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Abstract

Case-Based planning can fruitfully exploit knowledge
gained by solving a large number of problems, stor-
ing the corresponding solutions in a plan library and
reusing them for solving similar planning problems in
the future. Case-based planning is extremely effective
when similar reuse candidates can be efficiently chosen.
In this paper, we study an innovative technique based
on planning problem features for efficiently retriev-
ing solved planning problems (and relative plans) from
large plan libraries. Since existing planning features are
not always able to effectively distinguish between prob-
lems within the same planning domain, we introduce a
new class of features. Our experimental analysis shows
that the proposed features-based retrieval approach can
significantly improve the performance of a state-of-the-
art case-based planning system.

Introduction

In this paper, we focus on the planning approach known as
Case-Based Planning (CBP), or planning by reuse (Spalazzi
2001; Borrajo, Roubikova, and Serina 2015). The main ob-
servation in CBP is that in many of the real-world domains
in which planning is applied, the typology of problems that
should be solved remains similar. Therefore, it is expected
that solutions of previously analysed problems can be use-
ful when solving new problems within the same domain. In
these cases, it can be more efficient to adapt an existing plan,
rather than replanning from scratch. Intuitively, a case-based
system is greatly dependent on the level of reusability of al-
ready solved instances. The useful level of dependency is
fulfilled when problems tend to recur, and similar problems
have similar solutions.

In CBP, a critical task is to efficiently identify, within a
large library of already solved problems, those which are
most similar to the new problem to solve. In this paper,
we describe an innovative and efficient features-based ap-
proach for retrieving planning problems from large planning
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libraries, in order to improve the performance of CBP sys-
tems.

Recently, a large set of features has been exploited in plan-
ning for predicting the performance of planners (Fawcett
et al. 2014; Cenamor, de la Rosa, and Ferniandez 2012;
2013; Howe et al. 1999; Roberts et al. 2008; Roberts and
Howe 2009). Such features are either categorical or numer-
ical, and they summarise specific properties of the plan-
ning instance. Typically, feature values are computed using
a piece of software that efficiently analyses a given charac-
teristic of the considered problem (Hutter et al. 2014). Fea-
tures in planning have been mainly used for building predic-
tive models of planners’ performance (Roberts et al. 2008;
Roberts and Howe 2009; Fawcett et al. 2014) or for select-
ing and combining planning engines in portfolios (Cenamor,
de la Rosa, and Fernandez 2012; 2013).

We observed that the existing largest set of planning fea-
tures (Fawcett et al. 2014) is not always able to effectively
distinguish between different problems from the same do-
main. Therefore, in this paper we introduce a new class of
planning features, and demonstrate their usefulness in the
CBP context.

Case-Based Planning

Following the formalisation proposed by Liberatore (2005),
a planning case is a pair (Il, mo), where Il is a planning
problem and m is a plan for it, while a plan library is a set
of cases {{IL;, m;)|1 < i < m}.

In general the following steps are executed when a new
planning problem is solved by a CBP system. Plan Re-
trieval: to retrieve cases from memory that are analogous
to the current (target) problem and to evaluate their solution
plans by execution, simulated execution, or analysis in order
to choose one of them. Plan Adaptation: to repair any faults
found in the retrieved plan to produce a new valid plan .
Plan Revision: to test 7 for success and repair it if a failure
occurs during execution. Plan Storage: to eventually store
7 as a new case in the case base.

In order to exploit the benefits of remembering and
reusing past plans, a CBP system needs efficient methods for



retrieving analogous cases and for adapting retrieved plans
together with a case base of sufficient size and coverage to
yield useful analogues. The ability of the system to search
in the library for a plan suitable to adaptation depends both
on the efficiency/accuracy of the implemented retrieval al-
gorithm and on the data structures used to represent the ele-
ments of the case base.

Limits of Existing Features in the CBP Context

As a matter of fact, in case-based planning selecting the
problems of the case base which are mostly similar to the
new given problem is of critical importance. In particular,
the retrieval step deals with this process. Current techniques
are either expensive or imprecise. In the former case, spend-
ing too much CPU-time in the retrieval, dramatically reduces
the CPU usage of subsequent steps. In the latter case, the
number of similar problems provided can be extremely large
and/or not including the most similar problem.

Given the results achieved by Fawcett et al. (2014) in
predicting planners’ performance, we initially decided to
consider all the features they exploited. Thus, for each
planning problem of the case base, 311 features are ex-
tracted. Such features represent the largest set of planning
features ever considered. The features that Fawcett et al.
exploited come from a number of different sources. They
computed features by (a) considering different encodings
of a planning problem (PDDL, SAT, SAS+) (Backstrom
and Nebel 1995), (b) extracting pre-processing statistics,
(c) analysing the search space topology (Hoffmann 2011b;
2011a), and (d) considering probing features — brief runs of a
planner on the considered problem, in order to extract infor-
mation from its search trajectories. Their computation can
take up to few minutes, according to the domain and the size
of the considered problem.

