any edge e, we denote by faces(e) the set of faces incident to edge e. Notice that faces(e) can
contain either 1 or 2 faces (only one in the case of a pendant edge). We use nodes(f) and edges(f) for
the set of vertices and edges along the boundary of face f , respectively.

For instance, consider the plane graph of Fig. 1. The corresponding PGS is S = 〈X,E, F, o〉 with
X = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}, {3, 6}, {4, 5}}, F = {f1, f2, f3},
o = f1 and f1 = [13542], f2 = [1243], f3 = [34536]. Moreover, we have faces({3, 4}) = {f2, f3},
faces({3, 6}) = {f3}, nodes(f3) = {3, 4, 5, 6} and edges(f3) = {{3, 4}, {4, 5}, {5, 3}, {3, 6}}.

Definition 2.4. (Set of contiguous faces)
Let S = 〈X,E, F, o〉 be a PGS. Two distinct faces f, f ′ ∈ F are adjacent if ∃e ∈ E : faces(e) = {f, f ′}.
The faces of a subset K ⊆ F are contiguous if ∀f, f ′ ∈ K, a sequence f = f0, f1, . . . fn = f ′ of faces
in K exists such that ∀i ∈ {0, 1, . . . , n− 1}, fi and fi+1 are adjacent.

Given a subset K ⊆ F of contiguous inner faces, we denote by outer(K) the (boundary of the)
outer face of that set. For instance, on the PGS of Fig. 1, outer({f2, f3}) = f1 and outer({f3}) =
[354]. Notice that outer(K) can be computed in polynomial time using the normalization procedure
introduced in [20].

Let us finally introduce the notion of subgraph that we will use throughout the rest of this paper:

Definition 2.5. (Pattern)
Given a PGS G = 〈X,E, F, o〉 and a set F ′ ⊆ F \ {o} of contiguous faces, the PGS G′ =
〈nodes(F ′), edges(F ′), F ′ ∪ {outer(F ′)}, outer(F ′)〉 is called a pattern of G. By extension, any
renaming of the vertices and edges and faces of G′ will also be called a pattern of G.

For instance, the PGS G of Fig. 1 has 3 patterns: 〈{1, 2, 3, 4}, {(1, 2), . . .}, {[1243], [1342]}, [1342]〉,
〈{3, 4, 5, 6}, {(3, 4), . . .}, {[34536], [354]}, [354]〉, and G itself.

More general notions of subgraphs exist (based on subsets of vertices and edges, independently on
faces), but they often induce intractable problems. In particular, whereas searching for general subgraphs
in planar graphs is a NP-complete problem, it was shown in [20] that searching for a pattern in a PGS
is tractable in polynomial time. In the following, term subgraph will exclusively mean pattern.

2.1. Concatenation

The concatenation of two PGS is a basic operation that allows one to glue together two distinct plane
graphs using their outer face.

Definition 2.6. Let G1 = 〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS, and φ :
nodes(o1) → nodes(o2) a partial bijective function. We say that G1 and G2 are concatenable fol-
lowing φ iff

• F1 ∩ F2 = ∅,
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• (X1 \ nodes(o1)) ∩ (X2 \ nodes(o2)) = ∅,

• ∃k > 1: φ̂(X1) ∩ X2 = {φ(a1), . . . , φ(ak)}, and o1 = [a1 . . . aky] and o2 = [φ(ak) . . . φ(a1)z]
with y ∈ (X1 \X2)

∗, z ∈ (X2 \X1)
∗ and |yz| ≥ 1.

Intuitively, two PGS are concatenable following φ if they can be glued together by merging pairwise
nodes of their outer face following φ. This requires that they can only share nodes of their outer face,
and that consecutive edges of one outer face correspond to reverse consecutive edges in (the image by φ
of) the other outer face. In consequence, the gluing stage does not modify the inner faces.

Definition 2.7. (Concatenation)
Let G1 = 〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS concatenable following a function
φ. The concatenation of G1 and G2 following φ, written G1 �φ G2, is the PGS G = 〈X1 ∪ X2 \
{a1, . . . , ak}, E1 ∪ E2 \ {(ai, ai+1) : 1 ≤ i < k}, φ̂(F1 \ {o1}) ∪ (F2 \ {o2}) ∪ {o}, o〉 with o =
[φ(ak)yφ(a1)z].

If the function φ is the identity, we will write G1 �G2 instead of G1 �id. G2.

4 3

21

H1= H2=

1 2

5

H3=

4 3

6

H4=

21

5

(H1 ◊ H2) ◊ H3=

4 3

211

5

6

Figure 2. Example of concatenation: H1 and H2 are concatenable following the identity function and so is H2

and H4. The same occurs for H1 �H2 and H3. H2 and H3 are not concatenable following the identity function,
which is also the case of H1 and H4.

Concatenation is well-defined, that is, if G1 and G2 are concatenable PGS, then G1 �φ G2 is neces-
sarily a PGS. Indeed, the conditions on the external faces ensure that no new face is created by concate-
nation, but the outer one which is modified; moreover, if 〈X1, E1〉 and 〈X2, E2〉 are connected planar
simple graphs then 〈X1 ∪X2 \ {a1, . . . , ak}, E1 ∪E2 \ {(ai, ai+1) : 1 ≤ i < k}〉 is a connected planar
simple graph.

Examples of concatenable and non-concatenable PGS are given in Fig. 2. For instance H1 and H2

are concatenable following the identity function but it is not the case of H1 and H4 since the third
requirement of Definition 2.6 is not met. These examples show also that the associativity of graph
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concatenation is not ensured: (H1 �H2) andH3 are concatenable following the identity function, butH2

and H3 are not concatenable following the identity and thus H1 � (H2 �H3) is not defined. In absence
of brackets in a sequence of concatenations, we will consider the left to right organization: H1 �H2 �H3

is to be read as (H1 �H2) �H3.

2.2. Plane isomorphism

We finally need a way to compare two PGS:

Definition 2.8. (Plane isomorphism [20])
Let G1 = 〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS. We say that G1 and G2 are plane-
isomorphic, written G1

∼=p G2, if there exist a 1-to-1 mapping χ : X1 → X2 over the vertices and
a 1-to-1 mapping ξ : F1 → F2 over the faces such that (1) the outer face is preserved: ξ(o1) = o2
and (2) the boundaries are preserved: ∀f1 ∈ F1, f2 ∈ F2, if ξ(f1) = f2 and f1 = [a1 . . . an] then
f2 = [χ(a1) . . . χ(an)] .

Plane-isomorphism is decidable in O(|E1| · |E2|) time [20]. The key property to prove this result is
that, given a PGS G and an edge e, we can define an ordering over all the other edges which is unique
and computable in linear time thanks to a traversal of the PGS. So the isomorphism algorithm consists
in finding two edges e1 in G1 and e2 in G2, generating the ordering of all the edges in both PGS and
using them to generate possible isomophism functions. A similar strategy is used to check whether a
given PGS is a pattern of any other PGS, that is, searching for patterns is also tractable in polynomial
time [20].

We can now define the notion of plane graph language:

Definition 2.9. A (possibly infinite) set L of PGS is a plane graph language if it is closed under plane-
isomorphism: for all G1, G2 ∈ G such that G1

∼=p G2, we have G1 ∈ L⇐⇒ G2 ∈ L.

