
ar
X

iv
:1

40
5.

24
76

v4
 [

cs
.L

G
]

10
 O

ct
 2

01
6

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER

ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Abstract. We prove the existence of a canonical form for semi-deterministic transducers with sets of pair-
wise incomparable output strings. Based on this, we developan algorithm which learns semi-deterministic
transducers given access to translation queries. We also prove that there is no learning algorithm for semi-
deterministic transducers that uses only domain knowledge.

1. Introduction

Transducers, introduced by [28], are a type of abstract machine which defines a relation between two
formal languages. As such, they are interpreted as modelingtranslation in any context where formal
languages are applicable. We provide no background on formal languages in this paper; an overview of
the subject can be found in [9] and [32]. Alternatively, transducers can be viewed as a generalization of
finite state machines. This view was introduced by Mohri, whouses transducers in the context of natural
language processing [24, 25] and [26].

A fundamental task when studying the theory of transducers is to look for classes of transducers that
can be learned given access to some form of data. If a class of transducers,C , is found to be learnable,
then a predictive model can be produced in any application where a translation from the classC is in use.
The significance of transducers, specifically expanding therange of the learnable classes, is clear from
the scope of applications of transducers. Among many others, some well known applications are in the
fields of morphology and phonology [31], machine translation [3, 14, 15], web wrappers [11], speech
[24] and pattern recognition [5]. In each of these cases, different classes of transducers are examined
with characteristics suitable to the application. Distinguishing characteristics of different classes include
determinism properties, the use of probabilites or weights, as well as details of the types of transitions
that are permitted.

1.1. Transducer learning. An important step in the theory of transducers was the development of the
algorithm Ostia. Introduced in [29], Ostia was designed for language comprehension tasks [38]. A
number of elaborations on the original algorithm have sincearisen, many of them aimed at trying to
circumvent the restriction to total functions that limitedOstia. Typically, these attempts involved adding
some new source of information. For example, Ostia-N uses negative (input) examples and Ostia-D
supposes the algorithm has some knowledge of the domain of the function [30]. Similar ideas were
explored later by [22] and [17]. An application of Ostia for active learning is presented in [36]. Using
dictionaries and word alignments has been tested by [37]. A demonstrated practical success of Ostia
came in 2006. The Tenjinno competition [34] was won by [16] using an Ostia inspired algorithm.

1.2. Towards nondeterminism with transducers. Non-deterministic transducers pose numerous com-
plex questions – even parsing becomes a difficult problem [12, 13]. Interest in non-deterministic models
remains, however, as the limitations of subsequential transducers make them unacceptable for most ap-
plications. The first lifting of these constraints was proposed by [2]. They propose a model in which the
final states may have multiple outputs. In his PhD thesis, Akram introduced a notion of semi-determinism
[1] that strikes a balance between complete non-determinism and the very restrictive subsequential class.

Key words and phrases.Grammatical Inference, Semi-Deterministic Transducers.

1

http://arxiv.org/abs/1405.2476v4

2 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

He provided an example witnessing that semi-deterministictransducers are a proper generalization of
deterministic transducers, but did not pursue the topic further, focusing instead on probabilistic subse-
quential transducers. We examine an equivalent formulation of Akram’s semi-determinism based on
methods of mathematical logic. In particular, by viewing the definition from a higher level of the ranked
universe, we convert what would be a general relation into a well-defined function. [23] provides an
overview of a number of important topics in set theory including the ranked and definable universes.
Some more recent developments in set theory is [21].

A significant obstacle in learning non-deterministic transducers is the fact that an absence of informa-
tion cannot be interpreted. One approach to overcoming thisproblem is to use probabilities. We eschew
the probabilistic approach in favor of a collection of methods that have their antecedents in Beros’s earlier
work distinguishing learning models [6] and determining the arithmetic complexity of learning models
[7].

An earlier version of this work was presented at the International Conference on Grammatical In-
ference [8]. In this version, we provide more of the algorithms involved in learning semi-deterministic
transducers and prove that the algorithms converge. We alsoestablish the relationship between semi-
deterministic transducers and two other natural extensions of deterministic transducers and the bi-languages
they generate, specificallyp-subsequential transducers and finitary, finite-state, andbounded relations
(definitions of these terms are provided in Section 9.1). Finally, we show that semi-deterministic trans-
ducers and the associated bi-languages fail two closure properties: closure under composition and closure
under bi-language reversal.

2. Notation

We make use of following common notation in the course of thispaper. Throughout, the symbolsx, y
andz denote strings anda andb will denote elements of a given alphabet. We shall use the standard
notationλ for the empty string.

• The concatenation of two strings,x andy, is denoted byxy. We writex ≺ y if there is a string
z, λ such thaty = xz. We writex � y if x ≺ y or x = y. This order is called the prefix order.
• For a set of strings,S, T[S] = {x : (∃y ∈ S)

(

x � y
)

} is the prefix closure ofS.
• A tree is a set of strings,S, such thatT[S] = S. S′ is a subtree ofS if both S andS′ are trees

andS′ is contained inS. A strict subtree is a subtree that is not equal to the containing tree.
• P(X) = {Y : Y ⊆ X} andP∗(X) = {Y : Y ⊆ X ∧ |Y| < ∞}.
• We will use elements ofN both as numbers and as sets. In particular, we use the following

inductive definition: 0= ∅ and, given 0, . . . , n, we definen+ 1 = {0, . . . , n}.
• Following the notation of set theory, the stringx = a0 . . .an is a function with domainn + 1.

Thus,x↾k = a0 . . .ak−1 for k ≤ n+ 1. |x| is the length ofx andx− is the truncationx↾(|x| − 1).
Note that the last element ofx is x(|x| − 1) and the last element ofx− is x(|x| − 2).
• Again, drawing on set theory terminology, we call two functions, f andg, compatible if (∀x ∈

dom(f) ∩ dom(g))(f (x) = g(x)).
• We write x ‖ y if x = y, x ≺ y or x ≻ y and sayx andy are comparable. Otherwise, we write

x ⊥ y and say thatx andy are incomparable.
• By <lex and<llex we denote the lexicographic and length-lexicographic orders, respectively.
• For an alphabetΣ, Σ∗ is the set of all finite strings overΣ. A tree overΣ is a tree whose members

are members ofΣ∗, where the ordering of the tree is consistent with the prefix order onΣ∗ and
the tree is prefix closed.
• We reserve a distinguished character, #, which we exclude from all alphabets under considera-

tion and we will use # to indicate the end of a word. We will write x# when we append the #
character tox.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 3

3. Bi-Languages and Transducers

Bi-languages are the fundamental objects of study. They capture the semantic correspondence be-
tween two languages. In principle, this correspondence does not specify any ordering of the two lan-
guages, but translation is always done from one languageto another language. As such, we refer to the
input and the output languages of a bi-language. For notational simplicity, in everything that followsΣ
is the alphabet for input languages andΩ is the alphabet for output languages. Using this notation, the
input language is a subset ofΣ∗ and the output language is a subset ofΩ∗. We now present the standard
definition of a bi-language.

Definition 3.1. Consider two languages,L ⊆ Σ∗ andK ⊆ Ω∗. A bi-language from L to Kis a subset of
L × K with domainL.

For our purposes, we wish to indicate the direction of translation and to aggregate all translations of a
single string. To this end, in the remainder of this paper, wewill use the following equivalent definition
of a bi-language.

Definition 3.2. Consider two languages,L ⊆ Σ∗ andK ⊆ Ω∗. A bi-language from L to Kis a function
f : L → P(K). L is said to be theinput languageandK the output languageof f . When defined
without reference to a specific output language, a bi-language is simply a functionf : L→P(Ω∗). If f
andg are two bi-languages, thenf is asub bi-languageof g if dom(f) ⊆ dom(g) and for allx ∈ dom(f),
f (x) ⊆ g(x). A finite subsetD of L × K is consistent with fif for every 〈x,X〉 ∈ D, X ∈ f (x).

Note that for a bi-languagef from L to K, we do not require that
⋃

x∈L f (x) = K. We are interested in
languages whose generating syntax is some form of transducer.

Definition 3.3. A transducerG is a tuple〈states[G], I ,Σ,Ω,E〉.

(1) states[G] is a finite set of states.I ⊆ states[G] is the set ofinitial states.
(2) Σ andΩ are theinput alphabetandoutput alphabet, respectively – finite sets of characters which

do not contain the reserved symbol #.
(3) E ⊆ states[G] × states[G] × (Σ∗ ∪ {#}) ×P∗(Ω∗) is a finite relation called thetransition rela-

tion. An elemente ∈ E is called atransitionwith e = 〈start(e), end(e), input(e), output(e)〉. If
input(e) = #, thene is called a#-transition.

A transducer is said togenerateor inducethe bi-language which consists of all pairs of strings〈x,Y〉 ∈
Σ∗ ×Ω∗ such that:

(1) (∃x0, . . . , xn ∈ Σ
∗)(x = x0 . . . xn),

(2) (∃e0, . . . , en+1 ∈ E)(∃q ∈ I)
(

(∀i ∈ {1, . . . , n})
(

xi = input(ei)∧ end(ei) = start(ei+1)
)

∧ start(e0) =

q∧ input(en+1) = #
)

and
(3) there areYi ∈ output(ei) for i ≤ n+ 1 such thatY = Y0Y1 · · ·Yn+1.

