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A CANONICAL SEMI-DETERMINISTIC TRANSDUCER

ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Asstract. We prove the existence of a canonical form for semi-detastic transducers with sets of pair-
wise incomparable output strings. Based on this, we dewvatoglgorithm which learns semi-deterministic
transducers given access to translation queries. We aise finat there is no learning algorithm for semi-
deterministic transducers that uses only domain knowledge

1. INTRODUCTION

Transducers, introduced by [28], are a type of abstract mackhich defines a relation between two
formal languages. As such, they are interpreted as modglmglation in any context where formal
languages are applicable. We provide no background on fdamguages in this paper; an overview of
the subject can be found inl[9] arid [32]. Alternatively, selncers can be viewed as a generalization of
finite state machines. This view was introduced by Mohri, wkes transducers in the context of natural
language processing [24,125] anhd][26].

A fundamental task when studying the theory of transduseais iook for classes of transducers that
can be learned given access to some form of data. If a clasarsducersy’, is found to be learnable,
then a predictive model can be produced in any applicaticereva translation from the clagsis in use.
The significance of transducers, specifically expandingdhge of the learnable classes, is clear from
the scope of applications of transducers. Among many gtkerse well known applications are in the
fields of morphology and phonology [31], machine transka{, [14,[15], web wrapperslL1], speech
[24] and pattern recognition][5]. In each of these case¥emint classes of transducers are examined
with characteristics suitable to the application. Distirstning characteristics of fierent classes include
determinism properties, the use of probabilites or weigisvell as details of the types of transitions
that are permitted.

1.1. Transducer learning. An important step in the theory of transducers was the deweémt of the
algorithm Gia. Introduced in[[2D], Gria was designed for language comprehension tesks [38]. A
number of elaborations on the original algorithm have siagsen, many of them aimed at trying to
circumvent the restriction to total functions that limit®sria. Typically, these attempts involved adding
some new source of information. For examplern®N uses negative (input) examples ansiri@-D
supposes the algorithm has some knowledge of the domairedutiction [30]. Similar ideas were
explored later by([22] and[17]. An application ofs@a for active learning is presented in[36]. Using
dictionaries and word alignments has been tested by [37]erahstrated practical success afr@
came in 2006. The Tenjinno competition [34] was won[by [16hgsn Gria inspired algorithm.

1.2. Towards nondeterminism with transducers. Non-deterministic transducers pose numerous com-
plex questions — even parsing becomesfiatilt problem[12["13]. Interest in non-deterministic madel
remains, however, as the limitations of subsequentiakttacers make them unacceptable for most ap-
plications. The first lifting of these constraints was pregd by [2]. They propose a model in which the
final states may have multiple outputs. In his PhD thesisaAkintroduced a notion of semi-determinism
[1] that strikes a balance between complete non-determiaigl the very restrictive subsequential class.
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He provided an example witnessing that semi-deterministitsducers are a proper generalization of
deterministic transducers, but did not pursue the topithérr focusing instead on probabilistic subse-
quential transducers. We examine an equivalent formulaifoAkram’s semi-determinism based on
methods of mathematical logic. In particular, by viewing tfefinition from a higher level of the ranked
universe, we convert what would be a general relation intee-defined function. [[23] provides an
overview of a number of important topics in set theory inahgdthe ranked and definable universes.
Some more recent developments in set theorly is [21].

A significant obstacle in learning non-deterministic trdunsers is the fact that an absence of informa-
tion cannot be interpreted. One approach to overcomingptioislem is to use probabilities. We eschew
the probabilistic approach in favor of a collection of meththat have their antecedents in Beros's earlier
work distinguishing learning models|[6] and determining #rithmetic complexity of learning models

[7].

An earlier version of this work was presented at the Intéonal Conference on Grammatical In-
ferencel[8]. In this version, we provide more of the algarithinvolved in learning semi-deterministic
transducers and prove that the algorithms converge. Weealslish the relationship between semi-
deterministic transducers and two other natural extessibdeterministic transducers and the bi-languages
they generate, specifically-subsequential transducers and finitary, finite-state,anohded relations
(definitions of these terms are provided in Secfion 9.1)alinwe show that semi-deterministic trans-
ducers and the associated bi-languages fail two closupepties: closure under composition and closure
under bi-language reversal.

2. Notarion

We make use of following common notation in the course ofplaiser. Throughout, the symbolsy
andz denote strings and andb will denote elements of a given alphabet. We shall use thedaral
notationA for the empty string.

e The concatenation of two strings,andy, is denoted bywy. We writex < y if there is a string
z+ Asuch thay = xz We writex <y if x <yorx =Yy. This order is called the prefix order.

e Fora set of stringsS, T[S] = {x: (Ay € S)(x < y)} is the prefix closure o8.

e Atree is a set of stringss, such thaff[S] = S. S’ is a subtree 08 if both S andS’ are trees
andS’ is contained irS. A strict subtree is a subtree that is not equal to the coimginee.

o Z(X)=(Y:YC X}andZ*(X) ={Y:Y C XAY| < co}.

e We will use elements o both as numbers and as sets. In particular, we use the folipwi
inductive definition: 0= @ and, given Q.. ., n, we definen+ 1 = {0,...,n}.

¢ Following the notation of set theory, the string= ag...a, is a function with domaim + 1.
Thus,xtk = ag...ax1 for k < n+ 1. |x is the length ofx andx is the truncatiorx[(|x| — 1).
Note that the last element &fis x(|x| — 1) and the last element af is x(|x| — 2).

e Again, drawing on set theory terminology, we call two fuoas, f andg, compatible if fx €
dom(f) N dom(@))(f(x) = g(x)).

e We writex || yif X =y, Xx < yor x > yand sayx andy are comparable. Otherwise, we write
X L yand say thak andy are incomparable.

e By <iex and<ex we denote the lexicographic and length-lexicographiciadespectively.

e For an alphabet, X* is the set of all finite strings ovér. A tree ovelX is a tree whose members
are members af*, where the ordering of the tree is consistent with the prafieponz* and
the tree is prefix closed.

e We reserve a distinguished character, #, which we exclude &ll alphabets under considera-
tion and we will use # to indicate the end of a word. We will wri## when we append the #
character to.
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3. Bi-LANGUAGES AND TRANSDUCERS

Bi-languages are the fundamental objects of study. Thejucaphe semantic correspondence be-
tween two languages. In principle, this correspondencs dog specify any ordering of the two lan-
guages, but translation is always done from one langt@grother language. As such, we refer to the
input and the output languages of a bi-language. For nott&implicity, in everything that followX
is the alphabet for input languages @ds the alphabet for output languages. Using this notatios, t
input language is a subsetBf and the output language is a subse®06f We now present the standard
definition of a bi-language.

Definition 3.1. Consider two languagek,c ¥* andK ¢ Q*. A bi-language from L to Ks a subset of
L x K with domainL.

For our purposes, we wish to indicate the direction of traiiheh and to aggregate all translations of a
single string. To this end, in the remainder of this papenmiteuse the following equivalent definition
of a bi-language.