The following technical but crucial lemma deals with the link between concatenation and plane-
isomorphism. Informally, if two graphs are concatanable then graphs that are plane-isomorphic to
them are also concatenable (using a different function). Moreover, the concatenated graphs are plane-
isomorphic.

Lemma 2.10. Let G1, G
′
1, G2 and G′2 be four PGS such that G1

∼=p G
′
1 and G2

∼=p G
′
2. Suppose that

G1 and G2 are concatenable following a function φ. Then there exist a PGS G′′1 such that G′′1 ∼=p G
′
1,

and a function φ′ such that G′′1 and G′2 are concatenable following φ′ and G1 �φ G2
∼=p G

′′
1 �φ′ G′2.

Proof:
As G1

∼=p G
′
1 (resp. G2

∼=p G
′
2), there exist two 1-to-1 mapping χ1 : XG1 → XG′1

(resp. χ2 : XG2 →
XG′2

) and ξ1 : F1 → F ′1 (resp. ξ2 : F2 → F ′2) fulfilling the conditions of plane-isomorphism. As G1

and G2 are concatenable following φ, there exist vertices a1, . . . , ak and (possibly empty) sequences of
nodes y and z such that oG1 = [a1 . . . aky] and oG2 = [φ(ak) . . . φ(a1)z]. Moreover we have oG′1 =
[χ1(a1) . . . χ1(ak)χ̂1(y)] and oG′2 = [χ2 ◦ φ(ak) . . . χ2 ◦ φ(a1)χ̂2(z)].

Let φ′ = χ2 ◦ φ ◦ χ−11 . Let us denote a′i = χ1(ai) for all 1 ≤ i ≤ k. Clearly we have oG1 =
[a′1 . . . a

′
kχ̂1(y)] and oG2 = [φ′(a′k) . . . φ

′(a′1)χ̂2(z)]. Moreover, |χ̂1(y)χ̂2(z)| = |yz| ≥ 1. Finally, if
XG′1

\ nodes(oG′1)∩XG′2
\ nodes(oG′2) 6= ∅, we can rename the inner nodes of G′1 to create a new PGS
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G′′1 such that none of its inner nodes share the same name with a node of G′2, and G′′1 ∼=p G
′
1. Therefore

G1
∼=p G

′′
1 and G′′1 and G′2 are concatenable following φ′.

We need to show that G1 �φ G2
∼=p G

′′
1 �φ′ G′2. Let χ′1 and ξ′1 the functions defining the plane-

isomorphism between G1 and G′′1 . Let χ : XG1�φG2 → XG′′1�φ′G′2 be the function such that χ(v) =

χ′1(v) if v ∈ XG1 and χ(v) = χ2(v) if v ∈ XG2 . As χ′1 and χ2 are 1-to-1 mappings over distinct
domains, so is χ. Now let ξ : FG1�φG2 → FG′1�φ′G′2 be the function such that ξ(f) = ξ′1(f) if f ∈ FG1 ,
and ξ(f) = ξ2(f) if f ∈ FG2 , and ξ(oG1�φG2) = oG′′1�φ′G′2 . As ξ′1 and ξ2 are 1-to-1 mapping and
FG1 ∩ FG2 = ∅, we deduce that ξ is a 1-to-1 mapping. In addition, as (χ′1, ξ

′
1) and (χ2, ξ2) preserve the

boundaries of the faces, it is also the case of (χ, ξ) by construction. ut

3. The Grammars for Plane Graph Languages

The idea underling the new graph grammar formalism we are defining here is the following: a grammar
consists of rules that explain how to replace a given face into a pattern that can be made of several faces
but whose outer face is the same than the one being replaced.

We first need to introduce the analogue to non-terminal symbols for string grammars. The idea is to
have a ranked alphabet [10] of non-terminals: in a grammar rule, a non-terminal will be attached to a
single face whose number of nodes is equal to its rank.

Definition 3.1. (Plane non-terminal)
A plane non-terminal is a couple (N, r) where N is a symbol and r an integer greater than 2 called the
rank of the non-terminal. In the following, we assume that any symbol has a unique rank, that is, if
(N, r1) and (N, r2) are plane non-terminals, then r1 = r2. We will slightly abuse the notations and write
rank(N) for the rank of the non-terminal (N, r).

Intuitively, a non-terminal (N, r) is not a PGS, but denotes a PGS, with a unique inner face called N ,
and no pendant edge, and a boundary delimited with r vertices.

We now define the two types of grammar rules used in our grammars.

Definition 3.2. (Plane graph lexical rule)
A plane graph lexical rule is a pair (Nx, G∗), written Nx → G∗, where (1) x is a string, (2) (Nx, |x|)
forms a plane non-terminal and (3) G∗ = 〈X,E, F, o〉 is a plane graph system such that |F | = 2 and
o = [xR].

Notice that the (unique) inner face of G∗ does not have to be [x]: there may be pendant edges. A lexical
rewrites a non-terminal into a PGS whose outer face is the mirror of the string used in the definition of
the non-terminal.

Definition 3.3. (Plane graph production)
A plane graph production is a tuple written N0

x0 → N1
x1 . . . N

k
xk

, k ≥ 2, where (1) (N i
xi , |xi|), ∀i, 0 ≤

i ≤ k, are plane non-terminals, (2) ∀i ≥ 1, Hi = 〈Xi, Ei, {[xi], [xi]R}, [xi]R〉 is a PGS, (3) ∀i, 1 ≤ i <
k, H1 � . . . � Hi and Hi+1 are concatenable and (4) H = H1 � . . . � Hk = 〈XH , EH ,∪1≤i≤k{[xi]} ∪
{[x0]R}, [x0]R〉 is a PGS.
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Figure 3. A graphical representation of the plane graph lexical rule A1234 → [123454]. The dashed lines attach
the non-terminal to the vertex appearing at the head of the string in the definition of the non-terminal.

A production can be seen as the development of a face f made of rank(N0) vertices into k adjacent
faces whose overall shape is the same as f . Fig. 4 gives a graphical representation of an example of a
plane graph production.
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Figure 4. A graphical representation of the (recursive) plane graph production N2341 → A2541 N2645 B2346.
The dashed lines attach each non-terminal to the vertex appearing at the head of the string corresponding to that
face in the rule.

Definition 3.4. (Plane graph grammar)
A plane graph grammar (PGG) G is a tuple 〈N , PL, P,A〉 such that N is a set of plane non-terminals,
PL is a set of plane graph lexical rules, P is a set of plane graph productions and A ⊆ N is the set of
axioms.

Example 3.5. Let G1 be the grammar 〈{(N, 4), (A, 4), (B, 4)}, PL, P, {(N, 4)}〉, with PL = {A1234 →
[123454], B1234 → [15123634], N1234 → [1234]} (for sake of simplicity, inner faces are given instead
of PGS for right-handsides) and P = {N2341 → A2541 N2645 B2346}. The unique production of this
grammar is the one represented in Figure 4 while the first of the three lexical rules is the one of Figure 3.
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In order to describe the derivation process of a PGS in a PGG, we need to introduce the plane graph
analogue of string grammar sentential forms. Contrary to the string case, where such forms are just
strings containing both terminal and non-terminal symbols, a plane sentential form consists of a PGS
together with a labeling function. The role of this function is to attached non-terminals to faces: if a face
is not labeled with a non-terminal, then it cannot be rewritten and can thus be considered as a terminal
face; on the other hand, a face that is labeled can be seen as a non-terminal face: rules rewriting the
labeling non-terminal can be applied to it.