This paper addressessemi-deterministic bi-languageswhich are bi-languages generated bysemi-
deterministic transducers. These were defined in [1]. We use an equivalent formulation.

Definition 3.4. A semi-deterministic transducer (SDT)is a transducer with a unique initial state such
that

(1) input(e) ∈ Σ ∪ {#} for every transitione,
(2) given a state,q, anda ∈ Σ, there is at most one transition,e, with start(e) = q andinput(e) = a

and
(3) given a transition,e, output(e) is a finite set of pairwise incomparable strings inΩ∗ (i.e.,output(e) ∈

P∗(Ω∗) ∧ (∀X,Y ∈ output(e))
(

X ⊥ Y
)

).

A semi-deterministic bi-language(SDBL) is a bi-language that can be generated by an SDT.

4 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Two useful properties of SDTs follow from the definition. First, if e ∈ E andλ ∈ output(e), then
output(e) = {λ}. Second, although there may be multiple translations of a single string, every input
string follows aunique paththrough an SDT. The precise meaning of this is made clear in the next
definition. We must also note that, while SDBLs can be infinite, the image of any member or finite
subset ofL is finite. Thus, an SDBL is a functionf : L→P∗(Ω∗).

Definition 3.5. Let G be an SDT with input languageL. A path through Gis a stringe0 . . .ek ∈ E∗,
whereE is the set of transitions, such thatstart(ei+1) = end(ei) for i < k. G[p] is the collection of all
outputs ofG that can result from following pathp. px is the unique path throughG, e0 . . .ek ∈ E∗,
defined byx ∈ Σ∗ such thatstart(e0) is the unique initial state ofG, if such a path exists. We denote the
final state of the pathpx by qx.

4. Ordering maximal antichains

When parsing sets of strings, we will often use the followingoperations.

Definition 4.1. Let S andP be two sets of strings.

• P ∗ S = {xy : x ∈ P∧ y ∈ S}.
• P−1S = {y : (∃x ∈ P)

(

xy ∈ S
)

}.

For notational simplicity, we definex−1S = {x}−1S, P−1x = P−1{x}, x ∗ S = {x} ∗ S andP ∗ x = P ∗ {x}
for a stringx.

Proposition 4.2. ∗ is associative, but is not commutative.

Proof. Associativity follows from the associativity of concatenation. To see that∗ is not commutative,
considerA = {a} andB = {a, b}. A ∗ B = {aa, ab} andB ∗ A = {aa, ba}. �

The following definitions and results pertain to sets of strings and trees over finite alphabets.

Definition 4.3. Given a set of strings,S, we callP ⊆ T[S] a maximal antichain of Sif (∀x, y ∈ P)
(

x ⊥
y∨ x = y

)

and (∀x ∈ S)(∃y ∈ P)(y ‖ x). P is avalid antichain of Sif P is a maximal antichain ofS and
(∀x, y ∈ P)

(

x−1T[S] = y−1T[S]
)

. We define,Vac(S) = {P : P is a valid antichain ofS}.

Example 4.4. Consider the following set of strings over the alphabet{a, b}:

S = {a5
, a4b, a2ba, a2b2

, ba4
, ba3b, baba, bab2

, b2a3
, b2a2b, b3a, b4}.

Graphically, we can representS as a tree where branching left indicates anaand branching right indicates
a b. In the picture below to the right, we highlight the four valid antichains ofS: P0 = {λ}, P1 =

{a2, ba, b2}, P2 = {a4, a2b, ba3, bab, b2a2, b3} andP3 = S. Note thatS is only a valid antichain of itself
because it contains no comparable strings. The members of the four valid antichains are connected via
dotted lines in the right picture (P0 has only one member and therefore includes no dotted lines).For
reference a maximal antichain that is not valid is included in the picture on the left and its members are
joined with a dotted line.

��	�

��
����������������

������������������������
��
•��������•����������������•��������•����������������•��������•����������������

•��������•��������•��������•��������•��������•��������

❖❖❖
❖❖❖

❖❖❖
❖

♦♦♦
♦♦♦

♦♦♦
♦

❄❄
❄❄

❄❄
❄

⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

��	�

�� P0

����������������
�������� P1

����������������
�������� P2

��
•�������� P3•����������������•��������•����������������•��������•����������������

•��������•��������•��������•��������•��������•��������

❖❖❖
❖❖❖

❖❖❖
❖

♦♦♦
♦♦♦

♦♦♦
♦

❄❄
❄❄

❄❄
❄

⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

Figure 1. On the left, a maximal antichain that is not valid; on the right, all the valid antichains.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 5

In the next figure, we focus on the valid antichainP1.

��	�

��
����������������

�������� P1
b2

��������
ba

��������
a2

��
•��������•����������������•��������•����������������•��������•����������������

•��������•��������•��������•��������•��������•��������

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✴✴
✴✴
✴

✎✎
✎✎
✎

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

✬✬
✬✬
✬

✗✗
✗✗
✗

✗✗
✗✗
✗

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

★★
★★
★

✛✛
✛✛
✛

❴ ❴ ❴ ❴ ❴❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Figure 2. The identical subtrees below the elements of the valid antichainP1.

Observe that the portions of the tree below each ofa2, ba andb2 are identical; the terminal nodes of
all three sub-trees are{a3, a2b, ab, b2}. It is this equivalence of suffixes that makesP1 a valid antichain.

The concept of equivalence we have developed closely parallels that of Nerode equivalence [27] in
which two strings in a language are equivalent if there is no extension in the language that distinguishes
the two strings.

It is interesting to note that the valid antichains in the above example have a natural linear ordering.
As we shall see in Theorem 4.9, this is not an artifact of the particular example, but is true of any finite
setS.

Proposition 4.5. Suppose that P is a valid antichain of a set of strings S and Q isa valid antichain of
P, then Q is a valid antichain of S .

Proof. Let P be a valid antichain of a set of stringsS and letQ be a valid antichain ofP. Every member
of T[S] is either a prefix or an extension of a member ofP. SinceP consists of incomparable strings,
each member ofP has a member ofQ as a prefix. Thus,Q is a maximal antichain ofS. To see thatQ
is a valid antichain, observe that ifx, y ∈ Q, thenx−1T[P] = y−1T[P]. Sincez−1T[S] = w−1T[S] for all
z,w ∈ P, x−1T[S] = y−1T[S], thusQ is a valid antichain. �

Definition 4.6. For P andQ, sets of strings over some common alphabet, we say thatP <ac Q (P is
“antichain less than”Q) if either

• |P| < |Q|, or
• |P| = |Q| and, for allx ∈ P andy ∈ Q, if x ‖ y, thenx ≺ y.

We will use valid antichains to parse a set of strings as one would parse a single string into a prefix
and suffix. The validity of an antichain ensures that the corresponding suffix set is well-defined.

Proposition 4.7. Let S be a finite set of incomparable strings. If P is a valid antichain of S , then
P ∗ (P−1S) = S .

Proof. Observe that, ifP is a valid antichain ofS, thenT[P−1S] = x−1T[S] for all x ∈ P. �

The antichain ordering (<ac) has particularly nice properties when applied toVac(S), whereS is a
finite set of strings.

Proposition 4.8. If P and Q are maximal antichains of the same finite set of strings, then there is a
relation R⊆ P× Q such that

• dom(R) = P,
• ran(R) = Q,
• xRy↔ x ‖ y.

6 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Furthermore, if|P| = |Q| and P‖ac Q, then R is a well-defined and bijective function.

Proof. DefineR= {〈x, y〉 : x ∈ P∧ y ∈ Q∧ x ‖ y}. SinceP andQ are maximal antichains, for eachx ∈ P
there isy ∈ Q such thatx ‖ y hence, dom(R) ⊇ P. Similarly, for eachy ∈ Q there is anx ∈ P such that
x ‖ y thus, ran(R) ⊇ Q. By the definition ofR, dom(R) ⊆ P, ran(R) ⊆ Q andxRy↔ x ‖ y. If |P| = |Q|
andP ‖ac Q, then for eachx ∈ P there is a unique comparabley ∈ Q and vice versa. Consequently,R is
well-defined and bijective in this case. �

Theorem 4.9. If S is a finite set of strings, then
(

Vac(S), <ac

)

is a finite linear order.

Proof. Consider a finite set of strings,S, and letT = T[S]. We begin by fixingP,Q ∈ Vac(S). We may
assume that|P| = |Q|; if |P| , |Q|, thenP <ac Q or Q <ac P. We pick an elementx ∈ P and observe that,
by Proposition 4.8, there is ay ∈ Q such thatx ‖ y.

Suppose thatx = y and letx′ be any other member ofP. By Proposition 4.8, there is ay′ ∈ Q such that
x′ ‖ y′. SinceP andQ are valid antichains andx = y, x′−1T = x−1T = y−1T = y′−1T. Given thatx′ ‖ y′,
T is finite andx′−1T = y′−1T we conclude thatx′ = y′. Now assumex ≺ y. In the casey ≺ x simply
exchange the roles ofx andy. As above, we pickx′ ∈ P and any comparable elementy′ ∈ Q. Clearly
y−1T is a strict subtree ofx−1T and hence,y′−1T is a strict subtree ofx′−1T. We conclude thatx′ ≺ y′.