Definition 3.2. Consider two languagek,C ¥* andK C Q*. A bi-language from L to Ks a function
f:L— Z(K). Lis said to be thenput languageandK the output languagef f. When defined
without reference to a specific output language, a bi-laggussimply a functiorf : L —» 22(Q*). If f
andg are two bi-languages, thehis asub bi-languagef g if dom(f) € dom(g) and for allx € dom(f),
f(X) € g(x). A finite subsetD of L x K is consistent with ff for every (x, X) € D, X € f(x).

Note that for a bi-languagkéfrom L to K, we do not require that),., f(x) = K. We are interested in
languages whose generating syntax is some form of transduce

Definition 3.3. A transducef is a tuple(states[G], |, £, Q, E).

(1) states[G] is a finite set of stated. C states[C] is the set ofinitial states

(2) £ andQ are thanput alphabeandoutput alphabetrespectively — finite sets of characters which
do not contain the reserved symbol #.

(3) E C states[G] x states[G] X (ZF U {#}) x £2*(Q") is a finite relation called theansition rela-
tion. An element € E is called atransitionwith e = (start(e), ende), input(e), outpuie)). If
input(e) = #, theneis called a#-transition

A transducer is said tgenerateor inducethe bi-language which consists of all pairs of striggsy) e
¥* x Q* such that:

(1) (X0, --» X € Z)(X = Xo... Xn),

(2) (Ae,....en1 € E)(dge I)((Vi €{1,...,n})(x = input(e) A ende) = start(e..1)) A start(ep) =
gAinput(e,1) = #) and

(3) there areY; € outpu(g) fori < n+ 1 suchthal¥ = YpY1- - Yny1.

This paper addresseemi-deterministic bi-languageghich are bi-languages generated ssmi-
deterministic transducerd hese were defined inl[1]. We use an equivalent formulation.

Definition 3.4. A semi-deterministic transducer (SDiB)a transducer with a unique initial state such
that
(1) input(e) € = U {#} for every transitiore,
(2) given a stateg, anda € X, there is at most one transitiog,with start(e) = q andinput(e) = a
and
(3) givenatransitiorg, outpufe) is a finite set of pairwise incomparable string$¥h(i.e.,outpuie) €
Q) A (VXY € outpu(e)(X L Y)).
A semi-deterministic bi-languad&DBL) is a bi-language that can be generated by an SDT.



4 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Two useful properties of SDTs follow from the definition. $tirif e € E andA € outpuie), then
outpuie) = {1}. Second, although there may be multiple translations ohglsistring, every input
string follows aunique paththrough an SDT. The precise meaning of this is made clearam#xt
definition. We must also note that, while SDBLs can be infinite image of any member or finite
subset oL is finite. Thus, an SDBL is a functioh: L — £2*(Q*).

Definition 3.5. Let G be an SDT with input languade A path through Gis a stringey ... e € E*,
whereE is the set of transitions, such thstart(e,1) = endg) fori < k. G[p] is the collection of all
outputs ofG that can result from following pathp. py is the unique path througB, e,...e € E*,
defined byx € * such thatstart(ep) is the unique initial state d&, if such a path exists. We denote the
final state of the patipy by gx.

4. ORDERING MAXIMAL ANTICHAINS

When parsing sets of strings, we will often use the followdpgrations.

Definition 4.1. Let S andP be two sets of strings.
e PxS={xy:xePAyeS}
e PIS={y:(@xeP)(xyeS)}.
For notational simplicity, we defing!S = {x}!S, P~Ix = P7}{x}, x* S = {x} *x SandP  x = P  {x}
for a stringx.
Proposition 4.2. « is associative, but is not commutative.

Proof. Associativity follows from the associativity of concaté¢ioa. To see that is not commutative,
considerA = {a} andB = {a,b}. A= B = {aa ab} andB = A = {aa, ba). O

The following definitions and results pertain to sets oingfsiand trees over finite alphabets.

Definition 4.3. Given a set of stringss, we callP C T[S] a maximal antichain of Sf (Vx,y € P)(x L
yVvx=y)and (x e S)(Ay € P)(y || X). Pis avalid antichain of Sif P is a maximal antichain o and
(Yx,y € P)(xIT[S] = y 1T[S]). We defineVac(S) = {P : Pis a valid antichain oS}.
Example 4.4. Consider the following set of strings over the alphdlagh}:

S = {a°, a*h, a’ba, a’b?, ba*, ba’h, baba bal?, ba3, b’a’b, b*a, b*}.
Graphically, we can represe®as a tree where branching left indicatesamd branching right indicates
ab. In the picture below to the right, we highlight the four wakntichains ofS: Py = {1}, P1 =
(a2, ba, b?}, P, = {a* a’b, ba®, bah b?a?, b3} andP; = S. Note thatS is only a valid antichain of itself
because it contains no comparable strings. The members ébtin valid antichains are connected via
dotted lines in the right picture?y has only one member and therefore includes no dotted lirkes).

reference a maximal antichain that is not valid is includethi picture on the left and its members are
joined with a dotted line.

Po

X P2

P3

Ficure 1. On the left, a maximal antichain that is not valid; on thghtj all the valid antichains.
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In the next figure, we focus on the valid antich&n

.G... ...Q.

[/}\ ______ ﬂ

Ficure 2. The identical subtrees below the elements of the validlagn P;.

Observe that the portions of the tree below eack’pbaandb? are identical; the terminal nodes of
all three sub-trees afe®, a’b, ab, b?}. It is this equivalence of sfixes that makeP; a valid antichain.

The concept of equivalence we have developed closely parafiat of Nerode equivalende [27] in
which two strings in a language are equivalent if there isxterssion in the language that distinguishes
the two strings.

It is interesting to note that the valid antichains in the\abexample have a natural linear ordering.
As we shall see in Theorem 4.9, this is not an artifact of théiqdar example, but is true of any finite
setS.

Proposition 4.5. Suppose that P is a valid antichain of a set of strings S and &wmalid antichain of
P, then Q is a valid antichain of S.

Proof. Let P be a valid antichain of a set of strin§sand letQ be a valid antichain oP. Every member
of T[S] is either a prefix or an extension of a memberPofSinceP consists of incomparable strings,
each member oP has a member d as a prefix. ThusQ is a maximal antichain 06. To see tha®
is a valid antichain, observe thabify € Q, thenx*T[P] = y'T[P]. Sincez *T[S] = w'T[S] for all
zwe P, xIT[S] = yIT[S], thusQ is a valid antichain. o
Definition 4.6. For P andQ, sets of strings over some common alphabet, we sayRhat; Q (P is
“antichain less thanQ) if either

e |P| <|Q], or

e |P| =|Qland, forallx e Pandy € Q, if x|y, thenx <.

We will use valid antichains to parse a set of strings as onddvparse a single string into a prefix
and sifix. The validity of an antichain ensures that the correspundiffix set is well-defined.

Proposition 4.7. Let S be a finite set of incomparable strings. If P is a validicdain of S, then
P« (P!S)=S.

Proof. Observe that, iP is a valid antichain o8, thenT[P~!S] = x 1T[S] for all x € P. O

The antichain ordering<c) has particularly nice properties when appliedvex(S), whereS is a
finite set of strings.

Proposition 4.8. If P and Q are maximal antichains of the same finite set of g&jirthen there is a
relation RC P x Q such that

e domR) =P,

e ran(R) = Q,

e XRye x||y.
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Furthermore, if|P| = |Q| and P||5c Q, then R is a well-defined and bijective function.