Definition 3.6. (Plane sentential form)
Let G = 〈N , PL, P,A〉 be a plane graph grammar. A plane sentential form is a couple 〈G,L〉 where
G = 〈X,E, F, o〉 is a PGS and L : F → N ×X is a partial function such that L(f) = (N, a) implies
that |nodes(f)| = rank(N) and a ∈ nodes(f).

Function L labels some faces with non-terminal symbols. It more precisely attaches the label to one
distinguished vertex a of the face. This allows us to introduce some control during the application of
a rule. Indeed, this trick is used to avoid all possible rotations of the right hand-side of the rule when
this right hand-side is glued in the mother graph. We formally detail this below and a sequence of plane
sentential forms is given in Figure 5.

3.1. Applying a lexical rule

A lexical rule R : Na1...am → G∗, with G∗ = 〈X∗, E∗, {f∗, o∗}, o∗〉, is applicable to a sentential form
S = 〈G,L〉, withG = 〈X,E, F, o〉, if there exists a face f = [a′1 . . . a

′
m] ∈ F such that L(f) = (N, a′1).

The resulting sentential form corresponds to S where L(f) is not defined anymore and f is replaced by
the graph G∗, whose vertices are consistently renamed. More formally, applying R to S following f ,
consists in creating the sentential form S′ = 〈G′,L′〉 with G′ = 〈X ′, E′, F ′, o′〉 such that

• F ′ = F \ {f} ∪ φ̂(f∗)

• ∀f ′ ∈ F, f ′ 6= f : if L(f ′) is defined then L′(f ′) = L(f ′)

• X ′ = X ∪ φ̂(X∗)

• E′ = E ∪ φ̂(E∗)

where φ is a injection from X∗ to N defined as follow: if ∃i, 1 ≤ i ≤ m, a = ai then φ(a) = a′i;
otherwise φ(a) = c ∈ N \X .

Plane graph grammars associate no semantic to nodes label and generate plane graphs whose nodes
have all distinct labels. This is explicit when a rule is applied: if a new node needs to be created, its label
is picked in the set of natural numbers that are not used by a pre-existing node.

Example 3.7. The lexical rule A1234 → [123454] in G1 of Example 3.5 is applicable to the sentential S3
of Figure 5. Once applied, the result is the sentential form S4 of the same figure.
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3.2. Applying a production rule

A production rule R : N0
a01...a

0
m
→ N1

a11...a
1
n1

. . . Nk
ak1 ...a

k
nk

is applicable to a sentential form S = 〈G,L〉,
where G = 〈X,E, F, o〉, if there exists a face f = [a′1 . . . a

′
m] ∈ F such that L(f) = (N, a′1). Applying

R to S following f , consists in creating the sentential form S′ = 〈G′,L′〉 with G′ = 〈X ′, E′, F ′, o′〉
such that

• F ′ = (F \ {f})
⋃

1≤i≤k{φ̂([ai1 . . . aini ])}

• ∀f ′ ∈ F, f ′ 6= f : if L(f ′) is defined then L′(f ′) = L(f ′)

• ∀i, 1 ≤ i ≤ k, L′(φ̂([ai1 . . . aini ])) = (N1, φ̂(ai1))

• X ′ = X ∪1≤i≤k nodes(φ̂([ai1 . . . aini ]))

• E′ = E ∪1≤i≤k edges(φ̂([ai1 . . . a
i
ni ]))

where φ is a injection from {aji : 1 ≤ j ≤ k, 1 ≤ i ≤ nj} to N defined as follow: if ∃i, 1 ≤ i ≤ m, a =
a0i then φ(a) = a′i; otherwise φ(a) = c ∈ N \X .

Example 3.8. The production N2341 → A2541 N2645 B2346 in G1 of Example 3.5 is applicable to the
sentential S1 of Figure 5 (it is also applicable to S2). When applying it, it creates the sentential form S2
of the same figure.

Notice that applying a lexical rule or a production is replacing a face by a PGS whose outer face is
the previous face, while the rest of the graph is unchanged. Renaming of the nodes (resp. the edges,
faces) by the function φ̂ ensures consistency: no two nodes (resp. edges, faces) have the same label.

3.3. Representable languages

Given a plane graph grammar G = 〈N , PL, P,A〉, we say that a plane graph G = 〈X,E, F, o〉 is
generated by G, or that G derives G, if there exists a sequence of sentential forms S1, . . . , Sn such that

• S1 = 〈G1,L1〉 is an initial sentential form, that is, G1 = 〈X1, E1, F1, o1〉 with F1 = {oR, o} and
o1 = o and L1 is only defined for oR: L1(oR) = (N, a), with N ∈ A and a ∈ nodes(oR),

• ∀i, 1 ≤ i < n: Si+1 is obtained from Si by applying a rule of G,

• Sn = 〈Gn,Ln〉 with Gn = G and ∀f,Ln(f) is not defined.

The length of the derivation is n− 1. An example of a derivation of length 4 is given in Fig. 5.
We will writeN ⇒∗G G, or simplyN ⇒∗ G if G is obvious from the context, whenG = 〈X,E, F, o〉

is derivable with G using an initial sentential form S1 where L1 is defined only on oR and L1(oR) =
(N, a), for some a ∈ nodes(oR). If the length of the derivation is n, we will write in the usual way
N ⇒n

G G.
The language represented by G is L(G) = {G : ∃G′,∃N ∈ A s.t. N ⇒∗G G′ ∧G′ ∼=p G}.
Note that any PGS can be represented by a PGG. Indeed, it suffices to have one production that from

the outer face of the PGS generates the concatenation of the faces of PGS (without pendant edges) and
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Figure 5. A graphical representation of an example of a derivation in the grammar G1 in Example 3.5. This
derivation corresponds to the sequence of sentential forms S1, S2, S3, S4, S5. The functions Li, 1 ≤ i ≤ 5, are
represented via dash lines.

labeled each face with a different non-terminal. Then all that is needed is a lexical rule for each non-
terminal that generates the corresponding face. However, as it is discussed later on, not all plane graph
languages can be represented by a PGG.

3.4. Plane Graph Grammars and Related Formalism’s

Two main types of graph grammars have been investigated in the literature. The first one is the family of
node replacement grammars [28] and relies on a mechanism that replaces one given node by a subgraph
using gluing conditions; many gluing conditions were studied and yield several subfamilies of node-
replacement grammars. This is clearly different from how the generative process occurs with plane
graph grammars and thus a comparison between these two formalisms is difficult. However, a dual
graph can be built from each planar graph [33], where each node corresponds to a face in the original
graph, edges in one graph being edges in the other. From this standpoint, replacing a face in the primal
graph (i.e. the original PGS) by a pattern corresponds to substituting a node of the dual graph by the
corresponding dual subgraph. Embeddings2 in node replacement grammars differ from embeddings in

2An embedding is the information about how to glue the new subgraph within the rest of the graph
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plane graph grammars in that it relies on node label semantics.
Hyperedge replacement grammars [8] are another type of graph grammar formalisms that seems

closer to the one introduced in this paper. Indeed, in these grammars, a hyperedge, i.e. a labeled entity
that links up several nodes together, is replaced by a subgraph. One can imagine that plane graph gram-
mars are a special kind of hyperedge replacement grammars, seeing a face labeled by a non-terminal as a
hyperedge with the same label. However, these two elements are of different nature. For instance, there
is no order on the outer nodes of a hyperedge and it is not possible to define a unique one. This implies
that if the same non-terminal can be derived following two different ordering of the external nodes, then
it needs to corresponds to two different hyperedges.