We have shown that any two members ofVac(S) are comparable. The remaining order properties
follow immediately from the definitions. �

While the proof of Theorem 4.9 is quite simple, we highlight it as a theorem because it is the critical
result for the applications of valid antichains that follow. Note that<ac may not be a linear order on an
arbitrary collection of maximal antichains.

Corollary 4.10. Let S0,S1,S2, . . . be a sequence of finite sets.
⋂

i∈N Vac(Si) is linearly ordered under
<ac.

Proof. Any subset of a linear order is a linear order. Since
⋂

i∈N Vac(Si) ⊆ Vac(S0), the claim follows.
�

Definition 4.11. Given a set of strings,S, a finite sequence of sets of strings,P0, . . . ,Pn, is afactorization
of S if S = P0 ∗ · · · ∗ Pn andPi , {λ} for i ≤ n. Such a factorization is said to bemaximalif, for each
i ∈ N, Vac(Pi) = {{λ},Pi}.

Note that havingVac(Pi) = {{λ},Pi} for each factor,Pi , in a factorization is equivalent to havingPi+1

be the<ac-least non-trivial valid antichain ofP−1
i · · ·P

−1
0 S.

Example 4.12. We consider the following set of strings:

S = {a5
, a4b, a3ba2

, a3bab, a3b2a, a3b3
, aba2

, abab, ab2a2
, ab2ab, ab3a, ab4

, ba4
,

ba3b, ba2ba2
, ba2bab, ba2b2a, ba2b3

, b2a2
, b2ab, b3a2

, b3ab, b4a2
, b4ab, b5a, b6}.

In the figure below, we display the tree,T[S], as well as the<ac-least non-trivial valid antichain,P0 =

{a, b}.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 7

��������
�������� P0

��������
��������������������������������

��
����������������•��������•��•��������•������������������������
•��������•��������•��������•������������������������•��������•��������•��������•��������•��������•������������������������•��������•��������

•��������•��������•��������•��������•��������•��������•��������•��������

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Figure 3. A set of strings and its<ac-least valid antichain.

The corresponding set of suffixes isP−1
0 S = {a4, a3b, a2ba2, a2bab, a2b2a, a2b3, ba2, bab, b2a2, b2ab,

b3a, b4}. Iterating, we find the next factor isP1 = {a2, b} and its set of suffixes is (P0 ∗ P1)−1S =
{a2, ab, ba2, bab, b2a, b3}.

��������
�������� P1

��������
������������������������

����������������•��������•������������������������
•��������•��������•��������•������������������������•��������•��������

•��������•��������•��������•��������

❖❖❖
❖❖❖

❖❖❖
❖

♦♦♦
♦♦♦

♦♦♦
♦

⑧⑧
⑧⑧
⑧⑧
⑧

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ��������
����������������
�������� P2

��������•��������•��������
•��������•��������•��������•��������

✴✴
✴✴
✴

✎✎
✎✎
✎

✬✬
✬✬
✬

✗✗
✗✗
✗✼

✼
✼

Figure 4. P1 is the<ac-least non-trivial valid antichain ofP−1
0 S andP2 is the<ac-least

non-trivial valid antichain of (P0 ∗ P1)−1S.

We next pickP2 = {a, ba, b2}. Once we factor outP2, all that remains is{a, b}. The only antichains of
{a, b} are{λ} and{a, b}, both of which are valid antichains. We pick the final factor to beP3 = {a, b} and
conclude thatP0 ∗ P1 ∗ P2 ∗ P3 is a maximal factorization ofS.

Corollary 4.13. Up to possible reordering of commutative terms, every finiteset of incomparable strings
has a unique maximal factorization.

Proof. Let S be a finite set of incomparable strings. We will apply the iterative process illustrated in
Example 4.12 toS. DefineP0 to be the<ac-least non-trivial valid antichain ofS. If P0 = S, then the pro-
cess is complete. By Theorem 4.9, the choice ofP0 is unique. Suppose we have definedP0,P1, . . . ,Pn.
Let Sn = P−1

n · · ·P
−1
0 S. To be explicit,Sn = P−1

n (P−1
n−1(· · · (P−1

0 S))). DefinePn+1 to be the<ac-least non-
trivial valid antichain ofSn. As before, the choice is unique. IfPn+1 = Sn, then the process is complete.
Otherwise, we proceed to the next iteration.

SinceVac(S) is finite, the process must terminate. The uniqueness of thefactorization follows from
the uniqueness of the choices made at each stage of the process. �

8 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Observe that the interative process described above specifies a unique order for the terms of the unique
maximal factorization. When the terms are listed in the order specified by this process, we will say that
the factorization is incanonical order.

5. Semi-Deterministic Bi-Languages

In this section, we prove the existence of a canonical SDT forevery SDBL. Determining the canonical
SDT for an SDBL is done in two phases. First, a “maximal” function on prefixes of the input language
is found. Finding such a maximal function is analogous to theonwarding performed in algorithms such
as OSTIA and can be loosely described as the process of movingdecisions earlier in the translation
process. Second, subsets of the domain on which the functionhas identical outputs are conflated in a
largely standard merging process. Merging produces a finite-order equivalence relation onT[L]. Using
this equivalence relation, we can define the canonical SDT.

5.1. Semi-Deterministic Functions.

Definition 5.1. Let f be an SDBL overL. F : T[L] →P∗(Ω∗) is asemi-deterministic function (SDF) of
f if, for x ∈ L, f (x) = F(x↾1)∗F(x↾2)∗· · ·∗F(x)∗F(x#). We defineΠF(x) = F(x↾1)∗F(x↾2)∗· · ·∗F(x).
If F andF′ are SDFs off , we say thatF ≤sd f F′ if ΠF(x) is a valid antichain ofΠF′(x) for all x. The
SDF inducedby f is the SDF,F, such thatF(x) = {λ} for all x ∈ T[L] andF(x#) = f (x) for all x ∈ L.

Example 5.2. Suppose thatA, B,C ⊆ Ω∗ are finite, non-empty and not equal to{λ}. Let Σ = {a} be the
input alphabet. Define an SDBL,f , overL = {a2} by f (a2) = A ∗ B ∗ C. We define two incomparable
SDFs of f as follows. The first SDF:F(λ) = {λ}, F(a) = A∗ B, F(a2) = {λ} andF(a2#) = C. The second
SDF:F′(λ) = {λ}, F′(a) = A, F′(a2) = B ∗C andF′(a2#) = {λ}. SinceΠF(a) is not a valid antichain of
ΠF′(a), F �sd f F′. Likewise, sinceΠF′(a2) is not a valid antichain ofΠF(a2), F′ �sd f F.

Example 5.2 demonstrates that≤sd f is not a linear ordering of the SDFs of a fixed SDBL. Nonetheless,
there is a≤sd f-maximum SDF off .

Theorem 5.3. If f is an SDBL over L, then there is a≤sd f-maximum SDF of f .

Proof. For x ∈ T[L], let S be the collection of all members ofL that extendx and letx0 be the<llex-least
member ofS. By Corollary 4.13, for everyy ∈ S there is a unique maximal factorization off (y). Let
P0 ∗ · · · ∗ Pn denote the unique maximal factorization off (x0). Let P0 ∗ · · · ∗ Pi be the longest common
initial segment of all factorizations of members of{ f (x) : x ∈ S} when the terms of the factorizations are
listed in canonical order. We definePx to be the product of this longest common factorization.

We defineFm(λ) = {λ} and defineFm inductively on the members ofT[L] in <llex-order as fol-
lows. Suppose we are consideringx ∈ T[L] and Fm has already been defined on all<llex-lesser mem-
bers ofT[L]. We defineFm(x) = (ΠFm(x−))−1Px. If y ∈ L and Fm(y) is defined, we setFm(y#) =
(ΠFm(y))−1 f (y).

If x ≺ y, thenΠFm(x) is a valid antichain ofFm(y) and (Fm(y))−1 f (y) is well-defined. Consequently,
Fm is a well defined function with domainT[L]. If F is any SDF off andx is an arbitrary member of
T[L], thenΠF(x),ΠFm(x) ∈ Vac(f (x0)), wherex0 is the<llex-least extension ofx in L. By Theorem 4.9,
for anyx ∈ T[L], ΠF(x) andΠFm(x) are<ac-comparable. Furthermore,ΠF(x),ΠFm(x) ∈ Vac(f (y)) for
all y ≻ x. Given the construction ofFm, if Fm(x) <ac F(x), then there must be ay ∈ L such thatx ≺ y
andΠF(x) < Vac(f (y)) – which is not possible. Thus,Fm is a≤sd f-maximum SDF off . �

Definition 5.4. Let f be an SDBL with maximal SDFF. For x ∈ dom(F) andF′ an SDF off , we say
thatF′ is onward at xif for all y ∈ dom(F), y � x implies thatF′(y) = F(y). If F′ is onward atλ, then
we say thatF′ is onward.

In Section 8, we use the concept of onwarding to build the maximal SDF from data.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 9

5.2. Merging. The second phase of building a canonical form for SDTs is to define an equivalence
relation on the domain of a maximum SDF. This means identifying which paths lead to the same state.

Definition 5.5. Let F be an SDF off over L and x ∈ T[L]. We definefutureF [x] : x−1T[L] → R,
whereR is the range ofF, such thatfutureF [x](y) = F(xy). If x, y ∈ dom(F), we say thatx ≡ y if
futureF [x] = futureF [y]. Given x, we definex to be the<llex-least element of dom(F) that is equivalent
to x.