Proof. DefineR = {{(x,y) : xe PAy e QAX|| y}. SinceP andQ are maximal antichains, for eagte P
there isy € Q such thatx || y hence, don®g) 2 P. Similarly, for eachy € Q there is arx € P such that
x| y thus, ranR) 2 Q. By the definition ofR, domR) € P, ranR) € Q andxRy« x| y. If |P| = |Q|
andP ||5c Q, then for eachx € P there is a unique comparabjes Q and vice versa. Consequent®js
well-defined and bijective in this case. O

Theorem 4.9.If S is a finite set of strings, the{h’ac(S), <ac ) is a finite linear order.

Proof. Consider a finite set of stringS, and letT = T[S]. We begin by fixingP, Q € Vac(S). We may
assume thdP| = |Q|; if |P| # |Q|, thenP <4 Q or Q <4 P. We pick an element € P and observe that,
by Propositio 418, there isyae Q such thatx || y.

Suppose that = y and letx’ be any other member & By Propositioi 418, there isya € Q such that
X' ||'y'. SinceP andQ are valid antichains ankl=y, X 1T = x 1T = y!T = y~IT. Given thatx' |y,
T is finite andx' 1T = y~!T we conclude thax’ = y’. Now assume < y. In the casg/ < x simply
exchange the roles ofandy. As above, we pick’ € P and any comparable elemegyite Q. Clearly
y~IT is a strict subtree of 1T and hencey’~'T is a strict subtree ot ~1T. We conclude that’ < y'.

We have shown that any two members\aic(S) are comparable. The remaining order properties
follow immediately from the definitions. O

While the proof of Theoren 419 is quite simple, we highlighas a theorem because it is the critical
result for the applications of valid antichains that folloMote that<,. may not be a linear order on an
arbitrary collection of maximal antichains.

Corollary 4.10. Let &, S1, S, ... be a sequence of finite sets);.y Vac(S) is linearly ordered under

<ac-

Proof. Any subset of a linear order is a linear order. Sifgeg, Vac(S;j) < Vac(Sy), the claim follows.
O

Definition 4.11. Given a set of strings, a finite sequence of sets of strins, . . ., Py, is afactorization
of Sif S=Pg=---%PyandP; # {1} fori < n. Such a factorization is said to lmeaximalif, for each
i €N, Vac(P;) = {{4}, Pi}.

Note that having/ac(P;) = {{1}, P;} for each factorpP;, in a factorization is equivalent to havimy, 1
be the<-least non-trivial valid antichain d®* - - - P;'S.

Example 4.12. We consider the following set of strings:

S = {a°, a%h, a®ba?, a®bah a’b?a, a’b®, aba?, abah al’a?, ab’ab, ab®a, ab®, ba®,
ba’h, ba’ba?, ba’bah ba’h?a, ba’b?, b’a?, b?ab, ba?, b%ah, b*a?, b*ab, b°a, b°}.

In the figure below, we display the tre€[S], as well as the<,-least non-trivial valid antichairly =
{a,b}.



A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 7

sece
Ficure 3. A set of strings and itg,c-least valid antichain.
The corresponding set of Sixes isP;'S = {a* a®b, a’ha?, a’bah a’b?a, a’h®, ba?, bah b®a?, b’ab,

b%a, b%. Iterating, we find the next factor iB; = {a?,b} and its set of sflixes is Po * P1)™'S =
{a2, ab, ba?, bah b%a, bd).

Ficure 4. P; is the<,c-least non-trivial valid antichain d?(;lS andP; is the<,c-least
non-trivial valid antichain of Py * P;)~S.

We next pickP, = {a, ba, b?}. Once we factor ouP,, all that remains iga, b}. The only antichains of
{a, b} are{1} and{a, b}, both of which are valid antichains. We pick the final facmbeP3 = {a, b} and
conclude thaPg = Py = P, * P3 is a maximal factorization o$.

Corollary 4.13. Up to possible reordering of commutative terms, every fggtef incomparable strings
has a unique maximal factorization.

Proof. Let S be a finite set of incomparable strings. We will apply thedt®e process illustrated in
Exampld4.IP t&. DefinePy to be the<,c-least non-trivial valid antichain @&. If Pg = S, then the pro-
cess is complete. By Theorém#.9, the choic®gis unique. Suppose we have defifadPy, ..., Pn.
LetS, = Pt--- P;1S. To be explicit,Sy = PP 2, (- - - (P51S))). DefinePy,1 to be the<,c-least non-
trivial valid antichain ofS,,. As before, the choice is unique.R;1 = Sy, then the process is complete.
Otherwise, we proceed to the next iteration.

SinceVac(S) is finite, the process must terminate. The uniqueness dhttterization follows from
the unigueness of the choices made at each stage of the proces O
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Observe that the interative process described above ggeifinique order for the terms of the unique
maximal factorization. When the terms are listed in the osgecified by this process, we will say that
the factorization is ircanonical order

5. Ssmr-DeTErRMINISTIC BI-L ANGUAGES

In this section, we prove the existence of a canonical SD€&V¥ery SDBL. Determining the canonical
SDT for an SDBL is done in two phases. First, a “maximal” fuocton prefixes of the input language
is found. Finding such a maximal function is analogous toathwarding performed in algorithms such
as OSTIA and can be loosely described as the process of madeiigions earlier in the translation
process. Second, subsets of the domain on which the funcéisidentical outputs are conflated in a
largely standard merging process. Merging produces a-imder equivalence relation of{L]. Using
this equivalence relation, we can define the canonical SDT.

5.1. Semi-Deterministic Functions.

Definition 5.1. Let f be an SDBL oveL.. F : T[L] — £2*(Q*) is asemi-deterministic function (SDF) of
fif, for x e L, f(X) = F(XT1)«F(X[2)x- - -« F(X)«F (x#). We defindIF(X) = F(X[1)«F(X[2)%- - -xF(X).

If F andF’ are SDFs off, we say that <sq¢ F’ if [IF(X) is a valid antichain ofIF’(x) for all x. The
SDFinducedby f is the SDFF, such that(x) = {1} for all x e T[L] andF(x#) = f(x) forall x € L.

Example 5.2. Suppose that, B,C C Q* are finite, non-empty and not equal{td. LetX = {a} be the
input alphabet. Define an SDBIf, overL = {a?} by f(a?) = A * B x C. We define two incomparable
SDFs off as follows. The first SDFE (1) = {1}, F(a) = A B, F(a®) = {1} andF(a’#) = C. The second
SDF:F’(1) = {1}, F’(a) = A F’(a®) = B C andF’(a®#) = {1}. SincellF(a) is not a valid antichain of
IIF’(a), F £sqt F’. Likewise, sincdIF’(a?) is not a valid antichain ofiF (a?), F’ £sqf F.

Examplé 5.2 demonstrates thays is not a linear ordering of the SDFs of a fixed SDBL. Nonethgles
there is a<sg-maximum SDF off.

Theorem 5.3. If f is an SDBL over L, then there issq+-maximum SDF of f.

Proof. Forx € T[L], let S be the collection of all members afthat extend and letxy be the<jex-least
member ofS. By Corollary[4.I8, for every € S there is a unique maximal factorization tfy). Let
Po = - - - x P, denote the unique maximal factorizationfd,). Let Pg = - - - « P; be the longest common
initial segment of all factorizations of members{&{x) : x € S} when the terms of the factorizations are
listed in canonical order. We defif® to be the product of this longest common factorization.