The main difference between these formalisms and plane graph grammars is the semantics they
attach to the node label. Indeed, in both cases, the labels of the nodes of a glued subgraph are the ones
the right hand-side of the rule, and if a rule is used several times, it generates the same node labels each
time. As a consequence, the set of labels that can be found in a graph generated by such a grammar is
bounded. Plane graph grammars are of different nature as each node has a unique label, which allows
the closure of graph languages under isomorphism. The embedding mechanism (described in Section 3)
does thus not rely on label value. Together with the polynomial testability of sub-isomorphism, this is a
remarkable property from a learning standpoint: extracting and comparing patterns from a set of graphs
is easy and informative. We shall see in detail how this is usefull in Section 5. If one want the nodes
to carry semantic information, the formalism is easily modifiable with the adding of a labeling function,
without modifying the core of its generative mechanism.

4. Properties of Plane Graph Grammars

4.1. Context-freeness property

A class of grammars that has the context-freeness property corresponds to a formalism where parts of a
derivation that start from different non-terminals of a sentential form do not interfere with each other [7].
Intuitively, this is not the case of Plane Graph Grammars as the name of a node created during the
derivation is linked with the name of pre-existing nodes. Hence, the distinct parts of a derivation cannot
be treated in any order since the resulting PGS will not have the same node names.

However, this only affects the names of the nodes, and if one is interested in the structure of the
generated PGS then each parts of the derivation can be done independently. In other words, the order in
which the rules are applied will generate different PGS, but they will all be plane-isomorphic. We thus
will be able to describe a derivation tree and a parsing procedure based on the CYK algorithm for string
grammars.

The following theorem states that when a PGS is derived from a non-terminal, either it is given
directly by a lexical rule, or it is the concatenation of plane graphs obtained from non-terminals that
appear together on the right handside of a production whose left handside is the given non-terminal.

Theorem 4.1. (Context-freeness)
Let G = 〈N , PL, P,A〉 be a PGG. Let (N, r) ∈ N and H a PGS. N ⇒∗ H if and only if

• N → H in PL,

• Or
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1. ∃Nx → N1
x1 . . . N

m
xm in P and

2. there exist m PGS H1, . . . Hm such that
– ∀i, 1 ≤ i ≤ m, N i ⇒∗ Hi

– H ∼=p H1 � . . . �Hm

Proof:
[Sketch] =⇒
Let N ⇒k H . There thus exists a sequence of sentential forms (G1,L1), . . . , (Gk+1,Lk+1) such that
∀j ≤ k, Gj+1 is obtained from Gj by applying a rule of the grammar, (G1,L1) is an initial sentential
form with L1(oRG1

) = (N, a), for some a ∈ nodes(oRG1
), and Gk+1 = H . If G2 is obtained from

G1 using a lexical rule, then k = 1 and N → H is in PL. Otherwise, the first rule is a production
Nx → N1

x1 . . . N
m
xz and G2 = 〈XG2 , EG2 ,∪1≤i≤m{[xi]} ∪ [xR]}, [xR]〉, L2([xi]) = (N i, first(xi)),

∀i. As a rule does not modify the pre-existing nodes and as it applies only to a specific face, the other
steps of the derivation replace one of the faces [xi] by PGS: no step replacing [xi], or the set of faces
previously derived from [xi], interferes with the steps that rewrite [xj ], 1 ≤ j, i ≤ m, i 6= j. Hence,
for all i ≤ m, the sequence of steps that recursively rewrites [xi] generates a PGS Hi and we have
H = H1 � . . . �Hm (which is correctly defined since the outer face of Hi is [xi]R, ∀i). As each face [xi]
of G2 is labeled by the non-terminal N i, we also have N i ⇒∗ Hi.
⇐=
Suppose ∃Nx → N1

x1 . . . N
m
xm in P and there exist m PGS H1, . . . ,Hm such that N i ⇒∗ Hi,

for all 1 ≤ i ≤ m, and H ∼=p H1 � . . . � Hm. Then the initial sentential form (G1,L1), with
G1 = 〈nodes([x]), edges[x]), {[x], [xR]}, [xR]〉 and L1([x]) = (N, first(x)), can be rewritten into
the sentential form (G2,L2), with G2 = 〈XG2 , EG2 ,∪1≤i≤m{[xi]} ∪ {[xR]}, [xR]〉 and L2([xi]) =
(N i, first(xi)), ∀i (using the rule). There then exists a sequence of sentential forms (G2,L2), . . . ,
(Gk,Lk) such that Gk = 〈XGk , EGk , FH1 ∪2≤i≤m {[xi]}∪{[xR]}, [xR]〉 and Lk is defined only on [xi],
with Lm([xi]) = (N i, first(xi)), ∀i, 2 ≤ i ≤ m. As N2 ⇒∗ H2, there exist a sequence of sentential
forms (Gk,Lk), . . . , (Gl,Ll) that rewrite the face [x2] of G2 into a subgraph H ′2 such that H ′2 ∼=p H2

(the label of some internal nodes of H2 can already exists in Gk and thus another label has to be chosen).
Repeating the same reasoning for the other non-terminals of the rule, we obtain that for all i, 2 ≤ i ≤ m
it exists a PGS H ′i ∼=p Hi such that N ⇒∗ H ′ = H1 �H ′2 � . . . H ′m. We have H1 �H ′2 ∼=p H1 �H2, and
for all i < m H1 � . . . �Hi �H ′i+1

∼=p H1 � . . . �Hi �Hi+1. Notice that H1 � . . . �Hi and H ′i+1 are
concatenable folowing the identity function since outer(H ′i+1) = outer(Hi+1) by construction. This
implies H ′ ∼=p H . ut

One of the consequences of this result is that we can define a normal form for plane graph grammars,
where the number of non-terminals on the right hand-side is exactly two. Indeed, given any production
rule Nx → N1

x1 . . . N
m
xm with m > 2, one can replace it by two rules Nx → N ′x′N

m
xm and N ′x′ →

N1
x1 . . . N

m−1
xm−1

, with x′ = outer({[xi] : 1 ≤ i ≤ m− 1}), which are both correctly defined rules. The
set of graphs that N can derive is unchanged and the process can be recursively reproduced until only 2
non-terminals appear in each right hand-sides.

We will consider in the rest of this paper that all the PGG are in such a normal form.

4.2. A Parsing Algorithm

Theorem 4.1 provides a straightforward parsing algorithm whose pseudo-code is given in Algorithm 1.
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Algorithm 1: Plane graph grammar parsing algorithm
Input: A PGG G = 〈N , PL, P,A〉 in normal form and a PGS G
Output: TRUE if G ∈ L(G), FALSE otherwise

1 foreach N ∈ A do
2 if DERIV E(G, N,G) then
3 return TRUE

4 return FALSE

Algorithm 2: DERIVE Procedure
Input: A PGG G = 〈N , PL, P,A〉 in normal form, a non-terminal N ∈ N and a PGS G
Output: TRUE if N ⇒∗G G, FALSE otherwise

1 if N → H ∈ PL and H ∼=p G then
2 return TRUE

3 foreach Nx → N1
yN

2
z ∈ P do

4 if ∃H1, H2 such that DERIVE(N1, H1) and DERIVE(N2, H2) and G ∼=p H1 �H2 then
5 return TRUE

6 return FALSE

Proposition 4.2. For all PGS G, Algorithm 1 terminates and yields TRUE iff G ∈ L(G).