Proposition 5.6.
(1) ≡ is an equivalence relation on the domain of an SDF.
(2) If x ≡ y and xz, yz∈ T[L], then xz≡ yz.
(3) If F is an SDF of f over L, then there are only a finite number of≡-equivalence classes on the

domain of F.

Proof. Part 1 follows from the fact that equality is an equivalence relation. Part 2 follows from the
definition of≡. To prove part 3, letG be an SDT that generatesf and letqx be a state ofG which can be
reached by the input stringx ∈ T[L]. For anyy ∈ T[L], if py leads toqx, thenx ≡ y as their futures are
the same. Thus,≡ induces an equivalence relation on (hence, a partition of) the states ofG. Since there
is at least one state in each equivalence class, the fact that|states[G]| < ∞ implies that there are only
finitely many equivalence classes. �

Lemma 5.7. Let F be an SDF of f over L. There is an n such that for all x, y ∈ T[L], x ≡ y if and only
if future[x]↾xΣn = future[y]↾yΣn.

Proof. The proof follows immediately from Proposition 5.6, part 3.Since there are only a finite number
of possible futures, there is a finite portion of each that uniquely identifies it. Letn be the maximum
depth of the paths required to obtain the identifying portion of each future. We have obtained the desired
n. �

We can think of the identifying bounded future of an equivalence class as a sort of signature, an
analogue of the famous locking sequence for Gold style learning [10].

The maximum SDF and the equivalence relation on its domain depend only on the underlying SDBL.
Thus, we have defined a machine-independent canonical form.As a footnote, we demonstrate here how
to produce an SDT from the canonical form which is unique up toisomorphism.

Definition 5.8. Let f be an SDBL, letFm be the maximum SDF forf and let≡ be the equivalence
relation on the domain ofFm. Define a finite state machine,G f , as follows:

• states[G f] = {rx : x ∈ T[L]} (in other words, a set of blank states indexed by{x : x ∈ T[L]}).
• The initial state isrλ.
• EGf = {〈rx− , rx, x(|x| − 1), Fm(x)〉 : x ∈ T[L]} ∪ {〈rx, rλ, #, Fm(x#)〉 : x ∈ L}

We callG f thecanonical SDT for f.

As noted prior to the definition, the maximum SDF depends onlyon the SDBL. Thus, we are justified
in calling the above SDT a canonical SDT. AlthoughL andT[L] may be infinite sets, the set of transitions,
EGf , and the set of states,states[G f], are finite by Proposition 5.6. Also, observe that the method of
defining an SDT from an SDF described in Definition 5.8 can be used to define a unique SDT from any
SDF. Since every SDT also defines a unique SDF, there is a bijection between SDFs and SDTs for a
given SDBL.

Theorem 5.9. Let f be an SDBL. Gf is an SDT that generates f .

Proof. Clearly,G f is a finite state transducer. IfP0, · · · ,Pn are sets of incomparable strings, thenS =
P0 ∗ · · · ∗ Pn also consists of incomparable strings. To see this, supposex = x0 · · · xn andy = y0 · · · yn are
such thatx ≺ y andxi , yi ∈ Pi for all i ≤ n. If i be least such thatxi , yi , thenxi ≺ yi andPi contains two

10 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

comparable strings. Thus, the outputs of all transitions ofG f consist of incomparable strings, as they are
factors of the elements of the range off .

We must show thatG f generatesf . G f and f have the same domain. LetFm be the maximal SDF of
f . If x ∈ T[L], thenG f [px] = ΠFm(x), thus,G f generatesf . �

5.3. An Example. To illustrate the canonical form that we have now defined, we exhibit a transducer
not in canonical form together with its canonical form.

qλGFED@ABC

qaGFED@ABCqbGFED@ABC

��

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{�

a:λ

❄❄
❄❄

❄❄
❄❄

❄

�#

b:A

+3

a:AA,ABB,BA,BBB

$,#:A,B rz #:λ

rz
b:AA,B

qλGFED@ABC

qaGFED@ABCqbGFED@ABC

��

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{�

a:A,B

❄❄
❄❄

❄❄
❄❄

❄

�#

b:A

+3

a:A,BB

$,#:λ rz #:λ

rz
b:AA,B

Figure 5. An SDBL not in canonical form (left) and in canonical form (right).

6. The learning models

There are two principal learning models in grammatical inference: identification in the limit [20]
and PAC-learning [35]. Each of these models admits variantsdepending on what additional sources
of information are provided. In order to learn semi-deterministic transducers, we use queries [4] as an
additional resource. These queries are very limited; the oracle will be interrogated about a possible
translation pair and the oracle will return either atrue or false.

Definition 6.1. Let f be a bi-language. The translation query [x,Y] f returnstrue if Y ∈ f (x) andfalse
otherwise. We call this oracle [f]. Where it is clear from context, we will write [x,Y] instead of [x,Y] f .

Equivalently, the oracle answers membership queries aboutthe graph of the bi-language. We also
prove that learning is not possible without queries. The precise definition of learning we use is adapted
from the one used in [18]:

Definition 6.2. An algorithm,A, polynomial identifies in the limit with translation queriesa class of
transducers,C , if for any G ∈ C there is a set,CSG, such that on anyD ⊇ CSG contained in the
bi-language induced byG, A outputs aG′ equivalent toG. The algorithm must converge within a
polynomial amount of time in|D| and |G|; |CSG| must be polynomial in|G|. |G|, |D| and |CSG| denote
the number of bits required to encode the objectsG,D andCSG, respectivly.

Note that in the above definition the number of calls to the oracle is also bounded by the overall
complexity of the algorithm and is therefore polynomial in the size of the sample.

For Theorem 7.2, we use a different model of learning: identification in the limit from positive data.
We give the definition below.

Definition 6.3. An algorithm,A, identifies in the limit from positive dataa class of transducers,C , if
for anyG ∈ C and any infinite enumeration of the bi-language induced byG, the algorithmA outputs a
finite number of distinct transducers on the initial segments of the enumeration. The only transducer that
is output infinitely many times must be equivalent toG.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 11

7. SDBLs are not learnable

We assume domain knowledge (i.e., access to the characteristic function of the input language). In the
proof of the following theorem, we encode a standard exampleof a “topological” failure of identification
in the limit. In particular, we encode the familyH = {N} ∪ {A ⊆ N : |A| < ∞} into a sequence of SDTs.

Definition 7.1. Let f be a bi-language. We defineDK f to be the oracle that, when asked aboutx, returns
a boolean valueDK f (x). If DK f (x) = true, thenx is in the input language off (in other words, the
domain of f). Otherwise,x is not in the input language off . An algorithm which has access toDK f is
said to have domain knowledge aboutf .

Theorem 7.2. There is a collection of SDBLs,C, such that no algorithm can identifyC in the limit from
positive data, even given domain knowledge of each member ofC.

Proof. To avoid degenerate cases, we assume the output alphabet hasat least two characters,A andB,
and the input alphabet has at least one character,a. We exhibit a sequence of SDTs,{Gi}i∈N, such that no
program can successfully learn every member of the sequence. In the following graphical representation
of {Gi}i∈N we omit the #-transitions, instead indicating terminal nodes with a double border.

G0

qλGFED@ABC76540123�� rz
a:A,B

G1

qλGFED@ABC76540123 qaGFED@ABC76540123��
+3

a:A,B
rz

a:A

G2

· · ·qλGFED@ABC76540123 qaGFED@ABC76540123 qaaGFED@ABC76540123��
+3

a:A,B

+3

a:A,B
rz

a:A

Figure 6. A sequence SDTs that cannot be identified in the limit from positive data.
Transitions are labelled with the input string they read andthe set of possible out-
put strings; for example, a transitione labelled witha : A, B has the property that
input(e) = a andoutput(e) = {A, B}.

Let fi be the SDBL generated by the SDTGi . Fix any learning algorithm and letM be the function
such that, given dataD, the hypothesis made by the learning algorithm isM(D). We inductively define
an enumeration of a bi-language generated by some member of the sequence,{Gi}i∈N. Define Xi =

〈ai ,Ai〉〈ai , Bi〉 and X j
i = 〈a

j ,A j〉〈a j+1,A j+1〉 · · · 〈a j+i,A j+i〉. Let n1 be least such thatM(X1X1
n1

) codes
G1. If no suchn1 exists, then there is an enumeration off1 which the chosen algorithm fails to identify.
Thus, without loss of generality, we may assume such ann1 exists. Similarly, we pickn2 to be least
such thatM(X1X1

n1
X2X2

n2
) codesG2. Proceeding in this fashion, either we reach a stage where somenk

cannot be found and the algorithm has failed to learnfk or we have built an enumeration ofG0 on which
the algorithm changes its hypothesis an infinite number of times. In either case, learning has failed.
C = { fi : i ∈ N} is the desired collection of SDBLs. �

8. Learning with translation queries

In the remainder of the paper, we exhibit an algorithm that can learn any SDBL,f , in the limit,
provided the algorithm has access to the oraclesDK f and [f]. We present the algorithms that witness
the learnability of SDBLs and summarize the result in Theorem 8.5.