We defineFn(1) = {1} and defineF, inductively on the members Of[L] in <jex-order as fol-
lows. Suppose we are considerirg T[L] and Fr, has already been defined on ajLy-lesser mem-
bers of T[L]. We defineFn(X) = (IIF (X)) ™*PX. If y € L andFn(y) is defined, we seFn(y#) =
(ITFm(y)) ™ (Y).

If x <y, thenIIF(X) is a valid antichain of ,,(y) and Fm(y))"*f(y) is well-defined. Consequently,
Fm is a well defined function with domaif[L]. If F is any SDF off andx is an arbitrary member of
T[L], thenIIF(x), ITF(X) € Vac(f (X)), wherexg is the<jex-least extension af in L. By Theoreni 4.9,
for anyx € T[L], ITF(X) andITFy(X) are<zc.-comparable. FurthermorBF (x), [TF(X) € Vac(f(y)) for
all y > x. Given the construction dfp, if Fyn(X) <ac F(X), then there must beye L such thatx <y
andITF(x) ¢ Vac(f(y)) — which is not possible. Thu§, is a<sg-maximum SDF off. |

Definition 5.4. Let f be an SDBL with maximal SDIF. Forx € dom(F) andF’ an SDF off, we say
thatF’ is onward at xif for all y e dom(), y > x implies thatF’(y) = F(y). If F’ is onward a1, then
we say that’ is onward

In Sectior 8, we use the concept of onwarding to build the makSDF from data.
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5.2. Merging. The second phase of building a canonical form for SDTs is finden equivalence
relation on the domain of a maximum SDF. This means idemtifyvhich paths lead to the same state.

Definition 5.5. Let F be an SDF off overL andx € T[L]. We defineruturer[X] : X 1T[L] —= R,
whereR is the range of, such thatrutures[X](Y) = F(xy). If x,y € dom(), we say thatx = y if
rFUTUREE[X] = FUTUREE[Y]. Given x, we definex to be the<ex-least element of dork) that is equivalent
to x.

Proposition 5.6.

(1) =is an equivalence relation on the domain of an SDF.

(2) If x =y and xzyze T[L], then xz= yz.

(3) If Fis an SDF of f over L, then there are only a finite numbeszeafquivalence classes on the
domain of F.

Proof. Part[d follows from the fact that equality is an equivalenelation. ParfP follows from the
definition of=. To prove partB, leG be an SDT that generatésand letgy be a state o6 which can be

reached by the input stringe T[L]. For anyy € T[L], if py leads tog, thenx = y as their futures are
the same. Thus induces an equivalence relation on (hence, a partitiorhefstates o6. Since there

is at least one state in each equivalence class, the fadsth@t[G]| < oo implies that there are only
finitely many equivalence classes. O

Lemma 5.7. Let F be an SDF of f over L. There is an n such that for all  T[L], x =y if and only
if FUTURE[X] [X2" = FUTURE[Y] [YZ".

Proof. The proof follows immediately from Propositibn k.6, dartSnce there are only a finite number
of possible futures, there is a finite portion of each thatjuaely identifies it. Leth be the maximum
depth of the paths required to obtain the identifying partibeach future. We have obtained the desired
n. O

We can think of the identifying bounded future of an equinake class as a sort of signature, an
analogue of the famous locking sequence for Gold style iegfiQ].

The maximum SDF and the equivalence relation on its domaeni@only on the underlying SDBL.
Thus, we have defined a machine-independent canonical fasra.footnote, we demonstrate here how
to produce an SDT from the canonical form which is unique ugdmorphism.

Definition 5.8. Let f be an SDBL, letr,, be the maximum SDF fof and let= be the equivalence
relation on the domain d¥,,. Define a finite state machin@;, as follows:

e states[G¢] = {rx : X € T[L]} (in other words, a set of blank states indexed®y x € T[L]}).
e The initial state is,.
o Eg, = {(re I X(IX = 1), Fn(X)) - X € T[L]} U {(rx, ra, # Fm(3#)) : x e L}

We callG; thecanonical SDT for f

As noted prior to the definition, the maximum SDF depends onlthe SDBL. Thus, we are justified
in calling the above SDT a canonical SDT. AlthougandT[L] may be infinite sets, the set of transitions,
Ec,, and the set of statesrares[G;], are finite by Proposition 5.6. Also, observe that the metbb
defining an SDT from an SDF described in Definition 5.8 can teelus define a unique SDT from any
SDF. Since every SDT also defines a unique SDF, there is dibijelsetween SDFs and SDTs for a
given SDBL.

Theorem 5.9. Let f be an SDBL. @is an SDT that generates f.

Proof. Clearly,G¢ is a finite state transducer. F, - - - , P, are sets of incomparable strings, tHen-
Po = - - - % P, also consists of incomparable strings. To see this, suppese - - - X, andy = yp - - - Y, are
such thatx < yandx;,y; € P; for alli < n. If i be least such thag # y;, thenx < y; andP; contains two
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comparable strings. Thus, the outputs of all transitiorG ofonsist of incomparable strings, as they are
factors of the elements of the rangefof

We must show thaB; generates. Gy and f have the same domain. LEt, be the maximal SDF of
f. If x e T[L], thenG¢[px] = [IFm(X), thus,G¢ generates. O

5.3. An Example. To illustrate the canonical form that we have now defined, welet a transducer
not in canonical form together with its canonical form.

#AB

b:AAB b:AAB

aAAABBBABBB

Ficure 5. An SDBL not in canonical form (left) and in canonical fornght).

6. THE LEARNING MODELS

There are two principal learning models in grammaticalriefee: identification in the limit [20]
and PAC-learning[[35]. Each of these models admits varidafending on what additional sources
of information are provided. In order to learn semi-detenistic transducers, we use querigs [4] as an
additional resource. These queries are very limited; tlaelerwill be interrogated about a possible
translation pair and the oracle will return eitherr@r Or FALSE.

Definition 6.1. Let f be a bi-language. The translation quexyY]: returnsrrue if Y € f(X) andraLse
otherwise. We call this oracld]. Where it is clear from context, we will writeq] Y] instead of K, Y] ;.

Equivalently, the oracle answers membership queries abeugraph of the bi-language. We also
prove that learning is not possible without queries. Theigeedefinition of learning we use is adapted
from the one used in[18]:

Definition 6.2. An algorithm, A, polynomial identifies in the limit with translation queriasclass of
transducersy’, if for any G € ¢ there is a setCSg, such that on any) 2 CSg contained in the
bi-language induced b, A outputs aG’ equivalent toG. The algorithm must converge within a
polynomial amount of time ifD] and|G|; |CSg| must be polynomial inG|. |G|, |D| and|CSg| denote
the number of bits required to encode the obj&;t$ andCSg, respectivly.

Note that in the above definition the number of calls to theclerés also bounded by the overall
complexity of the algorithm and is therefore polynomialhe size of the sample.

For Theoreni 7]2, we use afldirent model of learning: identification in the limit from pidge data.
We give the definition below.