Proof:
Algorithm 1 is nothing else than an algorithmic version of the context-freeness lemma. Since the size of
the patterns H1 and H2 is smaller than the size of H , the algorithm must eventually terminates. ut

Since there is only a finite set of lexical rules and of productions in G, there are only polynomially
many possibilities to consider in steps (1) and (3) of the DERIVE procedure. The plane-isomorphism
can also be tested in polynomial time. Hence, there is a single point that may cause an exponential
running time of the algorithm: the number of candidates H1 and H2 to test in step (4). Therefore we aim
at finding a condition to impose on L(G) that implies a polynomial upper bound on the number of such
candidates. The following restriction is inspired by the k-separability, defined for hyperedge replacement
grammars [26].

Definition 4.3. (Rank)
For k in N, the k-rank of a PGS G is the number of patterns of G whose outer face contains k nodes. For
every language L of PGS, rankL : N→ L is defined by

rankL(n) = max1≤k≤order(L,n){k-rank(G) : G ∈ L and |G| ≤ n}

where order(L, n) = max{|outer(S)| : S is a pattern of G ∈ L and |G| ≤ n}.

Note that the order of a language L and an integer n is the maximal number of nodes of the outer face of
a pattern of a plane graph in L whose size is at most n. We obviously have order(L, n) ≤ |G| ≤ n.
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The idea behind the rank of a plane graph language is to link the size of the PGS of the languages
with the number of their subgraphs that have an outer face of a given size. The aim is to tackle the
combinatorial explosion that can occur when one is checking whether a rule can be applied. Indeed, to
test if a ruleNx → N1

yN
2
z can be applied to derived a PGSG, Algorithm 2 needs to be recursively called

on all decompositions of G into two patterns whose outer faces contain |y| and |z| nodes. In general, the
number of such decompositions is exponential in the size of the grammar: this is the case for example of
the PGS that correspond to a checkerboard.

Proposition 4.4. Let G be a PGG. If rankL(G)(n) is polynomial in n then Algorithm 1 can be imple-
mented in time polynomial in the size of its input.

Proof:
Given a production Nx → N1

yN
2
z only patterns of |y| (resp. |z|) nodes on the outer face can be derived

from N1 (resp. N2). As rankL(G(n) is polynomial, there are a polynomial number of patterns with
|y| (resp. |z|) external nodes on outer face. The number of candidates H1, H2 is thus polynomial if
G ∈ L(G). ut

5. Learning substitutable plane graph languages

This section shows how plane graph grammars are good candidates for grammatical inference: their nice
properties allow to extend works on distributional learning of string grammars. The simplest string class
that has been proven learnable in this approach, is the one of substitutable context-free languages [4].

An earlier (and messier) version of this section has been published in the proceedings of the 11th
International Conference on Grammatical Inference [12].

5.1. Substitutable plane graph languages

The core of the learning algorithm for this class is to observe the distribution of substrings into contexts
and then to use the simple properties of substitutable languages to infer a correct grammar. And hence
we first need a notion of context to transpose this work to plane graph languages.

Definition 5.1. (Plane context)
A plane context is a tuple C = 〈X,E, F, h, o〉 such that (1) 〈X,E, F, o〉 is a plane graph system and (2)
h ∈ F \ {o} is a distinguished face called the hole of context C and (3) h has no pendant edge.

The plane-isomorphism relation is extended to contexts in the obvious way: two contexts C =
〈X,E, F, h, o〉 and C ′ = 〈X ′, E′, F ′, h′, o′〉 are plane-isomorphic if 〈X,E, F, o〉 ∼=p 〈X ′, E′, F ′, o′〉
and the image of h by the bijection on the faces is h′, i.e. ξ(h) = h′.

Let S = 〈X,E, F, o〉 and S′ = 〈X ′, E′, F ′, o′〉 be two PGS such that X ∩X ′ = ∅. Let f ∈ F and
f ′ ∈ F ′ be two faces. Every 1-to-1 mapping φ : nodes(f)→ nodes(f ′) can be extended to the set of all
vertices X as follows: φ̂ : X → nodes(f ′) ∪X such that φ̂(a) = φ(a) if a ∈ nodes(f) and φ̂(a) = a
otherwise. It can then be extended in the usual way to sets of nodes, faces, sets of faces, to PGS, and to
plane contexts.

We can now define the gluing or wrapping operation.
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Definition 5.2. (Gluing)
Let C = 〈X,E, F, h, o〉 be a context and S = 〈X ′, E′, F ′, o′〉 be a PGS such that X ∩X ′ = ∅. Let φ
be a bijective function from nodes(o′) to nodes(h). The gluing of S into C following gluing function
φ, denoted C �φ S, is the PGS G = 〈XG, EG, FG, oG〉 such that (1) XG = X ∪ X ′ \ nodes(o′), (2)
EG = E ∪ φ̂(E′), (3) FG = (F \ {h}) ∪ φ̂(F ′ \ {o′}) and (4) oG = o. Notice that S is a pattern of G.

We now need to define the notion of substitutability. Informally, two patterns of a given language are
substitutable if the fact that they appear in the same context once, implies they always appear in the same
context, glued in a similar way.

Definition 5.3. (Substitutability)
Two PGS G = 〈X,E, F, o〉 and G′ = 〈X ′, E′, F ′, o′〉 are substitutable w.r.t. a plane graph language L
if whenever there exist two contexts C and C ′, C ∼=p C

′, and two gluing functions φ and φ′ such that
C �φ G is in L and C ′ �φ′ G′ is in L, then for all contexts C ′′,(

∃φ1 : C ′′ �φ1 G ∈ L
)
⇐⇒

(
∃φ2 : C ′′ �φ2 G′ ∈ L

)
where φ1 and φ2 are gluing functions such that, for all a ∈ nodes(o), for all b ∈ nodes(o′), if φ(a) =
φ′(b) then φ1(a) = φ2(b).

If G and G′ are substitutable w.r.t. a language L, we will note G ≡LS G′, or G ≡S G′ when there is no
ambiguity.

The following lemma states that substitutability is not affected by plane-isomorphism.

Lemma 5.4. Let G,G′ and G′′ be PGS. If G ∼=p G
′ and G′ ≡S G′′ then G ≡S G′′.

Proof:
[Hint] Let χ be the 1-to-1 function that maps the vertices of G onto those of G′ (as in the definition of
plane isomorphism). Let C be a context such that there exists a gluing functions φ such that C �φ G′′ in
L. AsG′ ≡S G′′ there exists φ′ such thatC�φ′G′ in L. By construction we haveC�φ′oχG ∼=p C�φ′G′
and thus C �φ′oχ G is in L. ut

We can then define substitutable plane graph languages:

Definition 5.5. (Substitutable languages)
A plane graph language L is substitutable iff all pairs of patterns that share a context are substitutable
w.r.t. L.