Interestingly, we observed that this large set of features
is often not accurate enough to distinguish between similar
problems from the same domain. In some domains, when
problems have the same number of objects, but differences
in terms of goals and/or initial predicates, the values of all
the features remain exactly the same. Hence, regardless to
the function used for evaluating the similarity, such prob-
lems are indistinguishable. In fact, Fawcett-et-al features
were designed for inter-domain exploitation, thus they are
not capable of distinguish, under some conditions, similar
problems within the same domain. We noticed that this is
the case in Logistics-like domains.

Consider two Logistics problems involving four ob-
jects “objl, obj2, ob3j3, obj4”, four airports “Aportl,
Aport?2, Aport3, Aport4” and one airplane “planel”. In
both problems the goal requires to have all the objects at
“Aport2”, while their corresponding initial state is:

Problem 1: (at obijl Aportl), (at obj2
Aport3), (at obj3 Aport3), (at obj4
Aport4), (at planel Aport4)

Problem 2: (at objl Aportl), (at obj2
Aport3), (at obj3 Aport3), (at obij4
Aportl), (at planel Aport4)
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Figure 1: PEG of Probleml1.

These problems are indistinguishable using the Fawcett
et al. features, but they are significantly different from a
CBP perspective. Clearly, this example involves trivially
small instances, and the different adaptation cost between
plans solving the two problems is irrelevant. Adaptation cost
becomes relevant when indistinguishable problems involve
hundreds of objects and numerous predicates in the initial or
goal states are different.

Identifying features for CBP

Since in case-based planning it is critical to identify and or-
der problems also on the basis of differences that are not
revealed by existing planning features — this is of paramount
importance for minimising the cost of evaluation and adap-
tation steps — we had to consider other features. We fo-
cused on investigating information that can allow a finest
intra-domain problem characterisation. In OAKPIlan (Serina
2010), each case in the case base is encoded as a Planning
Encoding Graph (PEG). The underlying idea of the PEG
is to provide a description of the “topology” of a planning
problem without making assumptions regarding the impor-
tance of specific problem features for the encoding. The
PEG of a planning problem IT is the union of the directed
labelled graphs encoding the initial and goal facts.

In Fig. 1 we can see the PEG of the Problem 1 of our
running example where the edges associated to initial facts
are depicted with black lines and the edges associated to
goal facts are depicted with dashed red lines. The first and
last level nodes correspond to initial and goal fact relation
nodes, while the nodes of the intermediate levels correspond
to concept nodes representing the objects of the initial and
goal states. The PEG of Problem 2 is not depicted for lack
of space, but in this case it is characterized by an edge that
connects Ob 34 to Aport1 instead to Aport4.!

The way in which the graph is generated allows to iden-
tify and quantify even small differences between planning
problems within the same domain. Furthermore, the graph
generation is quick (usually it takes a few seconds). For char-
acterising the graph, we considered three different versions:
(i) the complete graph, (ii) the graph which considers only
goal relations, and (iii) the graph which considers only ini-
tial state relations. Each version has been considered both

'The PEG of a problem includes also labels which are not con-
sidered by our features extractor. The interested reader can find a
detailed description of the PEG in (Serina 2010).



as directed and undirected graph. From the directed graph
versions, 19 features have been extracted, belonging to 4
classes. Size: number of vertices, number of edges, ratios
vertices-edges and inverse, and graph density. Degree: av-
erage, standard deviation, maximum, minimum degree val-
ues across the nodes in the graph. SCC: number of Strongly
Connected Components, average, standard deviation, maxi-
mum and minimum size. Structure: auto-loops, number of
isolated vertices, flow hierarchy; results of tests on Eulerian
and aperiodic structure of the graph.

The features extracted by considering the undirected
graph versions are 18. Size: number of edges, ratios vertices-
edges and inverse, and graph density. Degree: average, stan-
dard deviation, maximum, minimum degree values across
the nodes in the graph. Components: number of connected
components, average, standard deviation, maximum and
minimum size. Transitivity: transitivity of the graph. Tri-
angle: total number of triangles in the graph and average,
standard deviation, maximum, minimum number of trian-
gles per vertex.

In total, 115 features for each planning problem are com-
puted: 111 from the different graphs, plus the value of de-
gree sequences of the general graph (Ruskey et al. 1994),
the number of instantiated actions, facts and mutex relations
between facts. The original version of OAKplan uses a fil-
tering approach based exclusively on the degree sequences
of the PEG, while our version of OAKplan combines dif-
ferent features extracted from the PEG (including also the
original degree sequences as additional feature) in order to
define a more accurate similarity function. The original sim-
ilarity function (based only on degree sequences) and our
similarity function (based on the set of features) are used to
filter the elements of the case base and provide a subset of
them to the matching phase based on kernel functions.