8.1. The characteristic sample.The characteristic sample must contain sufficient data to unambigu-
ously perform two operations: onwarding and merging. Throughout this sectionf is an SDBL overL
andG is the canonical SDT that generatesf . We define ˆx to be the<llex-least member ofL that extends

12 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

x. We now proceed to define the characteristic sample forf , denotedCSf . We will make extensive use
of px, qx andG[px] in this section (see Definition 3.5).

The first component of the characteristic sample provides the data required to recognize which maxi-
mal antichains of a set of translations are not valid. In order to illustrate the concept, considerf (a#), the
translations along a path involving only one non-# transition. LetX be the<llex-least member off (a#).
Every maximal antichain off (a#) contains a prefix ofX and every prefix ofX is a member of at most
one element ofVac(f (a#)). If X0 is a prefix ofX that is not in a valid antichain, then there is aZ ∈ f (a#)
such that for anyZ0 ≺ Z, either

(1) there is aZ1 such thatZ0Z1 ∈ f (a#) andX0Z1 < f (a#), or
(2) there is aX1 such thatX0X1 ∈ f (a#) andZ0X1 < f (a#).

In other words,X0 andZ0 have different futures. Thus, for each prefix which is not an element ofa valid
antichain, there is a translation pair that witnesses this fact. The following figure illustrates the two cases
with the possible witnessing strings marked by dashed lines.

����������������
��������������������������������

��
��

❊❊
❊❊

❊❊
❊

②②
②②
②②
②

❊❊
❊❊

❊❊
❊

②②
②②
②②
②

✸✸
✸✸

✸

☛☛
☛☛
☛

☛☛
☛☛
☛

✸✸
✸✸

✸

☛☛
☛☛
☛

✸
✸

✸

☛☛
☛☛
☛

✮✮
✮✮
✮

✕✕
✕✕
✕

✮✮
✮✮
✮

✕✕
✕✕
✕

✮
✮
✮

✕✕
✕✕
✕

✮✮
✮✮
✮

✕✕
✕✕
✕

✮✮
✮✮
✮

✕✕
✕✕
✕

✮
✮
✮

✕
✕
✕

✕✕
✕✕
✕

Figure 7. Two ways in which different futures might be witnessed. In both cases, it is
easy to verify that the futures are different using translation queries.

To describe the required information in the general case, let x0, . . . , xk enumerate the minimal paths to
each of the states ofG. Let x0, . . . , xn enumeratex0, . . . xk together with all possible one-step extensions
of the pathsx0, . . . , xk. Note thatn is bounded by|states[G]| + |states[G]||E|, whereE is the transition
relation forG. Fix i ≤ n. If |xi | > 0, let P be the<ac-greatest antichain that is a member ofVac(f (x−i y))
for all stringsy such thatx−i y ∈ L; if |xi | = 0, defineP = {λ}. DefineX to be the<llex-least member of
P−1 f (x̂i). For eachX0 ≺ X that is not a member of a valid antichain ofP−1 f (x̂i), there is aY ∈ P−1 f (x̂i)
no prefix of which has the same future inP−1 f (x̂i) asX0 and there is a translation inf (x̂i) witnessing the
different futures. We denote the set of such witnessing translation pairs, one for each prefix ofX not in
a valid antichain, bySi . Let Z be the<llex-least member ofP. Let N0(xi) = {〈x̂i ,ZX〉} ∪ Si and define
N0(f) =

⋃

i≤n N0(xi). Observe thatN0(f) is polynomial in the size ofG.
Considerx ∈ T[L]. Let Vac =

⋂

x≺y∈L Vac(f (y)). For eachP ∈ Vac(f (x)) \ Vac, observe that there is
an example that witnesses the fact thatP is not inVac. Such examples demonstrate violations of either
the maximality or the validity of the given antichain. In either case, the witness is a single element of the
graph of f (a paired string and translation). SinceVac(f (x)) is finite, the number of examples needed to
eliminate all incorrect maximal antichains is also finite. We defineN1(x) to be the set which consists of
exactly one example for each member ofVac(f (x)) \Vac. For the sake of a unique definition, we assume
that we always choose the<llex-least example – although this is not essential. We can now define the
second component ofCSf : N1(f) =

⋃

q∈states[G] N1(x̂q).
N0 andN1 are required to perform onwarding correctly. In order to perform merges, we must include

enough data to identify the equivalence classes of states whose futures are the same. There are two ways
in which the futures may differ:

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 13

(1) there is a string,z, such thatxz∈ L, butyz< L or
(2) for X ∈ G[px] andY ∈ G[py], there arezandZ such thatXZ ∈ G[pxz], but YZ < G[pyz].

For each member ofstates[G] there is a finite collection of examples which uniquely identify the state.
Let N2(qx) be a canonically chosen collection of such examples forqx. Let ebe a transition and ˆp be the
<llex-least path starting at the initial state, ending with a #-transition and includinge. DefineN∗2(e) to be
the set of those translations of ˆp each of which uses a different output of the transitioneand is<llex-least
amongst the translations of ˆp that use that output.|N∗2(e)| = |output(e)|. We define the final component
of CSf as follows.

N2(f) =
⋃

x∈W

N2(qx) ∪
⋃

e∈EG

N∗2(e),

whereW consists of the minimal paths to each state ofG as well as all paths that are immediate extensions
of those paths.

Definition 8.1. For an SDBL,f , we define the characteristic sample off , CSf = N0(f)∪N1(f)∪N2(f).

8.2. Algorithms. In all the algorithms that follow, loops over prefixes of a string will proceed in order
of increasing length. Also, when a subroutine returns multiple outputs (e.g., returns all the elements of
an array) we assume that an appropriate loop is executed to load the returned values into the selected
variables in the main program.

8.2.1. Initializing the transducer.

Definition 8.2. Given a stringx over the input alphabet of an SDTG, we say thatG is tree-like below
x if every path which begins atqx ends at a state which is the end state of exactly one transition. These
states are called thestates below x. G is said to betree-likeif it is tree-like below its unique initial state.

Consider a dataset,D. We define an initial transducer by creating a state for everymember of
T[dom(D)]. A tree-like transducer is produced where all transitions output onlyλ except for the #-
transitions at members of dom(D). All outputs in the dataset are assigned to the #-transitions.

Algorithm 1: Forming the initial tree-like transducer (INITIAL)
Data: A finite collection of translation pairs,D.
Result: A tree-like SDT,GD.
for 〈x,X〉 ∈ D do
states[GD] ∪ {rx} → states[GD]
EGD ∪ {e

#
x = 〈rx, rλ, #,X〉} → EGD

if x , λ then
for y ≺ x do
states[GD] ∪ {ry} → states[GD]
EGD ∪ {ey = 〈ry− , ry, y(|y| − 1), λ〉} → EGD

return GD
The transducer that results from a run of Algorithm 1 recognizes the translations inD and no other

translations.

8.2.2. Generating an array of all valid antichains.In order to simplify the presentation of the algo-
rithms, we will not include the algorithms for several simple functions. In particular, we will assume
that LEXORDER(A) takes an array,A, as an input and returns an array with the same contents asA,
but in lexicographic order.LLEXORDER(A) performs the same function, but for the<llex-ordering.
LEXLEAS TandLLEXLEAS Twill be applied to sets and arrays and will return the<lex- and<llex-least
member, respectively. For sets of stringsP andS, we will use the operationsP−1S andP ∗ S as built-in
arithmetic operations. Given an input string,x, output strings,Z andW, and a set of translation pairs,D,
the functionCOMPARE(x,Z,W,D) returnstrue if, for every〈x,ZR〉, 〈x,WS〉 ∈ D, the queries [x,WR] f

14 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

and [x,ZS] f return values oftrue. Otherwise,COMPARE(x,Z,W,D) returnsfalse. Applying the same
notation used above, ifx is an input string, then ˆx is the<llex-least member ofL extendingx. Using
these functions, we define an algorithm to create a list of allvalid antichains when considering the tree
of outputs of a single input string.

Algorithm 2: List the valid antichains (VAC)
Data: A finite collection of translation pairs,D; x ∈ L; Xℓ, the current least translation prefix forx.
Result: An array,A, of all maximal antichains of the translations ofx in D which extendXℓ and

are not provably invalid.
X−1
ℓ
{Y : Y ≻ Xℓ ∧ 〈x,Y〉 ∈ D} → T

LLEXLEAS T(T)→ Z
for W ≺ Z do

W→ AC[0]
for R ∈ T ∧R, Z do

for V ≺ Rdo
COMPARE(x,XℓW,XℓV,D)→ status
if status= true then

V → AC[|AC|]
break

if status= false then
break

if status= true then
AC→ A[|A|]

return A

•����������������Xℓ

����������������
������������������������

��
•��������•����������������•��������•����������������•��������•����������������

Z

��������
•��������•��������•��������•��������•��������•��������

♦♦♦
♦♦♦

♦♦♦
♦

⑧⑧
⑧⑧
⑧⑧
⑧

✴✴
✴✴
✴

✗✗
✗✗

❴ ❴ ❴ ❴ ❴❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

②
②
②
②✼

✼
✼②

②
②
②❙ ❙ ❙ ❙ ❙ ❙ ❙②

②
②
②

✄
✄
✄✰

✰
✰✄

✄
✄❘ ❘ ❘ ❘ ❘ ❘✄

✄
✄

Figure 8. Xℓ is the
least translation prefix
andZ is the least trans-
lation

One of the inputs of Algorithm 2 is the “current least
translation prefix ofx”. The current translation prefix will
converge to the<llex-least output string generated along the
unique path corresponding tox. Xℓ provides a canonical out-
put prefix for testing outputs using translation queries. The
first step of Algorithm 2 restrictsD to the tree of translation
pairs whose second component extends the least translation
prefix. Every antichain of the tree must contain a prefix of
the<llex-least member of the tree. Because of the linear or-
dering of the valid antichains (see Theorem 4.9), there is at
most one valid antichain for each prefix of the least member
of the tree. COMPARE is used to look for matching nodes
to form valid antichains. As can be seen in the figure, all
valid antichains include prefixes of the<llex-least member
and no two valid antichains contain the same prefix. This
provides both a bound on the number of valid antichains and a convenient method to search for the valid
antichains.