The following technical lemma states that substitutability in a substitutable language is a congruence
with respect to concatenation:

Lemma 5.6. Let L be a substitutable plane graph language and G1, G2, G
′
1, G

′
2 be 4 PGS s.t. both G1

and G2, and G′1 and G′2 are concatenable following the identity function. If G1 ≡LS G′1 and G′2 ≡LS G′2
then G1 �G2 ≡LS G′1 �G′2
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Proof:
[Sketch] We index each element of the definition of a PGS by its name. For instanceXG1 are the vertices
of G1, FG1�G2 are the faces of G1 � G2, oG′1�G′2 is the outer face of G′1 � G′2. Let C be a plane context
such that there exists a gluing function φ: C�φG1 �G2 is in L. We suppose w.l.o.g. that the set of nodes
of C is distinct of the set of nodes of the 4 PGS under consideration.

LetCC�φ̂(G1)
= 〈XC∪φ̂(XG1)∪nodes(φ̂(oG2)), EC∪φ̂(EG1)∪edges(φ̂(oG2)), (FC \h)∪φ̂(FG1 \

oG1)∪φ̂(oRG2
), φ̂(oRG2

), oC〉. Less formally, CC�φ̂(G1)
is the contextC withG1 glued in it following φ (its

hole is thus the face φ̂(oRG2
)). Notice that CC�φ̂(G1)

is correctly defined as its faces are contiguous since,
by definition of the concatenation, there exists e ∈ EG1 , e ∈ edges(oG1�G2) and φ : nodes(oG1�G2)→
nodes(h). It is easy to verify by using the definitions that CC�φ̂(G1)

�φ G2 = C �φ G1 �G2.
As G2 ≡S G′2 there exists φ′ such that CC�φ̂(G1)

�φ′ G′2 ∈ L. But CC�φ̂(G1)
�φ′ G′2 is equal

by construction to C �id φ̂(G1) � φ̂′(G′2) where id is the identity function. Using the same kind of
construction, we can construct the context CC�φ̂′(G′2) such that CC�φ̂′(G′2) �id φ̂(G1) = C �id φ̂(G1) �
φ̂′(G′2) ∈ L. As G1 ≡S G′1 and φ̂(G1) ∼=p G1, there exists φ′′ such that CC�φ̂′(G′2) �φ′′ G

′
1 ∈ L. Again,

this is equivalent to writeC�id φ̂′′(G′1)�φ̂′(G′2), and as φ̂′′(G′1)�φ̂′(G′2) ∼=p G
′
1�G′2 then by Lemma 5.4

and the closure under plane-isomorphism of L, there exists χ: C �χ G′1 �G′2 ∈ L. ut

Finally, we can define a notion of congruence classes:

Definition 5.7. (Congruence classes)
Given a plane graph language L and a pattern G of a graph of the language, the congruence class of G
in L, denoted dGeL (or simply dGe), is the set of all patterns substitutable with G in L: dGeL = {G′ :
G′ ≡L G}.

In a substitutable plane graph language, if two patterns appear once in the same context, they belong
to the same congruence class.

5.2. The Learner

Our learning algorithm is described in Algorithm 3.
As we are interested in the class of substitutable plane graph languages, the learning algorithm has

to deal with the distribution of contexts between subgraphs. To do so, it computes, from a finite set S of
PGS of the language, the observable congruence classes: two PGS G and G′ are in the same observable
congruence class if there exist k ≥ 2 and G1, . . . , Gk such that G = G1, G′ = Gk, and ∀i < k, Gi and
Gi+1 appear at least once in the same context in the sample S. As in the case of strings, this computation
can be done using a substitution graph [4] or by hashing from subgraphs to list of contexts (more complex
and efficient structure can of course be designed to be able to decide whether two subgraphs appear in
the same context). Notice that two PGS that are observed in the same congruence class are substitutable
but that the converse is not true in general: two PGS that are substitutable may not be observed in the
same congruence class in a given sample.

Given a set of contiguous inner faces F , we define split(F ) to be the set of couples (F1, F2) such
that F1∪F2 = F and GF1 and GF2 are concatenable following the identity, where for i ∈ {1, 2}, GFi =
〈nodes(Fi), edges(Fi), Fi ∪ {outer(Fi)}, outer(Fi)〉. The function number nodes(C) returns the
number of nodes of the outer face of the graphs in the observable congruence class C.
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Algorithm 3: Learning algorithm for substitutable plane graph languages
Input: A learning set of plane graph systems LS = {Gi}ni=1

Output: A plane graph grammar 〈N , PL, P,A〉
1 CC ← compute observable congruence classes(LS);
2 N ← ∅; PL ← ∅; P ← ∅; A ← ∅;
3 foreach Observable congruence class Ci of CC do
4 N ← N ∪ {(N i, number nodes(Ci))};
5 foreach G in Ci do
6 N t(G)← N i;
7 if G ∈ LS then
8 A ← A∪ {N i}

9 foreach G = 〈XG, EG, FG, [(a1 . . . an)
R]〉 in V do

10 if |FG| = 2 then
11 PL ← PL ∪ {N t(G)a1...an → G};
12 else
13 foreach (F1, F2) ∈ split(FG \ {oG}) do
14 P ← P ∪ {N t(G∗)a1...am → N t(G1)b1...bn N t(G2)c1...cp} where

[b1 . . . bn] = outer(F1), [c1 . . . cp] = outer(F2), b1 = b, c1 = c and
∀i : Gi = 〈Xi, Ei, Fi ∪ {outer(Fi)}, outer(Fi)〉;

15 return 〈N,PL, P,A〉

5.3. Identification in the limit

We now define our learning criterion. This is set-driven identification from positive text, with a polyno-
mial bound on computation:

Definition 5.8. (Set-driven identification in polynomial time)
A representation class R is set-driven identifiable from positive data in polynomial time iff there exist a
polynomial p and an algorithm A such that:

1. Given a positive sample LS of size m, A returns a representation R ∈ R in time p(m);

2. For each representation R ∈ R there exists a characteristic set CS such that if CS ⊆ LS, A
returns a representation R′ such that L(R) = L(R′).

Note that the size of a set of plane graphs LS is defined as |LS| =
∑

G∈LS |G|.
The initial definition of this learning paradigm requires the size of the characteristic sample to be

polynomial in the size of the target representation [19]. However, this definition, initially designed
for the learning of regular string languages, is already unsuitable as a model for context free string
grammars [34], so one cannot expect this requirements to be fulfilled in the case of graph grammars. As
it is beyond the scope of this paper to attempt to resolve this difficulty, we shall thus adopt this approach
in this paper: for a complete discussion, the Reader is referred to this book chapter [11].
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5.3.1. Time complexity

The number of patterns (and thus of contexts) that can be generated from a given PGS can be exponential
in the size of that PGS (it is the case for instance of the plane graph corresponding to a grid, like a chest
board). So the size of observable congruence classes is in general exponential in the size of the learning
sample. This is a well-known problem while using graph grammar formalisms as it is related to the one
of having an efficient parsing algorithm. However, the requirement of having a language of polynomial
rank, needed for efficient parsing (see Section 4.2) implies that the number of patterns to considerate is
polynomial in the size of the learning sample. Therefore the number of elements that have to be taken
into account to compute the congruence classes is polynomial.

To compute these observable congruence classes, we also need to compare all pairs of contexts to
decide if they are plane isomorphic. This can be done in polynomial time in the size of the contexts [20].
For the same reason, testing if two PGS are plane isomorphic can be done in polynomial time and thus
so is the construction of the congruence classes.

All other steps of Algorithm 3 are polynomial in the size of the observable congruence classes.

5.3.2. Proof the hypothesis is not too large

The following lemma states that patterns in the sample can be generated by the output grammar.