Exploiting features for CBP

In our approach, a planning problem p is described by a se-

quence of features FP = (fV f¥ ..., fP). In order to quan-

tify the similarity between two planning problems px and

py, the following is done. First, for each pair of features
Pr fPY the diff(m) function is calculated as follows:

[ — 3

mazx(fh, fHY)

diff(m) = (1)

Normalisation avoids that features with very different values
have a higher impact. The similarity value sim between the
problems is then computed as:

>y diff(i)

n

sim=1— )

If sim = 1, then the problems are estimated identical ac-
cording to the considered features. The lower the similarity
value, the higher the difference between the problems and,
subsequently, also the cost of adaptation for a plan solving
one of the two problems to become solution of the other
problem. Given a new planning problem, the elements in the
case-base are ordered according to their similarity to it, and
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the most similar elements are retrieved for the next steps of
the planning process.”

Experimental Analysis

The benchmark domains considered in the experimental
analysis are: Logistics, DriverLog, ZenoTravel, Satellite,
Rovers and Elevators. The PDDL models are those used in
the last IPC.

We generated a plan library with 6000 cases for each do-
main. Specifically, each plan library contains a number of
case ‘“clusters” ranging from 34 (for Rovers) to 107 (for
ZenoTravel), each cluster c is formed by either a large-size
competition problem or a randomly generated problem II.
(with a problem structure similar to the large-size competi-
tion problems) plus a random number of cases ranging from
0 to 99 are obtained by changing II.. Problem II. was mod-
ified either by randomly changing at most 10% of the lit-
erals in its initial state and goal set, or adding/deleting an
object to/from the problem. The solution plans of the plan-
ning cases were computed by planner TLPlan (Bacchus and
Kabanza 2000).> In our case bases, plans have a number of
actions ranging from 72 to 519, while problem objects range
from 69 in Elevators to 309 in Satellite.

For each considered domain, we generated 25 test prob-
lems, each of which derived by (randomly) changing from
1 to 5 initial goal facts, and renaming all the objects, of a
problem randomly selected among those in the case base.*
The experimental tests were conducted using a Xeon™2.00
GHz CPU, with a limit of 4 Gbytes of RAM. The CPU-time
limit for each run was 30 minutes.

The planners we used are: LAMA 2011 (Richter, West-
phal, and Helmert 2011), LPG-td v 1.0.2 (Gerevini, Saetti,
and Serina 2006), FF v2.3 (Hoffmann 2003), and SGplan
IPC6 (Hsu and Wah 2008). The results of OAKplan and
LPG-td are median values over five runs for each problem.

Before evaluating our set of features, we tested the use of
those introduced by Fawcett et al. (2014). We observed that
on average they require between tens and hundreds seconds
to be computed, although on some domains (such as Satel-
lite) the computation can require up to 20 minutes. In several
domains, it happens that they are not informative enough
for distinguishing effectively between problems, thus a too
large number of problems is retrieved and passed to the fol-
lowing CBP step, which becomes the bottleneck of the CBP
process. On the other hand, the 311 features extracted by
the Fawcett et al. approach are useful on two considered
domains, Rovers and Satellite. On these domains their per-
formance, in terms of problem filtering (i.e. not consider-
ing the large features computation time) are similar to those
achieved by using our set of 115 features.

Table 1 shows the domain-by-domain results of the com-
parison between OAKPIlan using its original plan retrieval

In our experiments we selected problems with a difference be-
tween their similarity value and the best similarity value over all
problems in the case base that was < 0.001.

3Except for Elevators where we used the best solution plan pro-
duced by the generative planners considered in Table 1.

*Using the same experimental setup of (Gerevini et al. 2013).



Planner & Domain Solved Speed | Match. | Quality Stab.
Score Time Score
OAKplan
DriverLog 100.0 % 12.53 23.18 23.30 0.89
Elevators 100.0 % 13.27 52.36 19.35 0.76
Logistics 96.0 % 16.06 40.06 22.34 0.88
Rovers 100.0 % 12.16 | 240.37 23.81 0.99
Satellite 100.0 % 1843 | 259.49 24.82 0.97
ZenoTravel 100.0 % 19.43 16.01 21.77 0.91
E e 993% | 9538 | 10744 | 14036 | 0.90 |
OAKplan All Features
DriverLog 100.0 % 21.39 1.17 23.43 0.89
Elevators 100.0 % 17.81 1.43 18.39 0.69
Logistics 96.0 % 20.79 3.66 21.87 0.78
Rovers 100.0 % 23.67 14.85 23.68 0.98
Satellite 100.0 % 23.43 7.89 24.60 0.95
ZenoTravel 100.0 % 23.28 2.14 22.34 0.89
| Tow || 993% | 13512 | 527 | 139.12 | 087 |
OAKplan-GraphC
Total 993 % | 127.55 7.73 137.72 0.88
OAKplan-GraphG
Total 98.6 % 131.56 5.92 132.46 0.82
OAKplan-Graphl
Total 99.3 % 130.18 7.80 140.03 0.89