Definition 6.3. An algorithm, A, identifies in the limit from positive data class of transducerg, if

for anyG € ¥ and any infinite enumeration of the bi-language induce@pthe algorithmA outputs a
finite number of distinct transducers on the initial segra@fthe enumeration. The only transducer that
is output infinitely many times must be equivalen@Go
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7. SDBLs ARE NOT LEARNABLE

We assume domain knowledge (i.e., access to the charéctarnsction of the input language). In the
proof of the following theorem, we encode a standard exawif@etopological” failure of identification
in the limit. In particular, we encode the familf = {N} U {A C N : |A| < oo} into a sequence of SDTs.

Definition 7.1. Let f be a bi-language. We defifiK; to be the oracle that, when asked abgueturns
a boolean valu®K;(x). If DK¢(X) = trug, thenx is in the input language of (in other words, the
domain off). Otherwisex is not in the input language df. An algorithm which has access BK; is
said to have domain knowledge abdut

Theorem 7.2. There is a collection of SDBLE, such that no algorithm can identi€yin the limit from
positive data, even given domain knowledge of each memlger of

Proof. To avoid degenerate cases, we assume the output alphakatlbast two characters, and B,
and the input alphabet has at least one charaxt®ve exhibit a sequence of SDT&;}iav, such that no
program can successfully learn every member of the sequémttee following graphical representation
of {Gil}ian We omit the #-transitions, instead indicating terminal @®dith a double border.

G
aAB aAB

" a;A

G1

Go .

Ficure 6. A sequence SDTs that cannot be identified in the limit frasifive data.
Transitions are labelled with the input string they read #ral set of possible out-
put strings; for example, a transitianlabelled witha : A, B has the property that
input(e) = aandoutpuie) = {A, B}.

Let f; be the SDBL generated by the SIE. Fix any learning algorithm and lé#l be the function
such that, given dat®, the hypothesis made by the learning algorithrivii&). We inductively define
an enumeration of a bi-language generated by some membhe afetjuenceG;licy. DefineX; =
@,Axa, By and X/ = (al, Al)al*l, Al*ty...@* Al*). Letn; be least such that(X. X3, ) codes
G;:. If no suchn; exists, then there is an enumerationfpfvhich the chosen algorithm fails to identify.
Thus, without loss of generality, we may assume suclaexists. Similarly, we pickn, to be least
such thaﬂvl(X1X,%1X2X§2) codesG,. Proceeding in this fashion, either we reach a stage whene sp
cannot be found and the algorithm has failed to lefaror we have built an enumeration@f on which
the algorithm changes its hypothesis an infinite numbermési. In either case, learning has failed.
C ={fj : i e N} is the desired collection of SDBLs. O

8. LEARNING WITH TRANSLATION QUERIES

In the remainder of the paper, we exhibit an algorithm that learn any SDBL,f, in the limit,
provided the algorithm has access to the orablgs and [f]. We present the algorithms that witness
the learnability of SDBLs and summarize the result in Thed8s.

8.1. The characteristic sample. The characteristic sample must contaiffisient data to unambigu-
ously perform two operations: onwarding and merging. Thtmut this sectiorf is an SDBL overL
andG is the canonical SDT that generatesWe definexto be the<)ex-least member of that extends
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x. We now proceed to define the characteristic sampld faenotedCSs. We will make extensive use
of py, gx andG[ px] in this section (see Definitidn 3.5).

The first component of the characteristic sample providesi#iia required to recognize which maxi-
mal antichains of a set of translations are not valid. In otddlustrate the concept, considéfa#), the
translations along a path involving only one non-# traonitiLet X be the<jex-least member of (a#).
Every maximal antichain of (a#) contains a prefix oK and every prefix oKX is a member of at most
one element ofac(f(a#)). If X is a prefix ofX that is not in a valid antichain, then there i & f(a#)
such that for anyy < Z, either

(1) thereis &; such thaZyZ; € f(a#) andXoZ; ¢ f(a#), or

(2) there is a; such thatXpX; € f(a#) andZpX; ¢ f(a#).
In other words Xy andZy have diferent futures. Thus, for each prefix which is not an elemeatwlid
antichain, there is a translation pair that witnesses #us fThe following figure illustrates the two cases
with the possible withessing strings marked by dashed.lines

d b

Ficure 7. Two ways in which dierent futures might be witnessed. In both cases, it is
easy to verify that the futures arefiirent using translation queries.

To describe the required information in the general casegle. ., xx enumerate the minimal paths to
each of the states @&. Let X, ..., X, enumerate, . . . Xk together with all possible one-step extensions
of the pathsx, ..., Xx. Note thatn is bounded bystares[G]| + |states[G]||E|, whereE is the transition
relation forG. Fixi < n. If [x| > O, letP be the<,c-greatest antichain that is a membeMat(f(xy))
for all stringsy such thatx"y € L; if [x| = O, defineP = {1}. DefineX to be the<ex-least member of
P~1f(%). For eachXy < X that is not a member of a valid antichain®f' f (%), there is a¥ € P1f(X)
no prefix of which has the same futureRn' f (%) asXo and there is a translation if{%;) witnessing the
different futures. We denote the set of such witnessing trémslpairs, one for each prefix of not in
a valid antichain, by5;. Let Z be the<jex-least member oP. Let No(X) = {(X,ZX)} U S; and define
No(f) = Ui<n No(Xi). Observe thaly(f) is polynomial in the size oB.

Considerx € T[L]. LetVac = (Ny.ye Vac(f(y)). For eachP € Vac(f(x)) \ Vac, observe that there is
an example that witnesses the fact tRas not inVVac. Such examples demonstrate violations of either
the maximality or the validity of the given antichain. Intest case, the witness is a single element of the
graph off (a paired string and translation). Sindac(f(x)) is finite, the number of examples needed to
eliminate all incorrect maximal antichains is also finitee @&fineN; () to be the set which consists of
exactly one example for each membeklat(f(x)) \ Vac. For the sake of a unique definition, we assume
that we always choose thgex-least example — although this is not essential. We can ndinelthe
second component @S¢: Ni(f) = Ugestaresie N1(Xq)-

No andN; are required to perform onwarding correctly. In order todf@en merges, we must include
enough data to identify the equivalence classes of statesewviutures are the same. There are two ways
in which the futures may tier:
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(1) thereis a stringz, such thaixze L, butyz¢ L or

(2) for X € G[py] andY € G[py], there arezandZ such thatXZ € G[p,], but YZ ¢ G[py].
For each member ofrates[G] there is a finite collection of examples which uniquely itigrthe state.
Let N2(gx) be a canonically chosen collection of such examplesgjfot et e be a transition ang be the
<lex-least path starting at the initial state, ending with aghsition and including. DefineN;(e) to be
the set of those translations pkach of which uses afiierent output of the transitiomand is<jex-least
amongst the translations pfthat use that outputN;(e)| = |output€)|. We define the final component
of CSs as follows.

xeW
whereW consists of the minimal paths to each stat&afs well as all paths that are immediate extensions
of those paths.

Definition 8.1. For an SDBL,f, we define the characteristic samplefoCSs = No(f) U Ny () U Na(f).

Na(f) = [ Na(@) U ) N3 (),
eckg

8.2. Algorithms. In all the algorithms that follow, loops over prefixes of arggrwill proceed in order
of increasing length. Also, when a subroutine returns mplgtoutputs (e.g., returns all the elements of
an array) we assume that an appropriate loop is executecdothe returned values into the selected
variables in the main program.