Lemma 5.9. If G = 〈X,E, F, o〉 is a subgraph of a sample LS, then there exists a plane graph G′ such
that N t(G)⇒∗ G′ and G ∼=p G

′.

Proof:
[Sketch] The proof can be done by induction on the number of faces of the graph. if |F | = 2, then by the
construction of the grammar there is a lexical rule N t(G)an...a1 → G with [a1 . . . an] = o. Suppose the
property holds for graphs with |F | = k ≥ 2 faces. Let F1 and F2 be two sets of contiguous faces such
that F1∩F2 = ∅ and F1∪F2 = FG\{oG}. LetG1 (resp. G2) be the PGS whose inner faces are F1 (resp.
F2). We have G1 � G2 = G. G1 and G2 are also subgraphs of LS by definition and, by construction
of the grammar, there exists a rule N t(G)a1...am → N t(G1)b1...bnN t(G2)c1...cn with [a1 . . . am] = o,
[b1 . . . bn] = outer(F1)(= oG1) and [c1 . . . cp] = outer(F2)(= oG2).

This rule can be applied to the sentential form 〈G′,L′〉, with G′ = 〈X ′, E′, {oR, o}, o〉,
L′(oR) = (N t(G), a1). It gives the sentential form 〈G′′,L′′〉, with G′′ =
〈X ′′, E′′, {φ̂(outer(F1)), φ̂(outer(F2)), o}, o〉, L′′(outer(F1)) = (N t(G1), b1) and
L′′(outer(F2)) = (N t(G2), c1) By the inductive hypothesis there exist G′1 and G′2 such that
N t(G1) ⇒∗ G′1, N t(G2) ⇒∗ G′2, G1

∼=p G
′
1 and G2

∼=p G
′
2. G′1 and G′2 might not be concatenable,

as they can have inner nodes that share the same label. However, w.l.o.g. one can change the labels
of one of the graph, for instance G′1, in order to obtain a PGS G′′1 that is plane-isomorphic to G1 and
concatenable to G′2. Thus we have N t(G)⇒∗ G′′1 �G′2 and, by Lemma 2.10, G ∼=p G

′
1 �G′2. ut

Lemma 5.10. For all subgraphs G of a learning sample LS, for all PGS G′, if N t(G) ⇒∗ G′ then G
and G′ are substitutable.

Proof:
[Hint] Let G = 〈X,E, F, o〉. As the lemma holds for G′ ∼=p G, we restrict ourselves to the case
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G′ 6∼=p G. By induction on the length of the derivation k. If k = 1, then it means that a lexical production
N t(G)a1...an → G′′ is applied and that G′′ ∼=p G

′. By the construction of the lexical rules, it means that
G′′ is a subgraph of LS that appears in the congruence class than G and thus G and G′′ are substitutable.
Lemma 5.4 implies that G′ ≡S G.

Suppose this is true for all derivations of length strictly less than k and letG′ be a PGS obtained from
N t(G) using k derivation steps. It means that there exists a sequence of sentential form S1, . . . , Sk, such
that ∀i, Si is derived from Si−1, Si = 〈Gi,Li〉 with G1 = 〈X1, E1, {oR, o}, o〉, L1(oR) = (N t(G), a)
for some a ∈ nodes(o), and Gk = G′, Lk being undefined for all faces of Gk. S2 is obtained from
S1 applying a rule N t(G)a1...am → N t(GF1)b1...bnN t(GF2)c1...bp , where outer(F1) = [b1 . . . bn] and
outer(F2) = [c1 . . . cp], GFi = 〈XFi , EFi , Fi ∪ outer(Fi), outer(Fi)〉, for i ∈ {1, 2}. By construc-
tion, there exists G∗ in the same observable congruence class of G such that G∗ = GF1 � GF2 and
thus GF1 � GF2 ≡S G. There exist G′F1

and G′F2
such that N t(GF1) ⇒∗ G′F1

, N t(GF2) ⇒∗ G′F2

and Gk = G′F1
� G′F2

. By recursion, G′F1
≡S GF1 and G′F2

≡S GF2 . As Lemma 5.6 holds, we have
G′F1
�G′F2

≡S GF1 �GF2 and thus Gk ≡S G. ut

Theorem 5.11. For all samples of a language L, the output G of Algorithm 3 is such that L(G) ⊆ L.

Proof:
Let G ∈ L(G). Then there exists a plane graph G′ in the learning sample and a plane graph G′′ such that
N t(G′) ∈ A, N t(G′) ⇒∗ G′′ and G′′ ∼=p G. Lemma 5.10 states that G′′ and G′ are substitutable and
thus G ≡LS G′. As G′ is an element of L, G ∈ L. ut

5.3.3. Proof the hypothesis is large enough

To prove that the hypothesis is large enough, we need to define a characteristic set, i.e. a subset of the
target language L∗ which ensures that the output G of the algorithm is such that L(G) = L∗.

Construction of a characteristic sample. Let G∗ = 〈N∗, PL∗, P∗,A∗〉 be a target grammar. We will
assume without loss of generality, that G∗ is reduced, that is to say for every non-terminal N , (1) there
exists a derivation that starts from an axiom and labels at least one face with N , and (2) a PGS without
any non-terminal labeling a face can be derived from a sentential form where one face is labeled by N .
We are going to define a set CS(G∗) of plane graphs of L∗, such that Algorithm 3 will identify L∗ from
any superset of CS(G∗).

Given a non-terminal Nk, we define C(Nk) to be one of the smallest context
〈XGk , EGk , FGk , hk, oGk〉 such that there exists a sequence of sentential forms 〈G1,L1〉, . . . , 〈Gk,Lk〉
with 〈G1,L1〉 being an initial sentential form such that FG1 = [oGk , o

R
Gk

], L1(oRGk) = (N i, a1),
N i ∈ A∗, and ∀i, 1 ≤ i < k, 〈Gi+1,Li+1〉 is obtained from 〈Gi,Li〉 by applying a rule of G∗,
Lk(hk) = (Nk, ak) for some ak ∈ nodes(hk), Lk is undefined on other faces.

We also define G(Nk) to be one of the smallest PGS such that Nk ⇒∗G∗ G(N
k).

We can now define the characteristic set CS(G∗). For each production N i
x → N j

yNk
z in P∗, we add

to CS(G∗) the PGS C�φ χ̂(G1)� χ̂(G2) where φ : nodes([x])→ nodes(h) is a bijective function, C =
C(N i), G1 = G(N j), G2 = G(Nk) and χ : nodes(oG1) ∪ nodes(oG2) → nodes([y]) ∪ nodes([z])
is a bijective function such that χ̂(oG1) = [y] and χ̂(oG2) = [z]. For each lexical rule N i

x → G in PL∗
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we add to CS(G∗) the PGS C �φ G where φ : nodes([x]) → nodes(h) is a bijective function and
C = C(N i).

The cardinality of this set is at most |P∗|+ |PL∗| which is clearly polynomially bounded. In general
the cardinality of the set will not polynomially bound the size of the sample, as it is already the case for
string context-free grammars (see [4] for a detailed discussion). However, notice that if there exists a
polynomial-sized structurally complete sample – that is to say a sample where for each production rule
there is at least one plane graph that can be generated by using it [9] – then the size of our characteristic
set is polynomial. In addition, one can show that the size of this characteristic set is polynomial in the size
of the target grammar and of its thickness, following the refinement of the learning paradigm suggested
by Ryo Yoshinaka [34].