Table 1: Results of OAKPlan using its original retrieval
function versus using all the features, and summary results
(all domains together) of OAKPlan using only features ex-
tracted from partial PEGs. Performance is shown in terms
of: % of solved instances, IPC speed score, average match-
ing CPU time seconds, IPC quality score and stability.

function based on degree sequences (first subtable), and
OAKPIlan using the proposed features-based plan retrieval
techniques (the other 4 subtables); in particular OAKplan-
All-Features exploits all the 115 features, while the other
subtables consider the features extracted from: the complete
PEG (GraphC), the graph which considers only goal rela-
tions (GraphG), and the graph which considers only initial
state relations (Graphl). Interestingly, there is not a signif-
icant difference between the performance achieved by ex-
ploiting different sets. Although using all the features guar-
antee the best IPC speed score, using only the features
computed by considering the PEG of initial state provides
slightly better results in terms of plan quality and stability.
Finally, using only PEG of goal relations worsen the solved
instances. As defined in (Nguyen et al. 2012), the plan stabil-
ity between two plans 7 and 7’ is equal to the plan distance
between 7’ and T, i.e. the number of actions that are in 7’
and not in 7 plus the number of actions that are in 7 and not
in 7' (Fox et al. 2006), divided by the sum of the number of
actions of 7’ and 7.

As shown in Table 1, in every considered domain the
features-based approach improves the OAKPlan perfor-
mance in terms of both IPC speed score (used in IPC 2014
Agile Track; considering the CPU-time required by the
whole planning process) and CPU-time seconds needed for
matching, only. Figure 2 shows the CPU time needed for
solving the instances of the Logistics domain by the two
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Figure 2: CPU time used by OAKPlan to solve problems
in the Logistics domains with either our features-based re-
trieval or OAKPlan original retrieval.

Planner % Sol. Time (score) Quality (score)
OAKplan 99.3 % 164.63 (82.93) | 332.79 (116.38)
OAKplan All Features 99.3 % 91.33(114.88) | 334.99 (115.68)
FFv2.3 68.4 % 798.69 (57.56) | 216.20 (100.87)
LAMA-2011 81.8 % 415.57 (65.37) | 208.11 (104.31)
LPG-td 99.3% | 227.28 (111.57) | 341.99 (114.85)
SGPlan 82.5 % 399.74 (94.48) | 238.28 (104.24)

Table 2: Comparison in terms of % of solved problems, av-
erage CPU time (IPC speed score), and average quality (IPC
quality score), between OAKPlan, OAKPlan using the pro-
posed features for plan retrieval, LPG-td, FF and SGPlan.

OAKPIlan versions, where we observe that in a few problems
using the original retrieval function is faster than using the
features-based approach. This is because the feature-based
filtering is too selective, and considers only a very small set
of cases, that do not include the best matching problem.
Table 2 shows the results of a comparison between OAK-
Plan exploiting the new features-based plan retrieval, the
original OAKPlan, and the generative planners. On the con-
sidered benchmarks, the features-based approach demon-
strated to be the fastest, and to provide good quality plans.

Conclusions

A critical step of Case-Based Planning is to efficiently iden-
tify, within a large library of already solved problems, those
which are most similar to the new problem to solve. In this
work we have proposed an efficient method that exploits
problem features for effectively retrieving similar planning
problems. Our experimental analysis demonstrated that (i)
the filtering process is performed quickly, usually in a few
seconds, and (ii) the proposed method can significantly
speed-up the state-of-the-art case-based planner OAKPlan.
This work does not only impact the CBP topic, but can
also open new avenues of research in different areas of plan-
ning. Potential applications of an efficient and effective sim-



ilarity function include: (i) in learning-based planning sys-
tems, the evolution of extracted knowledge when testing
problems are very different from training ones, as done in
(Malitsky, Mehta, and O’Sullivan 2013); and (ii) the iden-
tification of different clusters of problems, on which tuning
planners’ configurations, that can be exploited in portfolio
algorithms (Seipp et al. 2015; 2012).

Future work includes analysing different functions for
evaluating the similarity value of two problems, and iden-
tifying important features within the considered set.
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