8.2.1. Initializing the transducer.

Definition 8.2. Given a stringx over the input alphabet of an SO3, we say that is tree-like below
x if every path which begins aj; ends at a state which is the end state of exactly one tramsifioese
states are called tretates below xG is said to bdree-likeif it is tree-like below its unique initial state.

Consider a datasef). We define an initial transducer by creating a state for eveeynber of
T[dom(®D)]. A tree-like transducer is produced where all transsi@utput only2 except for the #-
transitions at members of do@j. All outputs in the dataset are assigned to the #-tramsitio

Algorithm 1: Forming the initial tree-like transducer (INITIAL)

Data: A finite collection of translation pairs).
Result A tree-like SDT,Gyp.
for (x, X) € O do
STATES[Gp] U {ry} — STATES[Gp]
Ec, U €] = (. 11, # X)} - Eg,
if X # Athen
for y < xdo
L STATES[Gp] U {ry} — states[Gp]
Eg, U {&y = (ry-. 1y, Y(Iyl = 1), 1)} — Eg,

return Gop

The transducer that results from a run of Algorithin 1 recegsithe translations i and no other
translations.

8.2.2. Generating an array of all valid antichaindn order to simplify the presentation of the algo-
rithms, we will not include the algorithms for several simplinctions. In particular, we will assume
that LEXORDERA) takes an arrayA, as an input and returns an array with the same contends as
but in lexicographic orderLLEXORDERA) performs the same function, but for tkgex-ordering.
LEXLEAS TandLLEXLEAS Twill be applied to sets and arrays and will return ghg- and<jex-least
member, respectively. For sets of strirgandS, we will use the operationrB~1S andP * S as built-in
arithmetic operations. Given an input stringputput stringsZ andW, and a set of translation pai®,
the functionCOMPAREX, Z, W, D) returnsrrue if, for every(x, ZR), (x, WS) € D, the queries}, WR;
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and [x, ZS]¢ return values ofrue. OtherwiseCOMPAREX, Z, W, D) returnsraLse. Applying the same
notation used above, ¥ is an input string, thex is the <jex-least member ot extendingx. Using
these functions, we define an algorithm to create a list ofaitl antichains when considering the tree
of outputs of a single input string.

Algorithm 2: List the valid antichains (VAC)

Data: A finite collection of translation pair®); x € L; X,, the current least translation prefix fior
Result An array,A, of all maximal antichains of the translationsiih © which extendX, and
are not provably invalid.
XHY 1Y > X A Y)eD} > T
LLEXLEASTT) - Z
for W< Zdo
W — AC|[0]
for Re T AR#Zdo
for V< Rdo
COMPAREX, X,W, X;V, D) — status
if status= true then
V — AC[|AC]]
break

if status= raLse then
L break

if status= true then
| AC — A[|A]

return A

One of the inputs of Algorithnil2 is the “current least
translation prefix ofx”. The current translation prefix will
converge to theex-least output string generated along the
unique path correspondingxo X, provides a canonical out- s
put prefix for testing outputs using translation queriese Th Lo ___ ey
first step of Algorithni® restrict® to the tree of translation B :
pairs whose second component extends the least translation ¢ )
prefix. Every antichain of the tree must contain a prefix of ;-

s oo
e e

~< s ey s
: .

the <jex-least member of the tree. Because of the linear or-  , 'z SO G G
dering of the valid antichains (see Theorlerd 4.9), there is at** T e i
most one valid antichain for each prefix of the least member Fiore 8. X, is the
of the tree. COMPARE is used to look for matching nodes least translation prefix
to form valid antichains. As can be seen in the figure, all andZ is the least trans-
valid antichains include prefixes of thgex-least member lation

and no two valid antichains contain the same prefix. This
provides both a bound on the number of valid antichains arwhaenient method to search for the valid
antichains.

We formalize the above intuition in the proof of the followitemma.

Lemma 8.3. LetD be a finite set consistent with an SDBL f over L with canonieaigducer G and
x € L. Suppose C5C D, xis<jex-leastamong ¥ L such that ¢ = gy, X, is the least translation prefix
of x and X is thexjex-least member of (k). Given inputsD, x and % and given access to translation
queries about f, Algorithi 2 outputs an array of antichainsugh that if V is the set of valid antichains
of translations of x which extend: @Xhen each antichain in A is extended by an antichain in V authe
antichain in V contains a unique antichain in A. Furthermofecontains the unique antichain which is
a valid antichain of all translations of y that extend #r all y € L such that y> x.
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Proof. Sincexis <jex-least such thapy is a path to the state at whiglh terminatesCS; (henceD also)
contains(x, X). Furthermore, for each prefix such thatX, < Y < X, if Y is not a member of a valid
antichain, therD contains witnessing strings so that this can be determiseduranslation queries
(this is the content oNg(x) defined in Sectiofi 8l1). Algorithil 2 performs exactly thasmslation
gueries necessary to determine tifas not a member of a valid antichain. Thus, the array of aatith
that the algorithm returns will correctly exclude all sutssef maximal antichains that contain such.a

We now show that each antichain in the output must be a subaetadid antichain. For the sake of
a contradiction, suppose an antichainArtontainsY andZ whereX, < Y < X andY is a member of
a valid antichain, but the unique membenobthat containsy does not contai@. By the definition of
the Np component of2S;, D will contain a string such that wheDOMPAREis run,Y andZ will be
flagged as not members of the same valid antichain.

Let F be the<¢sg+-maximum SDF forf. By the definition ofN,(f), for eachZ € F(x) there must be
aY such thatx, Yy € D andX,Z < Y. ConsequentlyA will contain {X,} = F(x), which is the unique
antichain which is a valid antichain of the extensionXpfn f(y) for all y € L such thaix <'y. O

8.2.3. Performing onwarding on a single nod&he next algorithm takes an array of antichains and
produces the,-greatest antichain that appears to be a valid antichaill teas of outputs on inputs
extendingx. As the data may still be incomplete, testing the validity ébher trees is done using
translation queries.

Algorithm 3: Testing an array of antichains against a dataset (TESTVPS)

Data: A string, X, over the input alphabet; an array, of antichains for the output tree of inpxta
collection of translation pairs).

Result The <,c-greatest member of the arrad, for which there is no evidence 0 that the
selected antichain is not valid for all output trees in theeife of x.

fori=|A - 1;i>0;i—-do

‘not valid’ — status

for (xy,Z) € D do

for Re Ali] do

if R< Zthen

R1Z - W

‘valid’ — status

for Q € Ali] do

if [Xy, QW] = raLsE then

‘not valid’ — status
break

if status= ‘not valid’ then
L break

if_status= ‘valid’ then
| return AJi]
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Observe that there will always be a valid antichain that eauke above algorithm to terminate; if
there is no other, then it will terminate @n}. In the following algorithm, we ussuLL to test for the
existence of an optional argument.

Algorithm 4: Onwarding a tree-like portion of a transducer (ONWARD)

Data: A string x; a transducefG, which is tree-like below a string; X,, the current least

translation prefix foi; a collection of translation pairg); a set of stringsS (optional).

Result A transducer that dliers fromG only on transitions whose end stateyjsor a state below.