We formalize the above intuition in the proof of the following lemma.

Lemma 8.3. LetD be a finite set consistent with an SDBL f over L with canonical transducer G and
x ∈ L. Suppose CSf ⊆ D, x is<llex-least among y∈ L such that qy = qx, Xℓ is the least translation prefix
of x and X is the<llex-least member of f(x). Given inputsD, x and Xℓ and given access to translation
queries about f , Algorithm 2 outputs an array of antichains Asuch that if V is the set of valid antichains
of translations of x which extend Xℓ, then each antichain in A is extended by an antichain in V and each
antichain in V contains a unique antichain in A. Furthermore, A contains the unique antichain which is
a valid antichain of all translations of y that extend Xℓ for all y ∈ L such that y� x.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 15

Proof. Sincex is<llex-least such thatpx is a path to the state at whichpx terminates,CSf (hence,D also)
contains〈x,X〉. Furthermore, for each prefixY such thatXℓ � Y � X, if Y is not a member of a valid
antichain, thenD contains witnessing strings so that this can be determined using translation queries
(this is the content ofN0(x) defined in Section 8.1). Algorithm 2 performs exactly thosetranslation
queries necessary to determine thatY is not a member of a valid antichain. Thus, the array of antichains
that the algorithm returns will correctly exclude all subsets of maximal antichains that contain such aY.

We now show that each antichain in the output must be a subset of a valid antichain. For the sake of
a contradiction, suppose an antichain inA containsY andZ whereXℓ � Y � X andY is a member of
a valid antichain, but the unique member ofV that containsY does not containZ. By the definition of
the N0 component ofCSf , D will contain a string such that whenCOMPAREis run,Y andZ will be
flagged as not members of the same valid antichain.

Let F be the<sd f-maximum SDF forf . By the definition ofN2(f), for eachZ ∈ F(x) there must be
a Y such that〈x̂,Y〉 ∈ D andXℓZ � Y. Consequently,A will contain {Xℓ} ∗ F(x), which is the unique
antichain which is a valid antichain of the extensions ofXℓ in f (y) for all y ∈ L such thatx � y. �

8.2.3. Performing onwarding on a single node.The next algorithm takes an array of antichains and
produces the<ac-greatest antichain that appears to be a valid antichain of all trees of outputs on inputs
extendingx. As the data may still be incomplete, testing the validity for other trees is done using
translation queries.

Algorithm 3: Testing an array of antichains against a dataset (TESTVPS)
Data: A string, x, over the input alphabet; an array,A, of antichains for the output tree of input ˆx; a

collection of translation pairs,D.
Result: The<ac-greatest member of the array,A, for which there is no evidence inD that the

selected antichain is not valid for all output trees in the future ofx.
for i = |A| − 1; i ≥ 0; i − − do

‘not valid’ → status
for 〈xy,Z〉 ∈ D do

for R ∈ A[i] do
if R≺ Z then

R−1Z→W
‘valid’ → status
for Q ∈ A[i] do

if [xy,QW] f = false then
‘not valid’ → status
break

if status= ‘not valid’ then
break

if status= ‘valid’ then
return A[i]

16 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Observe that there will always be a valid antichain that causes the above algorithm to terminate; if
there is no other, then it will terminate on{λ}. In the following algorithm, we usenull to test for the
existence of an optional argument.

Algorithm 4: Onwarding a tree-like portion of a transducer (ONWARD)
Data: A string x; a transducer,G, which is tree-like below a string,x; Xℓ, the current least

translation prefix forx; a collection of translation pairs,D; a set of strings,S (optional).
Result: A transducer that differs fromG only on transitions whose end state isqx or a state belowx.
S→ P
if P = null then

VAC(D, x,Xℓ)→ A
T ES TVPS(x,A,D)→ P

output(ex) ∗ P→ output(ex)
for y ∈ dom(D) ∧ x ≺ y do

P−1output(ey)→ output(ey)

The purpose of Algorithm 4 is to advance as much translation as possible in a tree-like portion of a
transducer.

8.2.4. Merging states.Following conventions presented in [19], we will label states during the learning
process asred states if it is not possible to merge them with any<llex-lesser state. Initially, only the input
state,qλ, is ared state. We proceed through the states in<llex-order. When a new state is found that
cannot be merged with anyred state, then it becomes a newred state.

The next algorithm we present merges two states if there is noevidence that the underlying transducer
behaves differently on extensions of the inputs of the two states. In thisoperation, we assume that the
first argument is ared state, the second argument is not, and that onwarding has already been performed
for both states. In order to present the algorithm succinctly, we define a function similar toCOMPARE
from Section 8.2.2. DefineFUTURE(x, y,G,D) = true if

(

∀X ∈ G[px] ∩ ran(D),Y ∈ G[py] ∩ ran(D), 〈z,Z〉 ∈ D
)

(

(x � z∧ X � Z→ [y(x−1z),Y0(X−1Z)] f = true)

∧ (y � z∧ Y � Z→ [x(y−1z),X0(Y−1Z)] f = true)

)

,

whereX0 = LLEXLEAS T(G[px]) andY0 = LLEXLEAS T(G[py]). Otherwise,FUTURE(x, y,G,D) =
false. Note that findingLLEXLEAS T(G[px]) does not require enumeration all elements ofG[px], which

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 17

could be exponential in the length ofx. To determineLLEXLEAS T(G[px]), one need only find the least
element of each set of translations along the pathpx.

Algorithm 5: MERGE
Data: A red state,qx; a non-red state,qy; a transducer,G, that is tree-like belowqy; a collection of

translation pairs,D.
Result: A transducer; a boolean value oftrue if the two states have been merged andfalse

otherwise.
FUTURE(x, y,G,D)→ status
if status= true then

qx→ end(ey)
states[G] \ {qy} → states[G]
for z ∈ dom(D) ∧ z≻ y do

for y ≺ w � zdo
if qx(y−1w) ∈ states[G] then
states[G] \ {qw} → states[G]

qx(y−1w) → start(ew)
qx(y−1w)input(ew) → end(ew)

return 〈G, true〉
else

return 〈G, false〉

If G is a transducer generated from a dataset, it is likely thatG will include non-equivalent states for
which there is no evidence in their futures to distinguish them. Ultimately, this will not be an obstacle
to learning because if the characteristic sample has appeared, there will be enough data to distinguish
earlier states that will be processed first.

8.2.5. The learning algorithm.Our final algorithm combines onwarding and merging into a single pro-
cess. We proceed through the states of the initial transducer in <llex-order, first onwarding and then
attempting to merge with lesser states. If a state cannot be merged with any lesser state, it is fixed and

18 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

will not subsequently be changed. The fact that such states are fixed is recorded by their membership in
a setred.

Algorithm 6: Learning an SDT
Data: A collection of translation pairs,D.
Result: A transducer.
INIT IAL(D) → G0

LLEXORDER(states[G0]) → S
qλ → red[0]
0→ i
for qx ∈ S do

if qx ∈ red ∨ qx− < red then
continue

else
ONWARD(x,G, LLEXLEAS T(G[px]),D)→ G
for qy ∈ red do

MERGE(qy, qx,G,D)→ 〈G, status〉
if status= true then

break

if status= false then
x→ red[i]
i + +

Lemma 8.4. Let f be an SDBL with canonical SDT G and letD be a finite set consistent with f
which contains CSf . At every stage during the execution of Algorithm 6 with inputD and given access
to translation queries about f , if G′ is the SDT constructed so far and px is a path through G′ that
exclusively involvesred states, then G[px] = G′[px]. Furthermore, if x and y are strings such that such
that their unique paths px and py terminate at differentred states of G′, then the states qx and qy of G
are distinct.

Proof. Let G0 be the SDT that results from Algorithm 1 and letF be the<sd f-maximum SDF forf .
We prove the lemma by induction. Initially, the onlyred state is the initial state and the lemma holds
trivially. Now suppose that the lemma holds forG′ at the beginning of an iteration of the main for-loop
in Algorithm 6. LetG′′ be the result of executing the next iteration of the for-loop.

If no newred states have been added, then a previously non-red state,q1, had Algorithm 4 applied to
it and was merged with ared state,q0. Let x be the<llex-least string such that the pathpx in G′ ends at
qx = q1. Sinceq1 was not ared state,G′ must have been tree-like belowx and because of the induction
hypothesis, the correct least translation prefix forx will have been used by Algorithm 4. Furthermore,
since the unique state inG′ with a transition toq1 is ared state, by the definition ofN0(f), D contains
examples to guarantee that Algorithm 2 correctly identifiesvalid antichains. Thus, Algorithm 4 must
have identified the unique<ac-greatest antichain which is a valid antichain off (y) for all y ∈ L such
that y � x. By the induction hypothesis,CSf ⊆ D must contain examples that uniquely identify the
future ofq0. Since precisely those examples fromD will be tested forq1 using translation queries when
Algorithm 5 is run, the fact thatq0 andq1 were merged implies thatq0 ≡ q1. Consequently, all paths
that only visitsred states ofG′′ satisfy the lemma. Since no newred states were introduced, the second
conclusion in the statement of the lemma follows automatically from the induction hypothesis.