Convergence. We must show that for any substitutable plane graph grammar G∗, if the sample LS
contains the characteristic sample CS(G∗), then L(G) = L(G∗) where G = 〈N , PL, P,A〉 is the inferred
grammar.

Lemma 5.12. If N ⇒∗G∗ G then there exists a subgraph G′ of the learning sample and a plane graph G′′

such that N ⇒∗G∗ G
′, N t(G′)⇒∗G G′′ and G′′ ∼=p G.

Proof:
[Sketch] By recursion on the number of derivation steps k in G∗. If k = 1 then there exists N → G′

in PL∗, G′ ∼=p G. By construction of the characteristic sample, G′ is a subgraph of LS and thus
N t(G′)→ G′ is in PL.

Suppose it is true for all derivations of size less than k > 1. There exists a sequence of sentential
forms 〈G1,L1〉, . . . , 〈Gk,Lk〉 such that 〈G1,L1〉 is an initial sentential form with L(f1) = (N, a), Si+1

is obtained from Si by using a rule of G∗, Gk = G and Lk is not defined for any face. Let Nx → N i
yN

j
z

be the rule applied to S1 to obtain S2. By construction, there existG1 andG2,N i ⇒∗G∗ G1,N j ⇒∗G∗ G2,
and G1 �G2 = G.

By recursion, there exist two subgraphs of LS, G′1 and G′2, and two PGS G′′1 and G′′2 such that
N i ⇒∗G∗ G

′
1, N j ⇒∗G∗ G

′
2, N t(G′1) ⇒∗G G′′1 , N t(G′2) ⇒∗G G′′2 and G′′1 ∼=p G1, G′′2 ∼=p G2. Notice that

this implies there exists a renaming function φ on the vertices of the external faces of G′′1 and G′′2 such
that φ̂(G′′1) and φ̂(G′′2) are concatenable and φ̂(G′′1) � φ̂(G′′2) ∼=p G (Lemma 2.10).

By construction of the characteristic sample, there exist two subgraphs G′′′1 and G′′′2 of LS such
that G′′′1 � G′′′2 is a subgraph of LS, G′′′1 ∼=p G(N

i) and G′′′2 ∼=p G(N
j). As L(G∗) is a substitutable

language, we haveG′′′1 ≡S G′1 andG′′′2 ≡S G′2. ThusG′1 andG′′′1 appear in the same component and thus
correspond to the same non-terminal (and similarly forG′′′2 andG′2). As there is a ruleN t(G′′′1 �G′′′2 )x →
N t(G′′′1 )yN t(G′′′2 )z in P , we have N t(G′′′1 �G′′′2 )⇒∗G φ̂(G′′1) � φ̂(G′′2). ut

Theorem 5.13. Let G∗ be the target plane graph grammar corresponding to a substitutable plane graph
language. Algorithm 3 returns a grammar G from any sample containing CS(G∗) such that L(G) =
L(G∗).

Proof:
If G ∈ L(G∗) then there exists N ∈ A∗ such that N ⇒∗G∗ G. By Lemma 5.12, it implies that there exists
a subgraph G′ of the learning sample and a plane graph G′′ such that G′ ∈ L(G∗), N t(G′) ⇒∗G G′′ and
G′′ ∼=p G. By construction of the grammar,N t(G′) ∈ A and thus G ∈ L(G). Therefore L(G∗) ⊆ L(G).
Due to Theorem 5.11, we have L(G) = L(G∗). ut
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6. Discussion

In addition to substitutability, other restrictions on the learned class have been done, explicitly or not.
First, the grammar formalism implies that the number of nodes of the outer face of any generated PGS
has to be bounded: otherwise an infinite number of axioms would be needed. Then, the requirement of
having a polynomial rank, that is used both for efficient parsing and for the polynomial computation time
of the learning algorithm, is clearly restrictive.

Despite all these issues, this paper describes, to our knowledge, one of the first positive formal
learning result for a non-trivial class of graph grammars. The work on substitutable string languages [4]
has been the starting point of several positive learning results on more complex classes, and similar
developments are likely to be tractable for plane graph languages. It seems to be the case for instance of
the extension to contexts with several holes [35] using multiple context-free grammars (that are a context-
sensitive formalism with a polynomial time parsing algorithm). It might also be possible to adapt the
learning algorithm in a way that allows a learning result in the PAC paradigm [31]. Finally, due to the
interest of planar graphs in image processing [30], it is likely that the learning of plane graph grammars,
and more generally grammatical inference techniques, could be used to tackle image classification tasks.

A. Proof of Theorem 2.3

In this section, we prove that if a PGS S = 〈X,E, F, o,D〉 is valid, then it denotes a plane graph. Let
us remark that 〈X,E〉 is a connected planar simple graph by assumption. Moreover, Condition (1) of
Def. 2.2 ensures that the boundary of every face is made of well-defined edges. Typically, no face can be
described with a boundary like [xx . . .], and if a boundary like [xy . . .] appears, then {x, y} is an edge.
Notice that sets X and E are redundant in a valid PGS, since we can deduce them from the boundaries
of the faces.

Now, in order to prove Theorem 2.3, we are going to show that a valid PGS actually defines a 2D-
combinatorial map M = 〈D,α, β〉. Then, thanks to Condition (4) of Def. 2.2, we know that the genus
of this map is null, so it can be embedded on a sphere with no crossing edges. Finally, the fact that we
distinguish face o as the external face allows us to continuously deform the sphere into a plane and finally
get a plane graph (remember that a plane is isomorphic to a sphere minus a point).

Let us first define the set of darts: D = { ~xy : ∃f ∈ F,∃u ∈ X∗,D(f) = [xyu]}. We now define
β : D → D as follows: β( ~xy) = ~yx. We claim that β is well-defined and obviously an involution over
D. Indeed, if ~xy ∈ D, then there exists a face f ∈ F such that D(f) = [xyu] for some u ∈ X∗. By
Condition (1) of Def.2.2, we deduce that pair {x, y} is an edge. So by Condition (2), we deduce that
there exists a face f ′ ∈ F such that D(f ′) = [yxv] for some v ∈ X∗, thus ~yx ∈ D.

The definition of α : D → D is a bit more intricate. Consider a dart ~xy ∈ D. Then there exists an
unique face f ∈ F such that D(f) = [xyu] for some u ∈ X∗. We can assume without loss of generality
that |u| > 0. Otherwise, face f is bounded by a single edge, and as the graph is connected, it is actually
reduced to a single edge. Therefore, there exists z ∈ X such that D(f) = [xyzu] for some u ∈ X∗, and
we set α ~xy = ~yz.

FINIR : montrer que α est une permutation

1. For all f ∈ F and x, y ∈ X and u ∈ X∗, if D(f) = [xyu] then {x, y} ∈ E;
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2. For all e = {x, y} ∈ E, there exist a unique face f ∈ F such that D(f) = [xyu], and an unique
face f ′ ∈ F such that D(f ′) = [yxu], for some u, u′ ∈ X∗;

3. For all f ∈ F and x, y, z, z′ ∈ X and u, u′ ∈ X∗, if D(f) = [xyzuxyz′u′] or D(f) =
[zxyuz′xyu′] then z = z′;

4. Euler’s formula holds, that is, |X| − |E|+ |F | = 2.
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