S—->P

if P = nNuLL then

VAC(D, x, X;) = A
TESTVPSXA D) —> P
outpuiey) = P — outpu(ey)
for y e dom(D) A x < ydo
| Ptoutpute,) — outpufe)

The purpose of Algorithriil4 is to advance as much translatsopcssible in a tree-like portion of a
transducer.

8.2.4. Merging states.Following conventions presented in[19], we will label s&tluring the learning
process asep states if it is not possible to merge them with afyyy-lesser state. Initially, only the input
state,q,, is arep state. We proceed through the statesjg-order. When a new state is found that
cannot be merged with amyp state, then it becomes a newn state.

The next algorithm we present merges two states if there évitence that the underlying transducer
behaves dferently on extensions of the inputs of the two states. Indpisration, we assume that the
first argument is &ep state, the second argument is not, and that onwarding heedglbeen performed
for both states. In order to present the algorithm sucginett define a function similar t6OMPARE
from Sectiori8.2]2. DefinEUTUREX, y, G, D) = TruE if

(VX e G[px] Nnran®),Y € G[py] nran(®),(z Z) € D)(
(x<zAX<Z - [y(x12),Yo(X12)]; = TrRUE)

AY=<ZAY <Z - [y 12, Xo(Y12)]s = TRUE)),

whereXo = LLEXLEAS TG[py]) and Yo = LLEXLEAS {G[py]). Otherwise FUTUREX,y, G, D) =
raLse. Note that findind.LE XLEAS TG py]) does not require enumeration all element&ppy], which
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could be exponential in the length xf To determind. LEXLEAS TG[ p«]), one need only find the least
element of each set of translations along the gath
Algorithm 5: MERGE
Data: A rep statedy; a NONREp state qy; a transducefs, that is tree-like belowgy; a collection of
translation pairsp.
Result A transducer; a boolean value ofuk if the two states have been merged andge
otherwise.
FUTUREXY, G, D) — status
if status= true then
O — endey)
STATES[G] \ {0y} — sTaTES[G]
for ze dom®D) A z> ydo
fory<w=zdo
if Oxy-tw) € states[G] then
| states[G] \ {qw} — staTES[G]
Oxy-1w) — Start(e)
Ox(y-twjinpute,) — €NdEw)

| return (G, TRUE)

else
| return (G, FALSE)

If Gis a transducer generated from a dataset, it is likely@waill include non-equivalent states for
which there is no evidence in their futures to distinguistnth Ultimately, this will not be an obstacle
to learning because if the characteristic sample has appetinere will be enough data to distinguish
earlier states that will be processed first.

8.2.5. The learning algorithm.Our final algorithm combines onwarding and merging into @lsipro-
cess. We proceed through the states of the initial transdnceex-order, first onwarding and then
attempting to merge with lesser states. If a state cannotdrged with any lesser state, it is fixed and
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will not subsequently be changed. The fact that such sta¢efixad is recorded by their membership in
a Sefrep.
Algorithm 6: Learning an SDT
Data: A collection of translation pairs).
Result A transducer.
INITIAL(D) — Go
LLEXORDERstates[Gg]) — S
0 — rep[0]
0—i
for gx € Sdo
if gx € RED V Ox- ¢ RED then
L continue
else
ONWARDX, G, LLEXLEAS TG[p«]). D) —» G
for gy € rep do
\; MERGHay, 0x, G, D) — (G, status

if status= TrUE then
L break

if status= raLse then
L X — RED[i]

i+ +

Lemma 8.4. Let f be an SDBL with canonical SDT G and Bt be a finite set consistent with f
which contains C$. At every stage during the execution of Algorifiim 6 with inpuand given access
to translation queries about f, if Gs the SDT constructed so far and {® a path through Gthat
exclusively involvesep states, then (o] = G'[px]. Furthermore, if x and y are strings such that such
that their unique paths,pand g, terminate at dfferentrep states of G then the states,cand g, of G
are distinct.

Proof. Let Gg be the SDT that results from Algorithid 1 and etbe the<gsq-maximum SDF forf.
We prove the lemma by induction. Initially, the onlyp state is the initial state and the lemma holds
trivially. Now suppose that the lemma holds {8t at the beginning of an iteration of the main for-loop
in Algorithm[@. LetG” be the result of executing the next iteration of the for-loop

If no newrep states have been added, then a previouslyrsorstate q;, had Algorithni4 applied to
it and was merged with gep state,qo. Let x be the<ex-least string such that the paph in G’ ends at
Ox = qi- Sinceq; was not aep state, G’ must have been tree-like belonand because of the induction
hypothesis, the correct least translation prefixxavill have been used by Algorithfd 4. Furthermore,
since the unique state & with a transition tog; is arep state, by the definition dfiy(f), D contains
examples to guarantee that Algoritfiin 2 correctly identifigsd antichains. Thus, Algorithi 4 must
have identified the unique,c-greatest antichain which is a valid antichainfdf) for all y € L such
thaty > x. By the induction hypothesi€S; € D must contain examples that uniquely identify the
future ofgp. Since precisely those examples fr@will be tested forg; using translation queries when
Algorithm[5 is run, the fact thatjp andg; were merged implies tha = ¢;. Consequently, all paths
that only visitsrep states ofs” satisfy the lemma. Since no newnp states were introduced, the second
conclusion in the statement of the lemma follows autombyié@m the induction hypothesis.

Now suppose that a newep state,q, is selected. Since the state was marked aspastate, no
<lex-lesser state is equivalent, meaning thatig <j.x-least such thap, in G’ ends aty;, thenx defines
the <jex-least path to some state Gf ConsequentlyCS; C D contains examples to guarantee that
Algorithm[4 identifies the correct antichaiR(x). Sinceg; was not merged with any existingp state,
there must be examplesidthat distinguishy; from each of theep states. Thus, for each sukip state,
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g, we know thaty; # g. Since the for-loop in Algorithial6 proceeds through theestain <ex-order, this
means that ik is <jex-least such that the pathy in G’ ends aty;, thenx is <jex-least such that the state
Ox in G has the same future ag. We may conclude, therefore, that¢ < D contains examples that
uniquely identify the future ofj;. Finally, to prove thaG”[p,] = G[p,] for any z such thatp, that only
visits rep states ofG” we need only consider paths that endjagind do not visig; at any other point.
There is only one state}, in G” that has a transition tq; (becausé&” is tree-like belowq;) and that
state is aep state in bothG’ andG”. Thus,G[p,-] = G'[p] = G”[p-]- The transition fromg to q;
with inputz(|Zl — 1) has outpuE(x), thusG”[p,] = G”[p,] * F(X) = G[p4]. ]

8.3. Learnability of SDBLs.
Theorem 8.5. The class of SDBLs is polynomially identifiable in the limittwranslation queries.

Proof. Let f be an SDBL with canonical SDE and letD be a collection of translation pairs consistent
with f and containingCS;. We apply Algorithn[6 to learrf from D. To prove that Algorithnil6
identifiesf in the limit in polynomial time, we must verify three claimBirst, we must show that the
size of the chosen characteristic sample is polynomialérsibe of the canonical transducer of the target.
Second, we must show that the algorithm terminates withinraber of steps that is polynomial in the
size of the canonical transducer of the target and in thedfitee given data. Third, we must show the
SDT produced by Algorithml6 generatés

The first claim is easy. As noted in the section in whzB; was definedNy(f), N1(f) andNx(f) are
all polynomial in the size o6.