Now suppose that a newred state,q1, is selected. Since the state was marked as ared state, no
<llex-lesser state is equivalent, meaning that ifx is <llex-least such thatpx in G′ ends atq1, thenx defines
the<llex-least path to some state ofG. Consequently,CSf ⊆ D contains examples to guarantee that
Algorithm 4 identifies the correct antichain,F(x). Sinceq1 was not merged with any existingred state,
there must be examples inD that distinguishq1 from each of thered states. Thus, for each suchred state,

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 19

q, we know thatq1 . q. Since the for-loop in Algorithm 6 proceeds through the states in<llex-order, this
means that ifx is <llex-least such that the pathpx in G′ ends atq1, thenx is <llex-least such that the state
qx in G has the same future asq1. We may conclude, therefore, thatCSf ⊆ D contains examples that
uniquely identify the future ofq1. Finally, to prove thatG′′[pz] = G[pz] for any z such thatpz that only
visits red states ofG′′ we need only consider paths that end atq1 and do not visitq1 at any other point.
There is only one state,q, in G′′ that has a transition toq1 (becauseG′′ is tree-like belowq1) and that
state is ared state in bothG′ andG′′. Thus,G[pz−] = G′[pz−] = G′′[pz−]. The transition fromq to q1

with inputz(|z| − 1) has outputF(x), thusG′′[pz] = G′′[pz−] ∗ F(x) = G[pz]. �

8.3. Learnability of SDBLs.

Theorem 8.5. The class of SDBLs is polynomially identifiable in the limit with translation queries.

Proof. Let f be an SDBL with canonical SDTG and letD be a collection of translation pairs consistent
with f and containingCSf . We apply Algorithm 6 to learnf from D. To prove that Algorithm 6
identifies f in the limit in polynomial time, we must verify three claims.First, we must show that the
size of the chosen characteristic sample is polynomial in the size of the canonical transducer of the target.
Second, we must show that the algorithm terminates within a number of steps that is polynomial in the
size of the canonical transducer of the target and in the sizeof the given data. Third, we must show the
SDT produced by Algorithm 6 generatesf .

The first claim is easy. As noted in the section in whichCSf was defined,N0(f),N1(f) andN2(f) are
all polynomial in the size ofG.

An inspection of the algorithms shows that they converge in polynomial time and that only a polyno-
mial number of translation queries are made. We conclude that the second claim is true.

Finally, we prove the third claim. Algorithm 6 terminates atthe point when every state in the SDT
generated by Algorithm 1 has been either marked as ared state or merged with another state. Suppose
thatG′ is the output of Algorithm 6. When the algorithm terminates,every state is ared state. Conse-
quntly, for anyx for which there is a pathpx in G′, by Lemma 8.4G[px] = G′[px]. Thus, we need only
prove that for allx, if x defines a path throughG then x defines a path throughG′. By the definition
of N0(f), every transition inG is used at least once by translations inCSf . Fix x which defines a path
throughG and letxa be an extension by the single charactera. If xa also defines a path throughG, then
G has a transitione such thatstart(e) is the final state of the path defined byx andinput(e) = a. Let G0

be the SDT generated by Algorithm 1 and let〈z0az1,Z0YZ1〉 be a translation pair inCSf such that the
path throughG defined byz0az1 usese when translating the charactera. Let qz0 andqz0a be the states of
G0 corresponding to the initial segmentsz0 andz0a of z0az1. Let x0 be the<llex-least string to the final
state of the path throughG defined byx. Let qx0 be state ofG0 corresponding tox0. By the definition of
N2(f), CSf contains examples that uniquely identify the future ofqx0. WhenFUTURE(x0, z0a,G′′,D)
is run at some point during the execution of Algorithm 6 (where G′′ is the current form of transducer
under construction), the two strings will be recognized as having the same futures and will be merged.
Thus, if we assume that the paths throughG′ defined byx andx0 are the same, thenxa defines a path
throughG′. By induction on the length ofx, we have shown the every string that defines a path through
G also defines a path throughG′.

�

9. Related Results

We establish the relationship between SDTs and two other classes of transducers that are not entirely
deterministic: p-subsequential transducers and transducers that recognizeRf f b relations. We also look
at some properties of SDBLs; specifically, we show that SDBLsare not closed under composition or
reversal.

20 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

9.1. Other Forms of Non-Determinism. The following definition is adapted from [2].

Definition 9.1. A transducer is said to bep-subsequentialfor somep ∈ N if for every transitione in
the transition relation,|output(e)| = 1 unlessinput(e) = #, in which case|output(e)| ≤ p. We say the a
bi-language isp-subsequential if it is generated by ap-subsequential transducer.

Definition 9.2. [33] A binary relation,R, is finitary if for every x ∈ dom(R) the set{y : 〈x, y〉 ∈ R} is
finite. If there is a numbern ∈ N such that|{y : 〈x, y〉 ∈ R}| ≤ n for all x, then the relation is said to be
bounded. Such a relation isfinite-stateif there is a transducer that generatesR. We say that a relation
is Rf f b if it is finitary, finite-state and bounded. We say that a transducer isRf f b if the bi-language it
generates isRf f b.

Proposition 9.3. Every p-subsequential bi-language is Rf f b.

Proof. A p-subsequential bi-language is finitary and bounded as everyinput string has at mostp distinct
translations. It is also clearly finite-state as it is generated by ap-subsequential transducer. Thus, every
p-subsequential bi-language is alsoRf f b. �

Proposition 9.4. There is a p-subsequential bi-language which is not an SDBL.

Proof. If f is an SDBL,x ∈ dom(f) andX,Y ∈ f (x), then eitherX = Y or X andY are incomparable.
Thus, f : {a} → {{A,AA}} such thatf (a) = {A,AA} is not an SDBL. It is, however,p-subsequential. �

Proposition 9.5. There is an SDBL which is neither p-subsequential nor Rf f b.

Proof. LetG be a transducer with a single state, which is a terminal state, and one transition which starts
and ends at the unique state, has inputa and output{A, B}. G is shown in Figure 9.

GFED@ABC76540123�� rz
a:A,B

Figure 9. An SDT which generates an SDBL which is neitherRf f b nor p-subsequential.

The set of translation pairs recognized byG is {〈an,X〉 : n ∈ N∧ X ∈ {A, B}n}, which is not a bounded
relation asan is in the domain for everyn and has 2n translations. Since it is not bounded, it is neither
Rf f b nor p-subsequential. �

Proposition 9.6. There is an Rf f b bi-language which is neither an SDBL nor p-subsequential.

Proof. Let G be the transducer in the following figure.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 21

GFED@ABC

GFED@ABCGFED@ABC

GFED@ABC76540123

��

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{�

a:B

❄❄
❄❄

❄❄
❄❄

❄

�#a:B

❄❄
❄❄

❄❄
❄❄

❄

�#

a:A

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{� a:A

rz
a:B

$,
a:B

Figure 10. AnRf f b bi-language which is not an SDBL.

The set of translation pairs recognized byG is S = {〈an+2, Bn+2〉 : n ∈ N} ∪ {〈an+2,ABnA〉 : n ∈ N}.
SupposeG′ is an SDT that recognizesS. For everyn, the input stringan+2 has exactly two translations:
Bn+2 andABnA. SinceG′ is has finitely many states, the first transition on the path throughG′ defined by
an+2 with an output other than{λ}must have{AX, BY} as a subset for some stringsX andY. Furthermore,
the last transition on the path with output other than{λ}must have{ZA,WB} as a subset for some strings
Z andW. This implies thatan+2 should have at least four distinct translations, which is a contradiction.

Similarly, supposeS is recognized by ap-subsequential transducerGp. Since the two translations of
an+2 differ at their first character, it must be that for every path throughGp all translation occurs at the
final transition (since only terminal transitions may have more than one output). Given this observation,
Gp must have infinitely many states – one for each stringan+2. This is a contradiction. �

9.2. Composition and Reversal of SDBLs.

Definition 9.7. Let f andg be two bi-languages. We define thecomposition of f and gto be the bi-
languageh such that dom(h) = dom(f) and for everyx ∈ dom(f), h(x) =

⋃

X∈ f (x) g(X). We define the
reversal of f to be the bi-languagek with domainS =

⋃

x∈dom(f) f (x) such thatk(X) = {x ∈ dom(f) :
X ∈ f (x)}.

Proposition 9.8. There are SDBLs whose composition is not an SDBL.

Proof. Let G f andGg be the following two SDTs and letf andg be the SDBLs generated by them.

GFED@ABC76540123�� rz
a:A,B GFED@ABC76540123�� rz

A:01
$,

B:0

Figure 11. Two SDTs whose composition is is not an SDBL. On the left,G f ; on the
right,Gg.

Observe that ifh is the composition off andg, thenh(a) = {0, 01}. Since 0 is a prefix of 01,h cannot
be an SDBL. �

22 ACHILLES A. BEROS AND COLIN DE LA HIGUERA

Proposition 9.9. There is an SDBL whose reversal is not an SDBL.