An inspection of the algorithms shows that they convergenlgmomial time and that only a polyno-
mial number of translation queries are made. We concluddhleaecond claim is true.

Finally, we prove the third claim. Algorithil 6 terminatestlé point when every state in the SDT
generated by Algorithial1 has been either marked ms atate or merged with another state. Suppose
thatG’ is the output of Algorithni 6. When the algorithm terminateery state is aep state. Conse-
quntly, for anyx for which there is a patipy in G’, by Lemmd8M5[py] = G’[px]. Thus, we need only
prove that for allx, if x defines a path througB thenx defines a path throug®’. By the definition
of Np(f), every transition irG is used at least once by translation<Ci§;. Fix x which defines a path
throughG and letxa be an extension by the single chara@elf xa also defines a path throu@) then
G has a transitioe such thatstart(e) is the final state of the path defined kandinput(e) = a. LetGq
be the SDT generated by AlgoritHth 1 and {etaz, ZoY Z)) be a translation pair i€S; such that the
path througlG defined byzaz usese when translating the characirLet g,, andq,,, be the states of
Go corresponding to the initial segmertsandzpa of zpaz. Let xg be the<ex-least string to the final
state of the path throudh defined byx. Letqy, be state of5o corresponding tag. By the definition of
N2(f), CSt contains examples that uniquely identify the futurggf WhenFUTUREXxo, 208, G”, D)
is run at some point during the execution of Algorithin 6 (wh@t’ is the current form of transducer
under construction), the two strings will be recognized agrgy the same futures and will be merged.
Thus, if we assume that the paths thro@fhdefined byx andx, are the same, thexa defines a path
throughG’. By induction on the length af, we have shown the every string that defines a path through
G also defines a path throu@i.

]

9. Rerarep Resurrs

We establish the relationship between SDTs and two othssetaof transducers that are not entirely
deterministic: p-subsequential transducers and tramsdubat recognizBs ¢, relations. We also look
at some properties of SDBLs; specifically, we show that SDBtesnot closed under composition or
reversal.
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9.1. Other Forms of Non-Determinism. The following definition is adapted frorn|[2].

Definition 9.1. A transducer is said to bp-subsequentidior somep € N if for every transitione in
the transition relationputpufe)| = 1 unlessnput(e) = #, in which casdoutpufe)| < p. We say the a
bi-language igp-subsequential if it is generated bypssubsequential transducer.

Definition 9.2. [33] A binary relation,R, is finitary if for every x € dom(R) the setly : (x,y) € R} is
finite. If there is a numbemn € N such that{y : (x,y) € R}| < nfor all x, then the relation is said to be
bounded Such a relation ifinite-stateif there is a transducer that generaesWe say that a relation

is Rsyp if it is finitary, finite-state and bounded. We say that a td®r isRs ¢y, if the bi-language it
generates iR tp.

Proposition 9.3. Every p-subsequential bi-language ig;R
Proof. A p-subsequential bi-language is finitary and bounded as évpuy string has at mogt distinct

translations. It is also clearly finite-state as it is getestdy ap-subsequential transducer. Thus, every
p-subsequential bi-language is aRgy,. O

Proposition 9.4. There is a p-subsequential bi-language which is not an SDBL.

Proof. If f is an SDBL,x € dom(f) andX,Y € f(x), then eitherX = Y or X andY are incomparable.
Thus,f : {a} — {{A AA}} such thatf (a) = {A, AA} is not an SDBL. It is, howevep-subsequential. o

Proposition 9.5. There is an SDBL which is neither p-subsequential ngpR

Proof. Let G be a transducer with a single state, which is a terminal, sdat&one transition which starts
and ends at the unique state, has irand outpufA, B}. G is shown in Figur€lo.

aAB

Ficure 9. An SDT which generates an SDBL which is neitRef, nor p-subsequential.

The set of translation pairs recognized®ys {(a", X) : n e N A X € {A, B}"}, which is not a bounded
relation asa" is in the domain for everym and has 2 translations. Since it is not bounded, it is neither
R¢tp nor p-subsequential. O

Proposition 9.6. There is an Ry bi-language which is neither an SDBL nor p-subsequential.

Proof. Let G be the transducer in the following figure.
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Ficure 10. AnRgyy, bi-language which is not an SDBL.

The set of translation pairs recognized®ys S = {(@"?, B™?) : n € N} U {(a™2, AB"A) : n € N}.
Supposeé’ is an SDT that recognizés For everyn, the input stringa™? has exactly two translations:
B™2 andAB"A. SinceG’ is has finitely many states, the first transition on the pathihhG’ defined by
a™? with an output other thapm} must havgAX, BY} as a subset for some stringsandY. Furthermore,
the last transition on the path with output other th&must havgZA W B} as a subset for some strings
Z andW. This implies that™? should have at least four distinct translations, which ismtr@diction.

Similarly, suppos& is recognized by @-subsequential transdud8p. Since the two translations of
a™2 differ at their first character, it must be that for every pathughG, all translation occurs at the
final transition (since only terminal transitions may haverethan one output). Given this observation,
Gp must have infinitely many states — one for each steg. This is a contradiction. O

9.2. Composition and Reversal of SDBLs.

Definition 9.7. Let f andg be two bi-languages. We define themposition of f and go be the bi-
languagen such that dont() = dom(f) and for everyx € dom(f), h(x) = Uxef(xy 9(X). We define the
reversal of fto be the bi-languagle with domainS = UxedOIT(f) f(x) such thak(X) = {x € dom(f) :
X e f(X)}.

Proposition 9.8. There are SDBLs whose composition is hot an SDBL.

Proof. Let Gt andGq be the following two SDTs and ldt andg be the SDBLs generated by them.

aAB B:0 A:01

Ficure 11. Two SDTs whose composition is is not an SDBL. On the (&ft,on the
right, Gg.

Observe that ifi is the composition of andg, thenh(a) = {0,01}. Since 0 is a prefix of 01h cannot
be an SDBL. ]
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Proposition 9.9. There is an SDBL whose reversal is not an SDBL.
Proof. Let G be the following SDT and let be the SDBL generated Ify.

Ficure 12. An SDT which generates an SDBL whose reversal is not anLSDB

For eachn, the reversal of has two translations o&™?, ba'b andca’c. From this observation we
see that the reversal dfcannot be an SDBL for exactly the same reason that the biskgeggenerated
by the transducer in FigukeI10 cannot be an SDBL. O

10. CoNcLUSION

We have presented a novel algorithm that learns a powedssaif transducers with the help of rea-
sonable queries. A probabilistic version of these transtuwas defined iri[1]. We are unaware of
any results involving this version. As both probabilitiegldranslation queries can serve the purpose of
answering questions about translation pairs not preseheigiven data, it seems possible that proba-
bilistic transducers could be learned without translatjaeries, with statistical analysis taking the role
of translation queries.

The learnability of SDBLSs represents a significant advanaair ability to identify underlying struc-
ture in the challenging situation where the structure is-deterministic. While it does not strictly
expand existing models (as can be seen from Propo§ifibni®dbes contribute an enormous class of
new bi-languages which are beyond the scope of deterntiatisducers.
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