Proof. Let G be the following SDT and letf be the SDBL generated byG.

GFED@ABC

GFED@ABCGFED@ABC

GFED@ABC76540123

��

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{�

b:A

❄❄
❄❄

❄❄
❄❄

❄

�#b:A

❄❄
❄❄

❄❄
❄❄

❄

�#

c:A

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

{� c:A

rz
a:A

$,
a:A

Figure 12. An SDT which generates an SDBL whose reversal is not an SDBL.

For eachn, the reversal off has two translations ofAn+2, banb andcanc. From this observation we
see that the reversal off cannot be an SDBL for exactly the same reason that the bi-language generated
by the transducer in Figure 10 cannot be an SDBL. �

10. Conclusion

We have presented a novel algorithm that learns a powerful class of transducers with the help of rea-
sonable queries. A probabilistic version of these transducers was defined in [1]. We are unaware of
any results involving this version. As both probabilities and translation queries can serve the purpose of
answering questions about translation pairs not present inthe given data, it seems possible that proba-
bilistic transducers could be learned without translationqueries, with statistical analysis taking the role
of translation queries.

The learnability of SDBLs represents a significant advance in our ability to identify underlying struc-
ture in the challenging situation where the structure is non-deterministic. While it does not strictly
expand existing models (as can be seen from Proposition 9.4), it does contribute an enormous class of
new bi-languages which are beyond the scope of deterministic transducers.

11. Acknowledgements

We would like the thank the anonymous referees for many useful comments, corrections and sugges-
tions – specifically, for suggesting that we examine the relationship between SDBLs,p-subsequential
bi-languages andRf f b relations.

References

[1] H. I. Akram. Learning Probabilistic Subsequential Transducers. PhD thesis, Technische Universität München, 2013.
[2] C. Allauzen and M. Mohri. p-subsequentiable transducers. InImplementation and Application of Automata, 7th International

Conference,Ciaa 2002, Revised Papers, volume 2608 of Lncs, pages 24–34. Springer-Verlag, 2002.
[3] J. C. Amengual, J. M. Benedı́, F. Casacuberta, A. Castaño, A. Castellanos, V. M. Jiménez, D. Llorens, A. Marzal, M. Pastor,

F. Prat, E. Vidal, and J. M. Vilar. The EuTrans-I speech translation system.Machine Translation, 15(1):75–103, 2001.
[4] D. Angluin. Queries and concept learning.Machine Learning Journal, 2:319–342, 1987.
[5] M. Bernard, J.-C. Janodet, and M. Sebban. A discriminative model of stochastic edit distance in the form of a conditional

transducer. In Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, editors,Grammatical Inference: Algorithms
and Applications, Proceedings ofIcgi ’06, volume 4201 of Lnai, pages 240–252. Springer-Verlag, 2006.

A CANONICAL SEMI-DETERMINISTIC TRANSDUCER 23

[6] A. Beros. Anomalous vacillatory learning.Journal of Symbolic Logic, 78(4):1183–1188, 12 2013.
[7] A. Beros. Learning theory in the arithmetic hierarchy.Journal of Symbolic Logic, 79(3):908–927, 9 2014.
[8] Achilles Beros and Colin de la Higuera. A canonical semi-deterministic transducer.arXiv preprint arXiv:1405.2476, 2014.
[9] J. Berstel.Transductions and context-free languages. Teubner, Leipzig, 1979.

[10] M. Blum and L. Blum. Towards a mathematical theory of inductive inference.Information and Control, 28:125–155, 1975.
[11] J. Carme, R. Gilleron, A. Lemay, and J. Niehren. Interactive learning of node selecting tree transducer.Machine Learning

Journal, 66:33–67, 2007.
[12] F. Casacuberta and C. de la Higuera. Optimal linguisticdecoding is a difficult computational problem.Pattern Recognition

Letters, 20(8):813–821, 1999.
[13] F. Casacuberta and C. de la Higuera. Computational complexity of problems on probabilistic grammars and transducers. In

A. L. de Oliveira, editor,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’00, volume 1891 of
Lnai, pages 15–24. Springer-Verlag, 2000.

[14] F. Casacuberta and E. Vidal. Machine translation with inferred stochastic finite-state transducers.Computational Linguistics,
30(2):205–225, 2004.

[15] A. Clark. Partially supervised learning of morphologywith stochastic transducers. InProceedings of the Sixth Natural Lan-
guage Processing Pacific Rim Symposium, pages 341–348, 2001.

[16] A. Clark. Large scale inference of deterministic transductions: Tenjinno problem 1. In Y. Sakakibara, S. Kobayashi, K. Sato,
T. Nishino, and E. Tomita, editors,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’06, volume
4201 of Lnai, pages 227–239. Springer-Verlag, 2006.

[17] F. Coste, D. Fredouille, C. Kermorvant, and C. de la Higuera. Introducing domain and typing bias in automata inference.
In G. Paliouras and Y. Sakakibara, editors,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’04,
volume 3264 of Lnai, pages 115–126. Springer-Verlag, 2004.

[18] C. de la Higuera. Characteristic sets for polynomial grammatical inference.Machine Learning Journal, 27:125–138, 1997.
[19] Colin de la Higuera.Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, 2010.
[20] E. M. Gold. Language identification in the limit.Information and Control, 10(5):447–474, 1967.
[21] Thomas Jech.Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition,

revised and expanded.
[22] C. Kermorvant and C. de la Higuera. Learning languages with help. In P. Adriaans, H. Fernau, and M. van Zaannen, edi-

tors,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’02, volume 2484 of Lnai, pages 161–173.
Springer-Verlag, 2002.

[23] K. Kunen. Set theory: an introduction to independence proofs, volume 102 ofStudies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980.

[24] M. Mohri. Finite-state transducers in language and speech processing.Computational Linguistics, 23(3):269–311, 1997.
[25] M. Mohri. Minimization algorithms for sequential transducers.Theoretical Computer Science, 234:177–201, 2000.
[26] M. Mohri, F. C. N. Pereira, and M. Riley. The design principles of a weighted finite-state transducer library.Theoretical

Computer Science, 231(1):17–32, 2000.
[27] A. Nerode. Linear automaton transformations.Proceedings of the American Mathematical Society, 9(4):541–544, 1958.
[28] Maurice Nivat. Transductions des langages de chomsky.In Annales de l’institut Fourier, volume 18/1, pages 339–455. Institut

Fourier, 1968.
[29] J. Oncina, P. Garcı́a, and E. Vidal. Learning subsequential transducers for pattern recognition interpretation tasks.Pattern

Analysis and Machine Intelligence, 15(5):448–458, 1993.
[30] J. Oncina and M. A. Varó. Using domain information during the learning of a subsequential transducer. In L. Miclet and

C. de la Higuera, editors,Proceedings ofIcgi ’96, number 1147 in Lnai, pages 301–312. Springer-Verlag, 1996.
[31] B. Roark and R. Sproat.Computational Approaches to Syntax and Morphology. Oxford University Press, 2007.
[32] J. Sakarovitch.Elements of Automata Theory. Cambridge University Press, 2009.
[33] Jacques Sakarovitch and Rodrigo De Souza. On the decidability of bounded valuedness for transducers. InMathematical

Foundations of Computer Science 2008, volume 5162 of Lncs, pages 588–600. Springer, 2008.
[34] B. Starkie, M. van Zaanen, and D. Estival. The Tenjinno machine translation competition. In Y. Sakakibara, S. Kobayashi,

K. Sato, T. Nishino, and E. Tomita, editors,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’06,
volume 4201 of Lnai, pages 214–226. Springer-Verlag, 2006.

[35] L. G. Valiant. A theory of the learnable.Communications of the Association for Computing Machinery, 27(11):1134–1142,
1984.

[36] J. M. Vilar. Query learning of subsequential transducers. In L. Miclet and C. de la Higuera, editors,Proceedings ofIcgi ’96,
number 1147 in Lnai, pages 72–83. Springer-Verlag, 1996.

[37] J. M. Vilar. Improve the learning of subsequential transducers by using alignments and dictionaries. In A. L. de Oliveira,
editor,Grammatical Inference: Algorithms and Applications, Proceedings ofIcgi ’00, volume 1891 of Lnai, pages 298–312.
Springer-Verlag, 2000.

[38] J.M. Vilar, V. M. Jiménez, J-C. Amengual, A. Castellanos, D. Llorens, and E. Vidal. Text and speech translation by means of
subsequential transducers.Natural Language Engineering, 2(4):351–354, 1996.

http://arxiv.org/abs/1405.2476

	1. Introduction
	1.1. Transducer learning
	1.2. Towards nondeterminism with transducers

	2. Notation
	3. Bi-Languages and Transducers
	4. Ordering maximal antichains
	5. Semi-Deterministic Bi-Languages
	5.1. Semi-Deterministic Functions
	5.2. Merging
	5.3. An Example

	6. The learning models
	7. SDBLs are not learnable
	8. Learning with translation queries
	8.1. The characteristic sample
	8.2. Algorithms
	8.3. Learnability of SDBLs

	9. Related Results
	9.1. Other Forms of Non-Determinism
	9.2. Composition and Reversal of SDBLs

	10. Conclusion
	11. Acknowledgements
	References

